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A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-
axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of 640х640 μm in 
size with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 
0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar 
telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. 

The software package developed for the proposed WF sensors includes three algorithms of local WF slope 
estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three 
methods of WF reconstruction (modal Zernike polynomial expansion, deformable mirror response function 
expansion and phase unwrapping), that can be selected during operation with accordance to the application. 
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1.  INTRODUCTION 

HE RESULTS of recent works related to techniques and 
algorithms for wavefront (WF) measurement using 
Shack-Hartmann sensors show their high efficiency in 

solving very different tasks of applied optics [1]-[5]. The 
Shack-Hartmann sensors sensitive to small WF aberrations 
are used for adaptive optical systems (AOS), compensating 
the wave distortions caused by atmospheric turbulence. 

The goal of this paper was to develop a sensitive Shack-
Hartmann sensor with high precision WF measurement 
capability based on modern technology of optical elements 
making and new efficient methods and computational 
algorithms of WF reconstruction. 

In the first half of this paper we describe three algorithms 
of local WF slope estimation and three methods of WF 
reconstruction used in our software. In the second half we 
describe the design and test results of WF sensors, 
developed in the Laboratory of Coherent and Adaptive 
Optics at the Institute of Atmospheric Optics, Russian 
Academy of Sciences, Siberian Branch. 

 
2.  ALGORITHMS FOR LOCAL WAVEFRONT SLOPE 

ESTIMATION 

The wavefront ( ,w x y)  can be determined from the 
gradient vector equation 
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where , .X YS S  are the local WF slopes. In Shack-Hartmann 
sensors these local slopes are measured by means of 
processing a diffraction pattern, obtained from the lens 
raster (micro-lens matrix) at sensor sub-images. To estimate 
WF slopes, the measurement  data  of current shifts  of 
Hartmann pattern focal spots with respect to their 
unperturbed positions are used: 
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here x[m], y[m], x0[m], y0[m] – are coordinates of current 
and reference focal spot positions (measured e.g. on a 
reference Hartmann pattern with a plane WF), f is the micro-
lens focal length, m is the spot order number, NS is the 
number of sub-images used on the Hartmann pattern. 

The shift vectors ,x yS  inS  x and y directions are computed 
in different ways, such as finding the coordinates of 
Hartmann pattern spot centroids, cross-correlation 
technique, and Fourier demodulation technique. The 
centroid technique is used in processing of the Hartmann 
pattern obtained from point objects; the centroid coordinates 
here are computed on the two-dimensional grid [ ]i jN N× , 
corresponding to the sensor pixel matrix (CCD matrix), by 
the following equations: 
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where i and j are the numbers of an element (pixel) in a row 
and column, respectively, Ni and Nj are the numbers of 
elements in a row and column of the matrix, Iij is the 
measured signal of the pixel with the coordinates i, j. To 
decrease the errors of coordinates of the centroids caused by 
sensor noises, the weight functions and the “tracking 
window” algorithm are used [6]. 
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The cross-correlation frame processing is used for 
Hartmann patterns from extended objects obtained, e.g., in 
adaptive solar telescopes, and the coordinates of maxima of 
mutual correlation functions of sub-apertures of a current 
and reference Hartmann pattern are found instead of 
centroid coordinates (Fig.1). 

 
 

          
             а                                 b                                c 
 
Fig.1.  Hartmann pattern (a) of the extended scene (sun disk limb), 
normalized cross-correlation function matrix (b), interferogram of 
reconstructed wavefront (c). 
 
 

The normalized mutual correlation functions are computed 
either by algorithm of direct discrete convolution (for 
matrices 12x12 and smaller) or by algorithm of mixed radix 
fast Fourier transform [8] (for matrices larger than 12x12) 
by the following equations: 

 
( , ) ( , ) / ( , )NC i j C i j C i j= R                                                 (4) 
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where ( , )RI l m  is the intensity of reference frame and 

( , )I l m  is the intensity of current frame. 
We have suggested and use the modified Fourier algorithm 

for computing the correlation function of low-contrast 
objects [6] in the software: 
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where ,F F+ −
 are the operators of direct and inverse FFT, 

respectively; the parameters of filtering function 

0, , 0x ya k k are fit experimentally in accordance with spatial 
frequencies of extended objects and noise. 

To accelerate the computations, shifts of these maxima can 
be estimated by two-dimensional mutual intensity spectra at 
sub-images of current and reference frames [9]. After 

finding the integer coordinates ,m mi j  of the maximum 
points of mutual correlation function, their values are 
adjusted using the quadratic approximation  
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Note that the cross-correlation algorithms, if applied to 

point objects, give the results exceeding and agreeing with 
those of the centroid method; hence, the former could be 
used as alternate methods due to their low sensitivity to 
sensor noises, e.g., CCD matrix. 

Wavefront slopes in the Fourier demodulation method are 
measured without direct finding of Hartmann pattern spot 
shifts [10], [11]. This method is also of low sensitivity to 
sensor noises and has the advantage of speed for a large 
number of sub-apertures. The idea of the method is 
following. 

In the case of WF aberrated by function ( , )S x y , a 
Hartmann pattern could be represented in the form of 
regular two-dimensional lattice: 
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where 2 / ,x xk pπ= 2 /y yk pπ=  are the spatial 

frequencies of micro-lens raster with the periods ,x yp p . 

To find the local slopes ,x yS S , the relation connecting 
Fourier transforms of Hartmann pattern and phase gradients 
is used: 
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here ,x yν ν  are the spatial frequencies, F{} is the Fourier 
transform operator. The side lobes of high orders 
(m,n=1,2,…) of two-dimensional Fourier spectrum of the 
Hartmann pattern are well separated in the coordinates of 
spatial frequencies, if the number of micro-lenses is 
sufficiently large and the aberration spectrum is localized. 

Phase gradients are defined after low-frequency filtration 
separately in each direction according to the algorithm: 
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where ( , ), ( , )x x y y x yν ν ν νΦ Φ  are the filtering functions for 
the gradients over the coordinates x and y, respectively: 

( , ) ( , ) 1x x y y x yν ν ν νΦ =Φ = , 

if 
2 2
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2 2

0( ) ( ) ( / 2x x y yk k kν ν− + − > 2) ,  
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here 0 2 /k pπ=  is the carrier spatial frequency of the 
Hartmann pattern with the period p. 

 
3.  ALGORITHMS FOR WAVEFRONT RECONSTRUCTION FROM 

LOCAL SLOPES 
In the modal reconstruction method, the calculated WF is 

represented as the series expansion in terms of the basis 
function {Zk}, defined on the whole sensor aperture: 
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where NZ is the number of basis functions. The parameters 
NZ and NS (2) determine the accuracy of WF representation, 
on the one hand, and influence the computation speed in the 
reconstruction algorithm, on the other hand. To find the 
expansion coefficient сk, the rms error minimization 
procedure is used: 
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which results in the matrix equation  A=S c , having the 
solution 
 

                           B=c S , 
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                (10) 
 

The reconstruction matrix B is calculated when specifying 
the sensor geometry, which essentially accelerates the real-
time computations. 

In applications connected with measurements of WF 
aberrations, such as applied optics, atmospheric and 
adaptive optics, etc., the basis of Zernike polynomials 
orthogonal within the circle of the unit radius ρ  is usually 
chosen as basic function (8): 
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using the continuous numbering of polynomials and OSA 
standard normalization according to the equations  
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To calculate the Zernike polynomials and their derivatives, 
Horner’s effective recurrent algorithms are used. If the 
purpose of WF reconstruction is control of a deformable 
mirror, then the experimentally measured mirror response 
functions are to be chosen as the basis. 

Phase reconstruction by the Fourier demodulation method 
requires eliminating discontinuity of the phase surface 
calculated with respect to modulo 2π . The phase 
unwrapping algorithm based on two-dimensional FFT was 
suggested in [12] and developed in [13]. The unwrapping 
procedure consists in filtration of the Fourier transform of 
the phase gradient integral along x and y directions. The 
local slopes [ , ], [ , ]x yS i j S i j , specified on the grid [ ]i jN N× , 
are added with the periodic boundary conditions: 

 
[ 1, ] [0, ],x xS j S j− = −  
[ , ] [ 1, ],x i x iS N j S N j= − −                      (13) 
[ , 1] [ ,0],y yS i S i− = −  
[ , ] [ , 1].y j y jS i N S i N= − −   

 
The algorithm of mixed radix fast 2-D Fourier transform is 

used for reconstruction of the unwrapped continuous surface 
[ , ]i jϕ  from the wrapped phase according to the expression 
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where F is the discrete Fourier transform operator, and the 
function 
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is the sum of gradient differences of the wrapped phase 
along x and y directions, respectively. 

 
4.  WAVEFRONT SENSOR DESIGN AND RESULTS 

Shack-Hartmann sensors sensitive to small WF aberrations 
are used for adaptive optical systems (AOS) compensating 
the aberrations caused by atmospheric turbulence. An 
increase in the sensor sensitivity is attained by means of an 
increase in the focal length of micro-lens raster and a 
decrease in the pixel size of the sensor. But an increase in 
video camera resolution results in undesirable AOS 
frequency band reduction, since the Hartmann pattern 
processing time increases, and producing of raster of low-
aperture refractive micro-lenses with full filling and high 
repeatability of micro-lens parameters presents a serious 
task. The diffraction raster manufacturing technology allows 
solving this difficulty. 

⎤⎦

 

We have used the diffractive raster [14] for WF sensor 
design. The raster consists of tightly packed square low-
aperture diffraction elements of 640х640 μm in size. Each 
element is a small off-axis fragment of a large long-focus 
diffraction lens. The numerical aperture (NA) of a separate 
element is 0.005. 
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A digital video camera DALSA CAD6-512 (Canada) is 
used as a detector in the WF sensor; its resolution is 
532х516 pixels (1 pixel = 10 μm), frame frequency is 262 
frames per second. The video camera is connected with a 
computer through a Coreco PC-DIG frame grabber 
(Canada). 

The laboratory-bench test of the WF sensor [7] has shown 
that the rms deviation of the measured local slopes does not 
exceed 4. 80 arcseconds. The rms deviation of centroid 
shifts of the diffraction images in the focal plane does not 
exceed 0.15 pixels. 

The diffractive raster with 8 x 8 elements, laser beam with 
plane wavefront and the reference optical wedge were used 
in this experiment. Fig.2a shows the superposed trajectories 
of centroid shifts of 64 diffraction images when rotating the 
optical wedge round the optical axis through a full 360°. The 
mean centroid shifts of all the above images are shown in 
Fig.2b and Fig.2c at each fixed wedge position. Each 
following position differs from the previous one by rotation 
of the optical wedge through 30° round the system optical 
axis. The vertical segments show the rms shift deviations. 
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                           b                                           c 
 

Fig.2.  Shifts of the centroids of diffraction images at optical wedge 
rotation 

 
Noncoincidence of the trajectories is connected with the 

errors in manufacturing of optical elements, WF aberrations 
of laser radiation, and noises of recording system. 

If the integral measurement error is 0.15 pixels, then the 
rms deviation from flatness of reconstructed WF does not 
exceed 0.017λ  (λ  = 0.63 μm is the wavelength of incident 
radiation) [7]. 

 

The use of low-aperture off-axis diffraction lenses with 
high quality of WF formation and high repeatability of the 
parameters of separate elements in the sensor allowed us to 
record local WF slopes with a high angular resolution and to 
measure aberrations caused by atmospheric turbulence. 

Fig.3 shows the sensor’s test-bed view along with the 
measurement results of WF aberrations of a collimated laser 
beam of 100 mm in diameter with a radiation wavelength of 
0.63 μm, propagating along a horizontal atmospheric path of 
100 m in length. Table 1 gives the coefficients of Zernike 
polynomials in λ fractions. 

 

      
                           a                                                 b 
 

         
                   c                                                  d 
 
Fig.3.  Sensor test-bed view (a) and measurement results: 
Hartmann pattern at the beginning (b) and at the end (c) of the 
path, wave aberration function (d) at the receiver input aperture 
(73mm in diameter) 

 
Table1 

С1 = - 0.552807  tilt in x-direction 

С2 =  1.08023 tilt in y-direction 

С3 = - 0.0145726 astigmatism 

С4 = - 0.436019 defocus 

С5=   0.607858 astigmatism 

С6 = - 0.262549 trefoil 

С7 =   0.116933 coma 

С8 = - 0.230521 coma 

С9 = - 0.152966 trefoil 

С10= - 0.185922 quatrefoil 

С11=   0.0234221 secondary astigmatism 

С12=   0.0760849 spherical aberration 

С13= - 0.171276 secondary stigmatism 

С14=   0.1081888 quatrefoil 
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The Shack-Hartmann sensor has been developed on the 
base of a matrix of low-aperture off-axis diffraction micro-
lenses for measurements of atmospheric turbulence 
parameters on a laser radiation propagation path and as an 
element of adaptive image-forming optical system. 

Adaptive systems of solar telescopes use extended scenes, 
such as sunspots, pores and solar granulation, as tracking 
objects. In a Shack-Hartmann sensor of solar adaptive 
systems, each raster element forms the image of a chosen 
fragment of the solar disk. A sensor-recording Hartmann 
pattern is an image array of this fragment. The incident WF 
error results in shift of each image. The incident WF is 
reconstructed on the base of the measured shifts. 

The Shack-Hartmann sensor has been developed for the 
AOS of Big Solar Vacuum Telescope (BSVT) of the Baikal 
Astrophysical Observatory, consists of the raster of square 
diffraction micro-lenses with the numerical aperture 0.019 
and a GE-680 “Prosilica” video camera (Canada) with a 
resolution of  640х480 pixels (1 pixel = 7.4 μm). The WF 
sensor operates with broadband (10nm FWHM) visible light 
at about 535nm. A field of view of the BSVT adaptive 
system does not exceed 40 arcseconds. 

 
 

          
                      a                                                b 
 

          
                      c                                               d 
 
Fig.4. Extended scenes on the sun surface (Big Solar Vacuum 
Telescope on the Baikal Astrophysical Observatory): sunspot (а), 
pore (b), “lucky snap” of granulation (c), sun limb (d) 
 
 

Fig.4 shows the images of solar disk fragments used by the 
adaptive system of BSVT as tracking objects. The choice of 
optimal technique of local slope measurements is provided 
for AOS operation with various fragments of the solar disk. 

A solar granulation fragment is a preferred tracking object 
as granulation is always present on the solar disk. But the 
image of this object is of low contrast due to the physical 
nature of solar granulation. In addition, atmospheric 
turbulence and instrumental errors of solar telescopes 

essentially decrease the contrast of granulation image. 
Image transfer to the second focus in real telescopes with 
AOS with the use of additional optical elements also results 
in a contrast decrease. The contrast of BSVT-recording 
granulation image is within the 1–4% range depending on 
seeing conditions. Designing the AOS to be effectively 
operating by a solar granulation fragment is a complicated 
problem mainly due to the difficulty in measuring shifts of 
low-contrast images. 

To operate with an image of solar granulation fragment, 
we have developed modified correlation algorithm [3], [6] 
for shift measurements. If the parameters of filtering 
function are chosen accurately, low frequencies are rejected 
in the spatial spectrum of illumination distribution, which 
results in background illumination flat-field over the sensor 
field of view, as well as high frequencies connected with 
faults of image recording. As a result, frequencies 
corresponding to grain sizes prevail in the transformed 
spatial spectrum, and the maximum connected with a solar 
granulation image shift becomes global in the mutual 
correlation function. In good seeing conditions, the 
developed algorithm provides WF sensor operations by a 
solar granulation fragment.  

When the sensor operates by the solar limb, spot or its 
segment, normalized mutual correlation function (4) is used. 
To determine a shift of image fragment with a pore, both 
modified correlation algorithm (at low contrast of pore 
image) and algorithm with normalized correlation function 
can be used. 

 
 

 
 
 

Fig.5.  A screenshot of the Shack-Hartmann sensor program 
 
 

The computational algorithms allowing WF reconstruction 
from the measurements of Shack-Hartmann patterns with 
high precision and the use of modern methods of analysis 
have been developed and realized in the form of an 
application package for Intel-based workstations in 
Windows environment. 

Fig.5 shows the main screen form of the Shack-Hartmann 
sensor program with controls and windows for imaging a 
current frame and measurement results. The program allows 
not only operating with “alive” images but also high speed 
processing (200 frames/sec) filmed Hartmann patterns. 
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