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In the paper we describe basic functions of the Hierarchical Temporal Memory (HTM) network based on a novel
biologically inspired model of the large-scale structure of the mammalian neocortex.The focus of this paper is in a
systematic exploration of possibilities how to optimize important controlling parameters of the HTM model applied
to the classification of hand-written digits from the USPS database. The statistical properties of this database are
analyzed using the permutation test which employs a randomization distribution of the training and testing data.
Based on a notion of the homogeneous usage of input image pixels, a methodology of the HTM parameter optimization
is proposed. In order to study effects of two substantial parameters of the architecture: the patch size and the overlap
in more details, we have restricted ourselves to the single-level HTM networks. A novel method for construction of the
training sequences by ordering series of the static images is developed. A novel method for estimation of the parameter
maxDist based on the box counting method is proposed. The parameter sigma of the inference Gaussian is optimized on
the basis of the maximization of the belief distribution entropy. Both optimization algorithms can be equally applied to
the multi-level HTM networks as well. The influences of the parameters transitionMemory and requestedGroupCount
on the HTM network performance have been explored. Altogether, we have investigated 2736 different HTM network
configurations. The obtained classification accuracy results have been benchmarked with the published results of
several conventional classifiers.
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1. INTRODUCTION

BIOLOGICAL SYSTEMS transform environmental informa-
tion into efficient survival behaviors in a remarkably ro-

bust and reliable way. Neuroscience has shown that the most
sophisticated elements of such an information transformation
are performed in the neocortex of the mammalian brain. In a
general context, it is accepted that different areas of the neo-
cortex are interconnected to form hierarchical structures [1].
This has been verified by detailed studies of the visual cor-
tex, where in the ventral pathway, information passing from
the retina via the lateral geniculate nucleus enters the lowest
level (V1) of the visual cortex. Afterward, it passes up in
a sequence to the V2, V4 and inferotemporal cortex (IT) ar-
eas. As information moves up the hierarchy, each area detects
increasingly more general and invariant features of the input
visual scene [2].

One of the most promising direction of the neuroscience
research is based on the idea that the neocortex represents
sensory information probabilistically. Therefore, for model-
ing these processes, the Bayesian probability theory has been
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deployed. The powerful aspect of the Bayesian model is that
it allows for feedback within the neocortical hierarchy which
provides contextual information. Lee and Mumford [3] pro-
posed a model of hierarchical Bayesian inference in the vi-
sual cortex that was further elaborated by Dean [4] to produce
a pyramidal Bayesian network. This work showed that the
task of performing Bayesian inference for pattern recognition
(PR) in large brain-like structures is becoming tractable.

The Hierarchical Temporal Memory (HTM) is another
biologically inspired computational theory that provides a
large-scale model of the overall structure of the mam-
malian neocortex. It was first introduced by Hawkins and
Blakeslee [5] and later on, by George and Hawkins [6], fur-
ther improved and developed into a software implementation
called NuPIC (Numenta Platform for Intelligent Computing,
http://www.numenta.com). The HTM extends Lee and Mum-
ford’s work explicitly handling temporal sequences of input
within a hierarchical Bayesian framework [6, 7, 8]. Hawkins
and coauthors see the fundamental task of neocortical pro-
cessing as prediction and so place the temporal aspect of the
perception at the center of their model.

The HTM is a memory-prediction network model that takes
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advantage of the Bayesian belief propagation and revision
techniques. The roles of biological cortical regions and sub-
regions are mimicked by the network nodes which are com-
putationally identical and represent basic building blocks of
the HTM architecture. It is the hierarchical structure and
temporal relations contained in a training data that serve the
HTM nodes for extracting invariant representations of the
outer world’s causes or, in other words, the categories of input
patterns. As a state-of-the-art approach, the HTM has princi-
pal potential for resolving difficult PR problems that have not
been handled so far.

There are several open issues of the research into the HTM,
in particular, only a little attention has been devoted to the
construction of the optimum HTM architectures for specific
practical applications. For example, in the field of PR prob-
lems addressed up to now using the NuPIC tool, for search-
ing optimum values of several model parameters, which con-
trol the learning and inference processes in the HTM nodes,
the task has been completely delegated to the user’s trial-and-
error computer experimentation.

No systematic research of the relation of the random na-
ture of the input visual data to the vector quantization process
(the parameter maxDist) and to the Gaussian inference (the
parameter sigma) has been carried out. To our knowledge, no
analysis of the influence of various node overlap schemes in
relation to the utilization of the information originating from
individual image pixels has been published.

In this paper, we concentrate ourselves exactly on the re-
search into these aspects of the construction of the optimum
single-level HTM network dedicated to the specific PR prob-
lem – the recognition of the hand-written digits contained in
the internationally accepted USPS database [9]. This choice
is based on the fact that the recognition accuracy achieved by
various classifiers applied to this database is well documented
and benchmarked in the literature [9, 10]. The restriction to
the single-level architectures in this study is motivated by the
effort to explore in more details effects of substantial control-
ling parameters of the HTM network on its performance.

Related to the PR problem of USPS, it should be noted that
several attempts to apply the HTM network to this task have
already been published. In [11, 12], an own implementation
of the HTM model was applied to the binary version of the
USPS digits. The authors selected a fixed two-level architec-
ture and manually experimented with the learning parameter
maxDist and inference parameter sigma. They did not explore
the suitability of the architecture, neither the parameter opti-
mization process. The best recognition accuracy achieved was
96.32%.

In the report [13], the first NuPIC “Pictures Demo” pro-
gram was adopted to the USPS recognition problem. Again,
it was a two-level architecture applied to the binary versions
of the USPS digits. The author reported the best recognition
accuracy achieved of 96.26%.

The most recent activities related to various applications of
the HTM to PR of the USPS digits have been reflected in the
Numenta discussion forum [14]. The approach of Gregko in-

volved a novel element of the HTM network, namely, “eye
movements”. Such an extension of the HTM model corre-
sponds, in machine learning, with the method of the so-called
“ensemble learning”. The approach already worked with the
gray-level images of the USPS digits and the best achieved
recognition accuracy was again 96.26%. However, the author
did not report on the exact network configuration and he did
not cope in his work with the systematic optimization of the
controlling parameters of the HTM.

2. HIERARCHICAL TEMPORAL MEMORY

In [6, 15, 16], the basic HTM theory and terminology, as well
as implementation are described. Since our interest has been
focused on the research into the optimal design of the HTM
network intended for solving image object recognition tasks,
in the following we overview briefly the essential concepts of
the HTM model that we see as most relevant to the visual data
processing.

As already mentioned, the HTM network is organized in
the layers of elementary units – nodes. All the nodes imple-
ment the same learning and inference algorithms, and there-
fore they operate in computationally identical regimes. They
can only differ in the content of their internal memory, i.e., the
information gained during the learning phase. The individual
layers (or levels) of nodes are usually structured into a tree-
like hierarchy. There is always a zero sensory level that serves
as an input to the first level of nodes. In our case, the zero level
of the network represents a visual field containing raw image
pixels. In the NuPIC platform this function is implemented
by the ImageSensor object. On the other hand, at the very top
of the HTM hierarchy, a single node called Zeta1TopNode is
typically situated. It realizes task of a simple classifier that
associates learned top-level belief patterns with known output
categories [8]. Of course, one could potentially consider any
supervised classifier to be used instead of the Zeta1TopNode.

Since the use of the temporal dependencies of input spatial
patterns is essential characteristic of the HTM, it learns either
from natural temporal sequences of images (i.e., movies) or
artificially generated movies obtained by applying a smooth
set of transformations (e.g., translation, rotation, or zooming)
to the given training images. In the NuPIC platform, the spe-
cial ImageSensor plug-ins called explorers are responsible for
generating the artificial temporal sequences out of the static
input images.

To describe individual functions of the single HTM node,
a simple example of the visual pattern recognition will be
introduced. The goal of the HTM network in this example
is to learn invariant representations of a set of binary image
categories comprising primitive line drawing objects. Fig. 1
shows a way of interfacing the HTM with the given visual
world. Each frame (image) of the training sequences is pre-
sented to the sensory field (“retina”) of size 32× 32 pixels.
The nodes at the level 1 are arranged in an 8× 8 grid where
each node receives input from a 4×4 pixel patch of the retina.
Such an arrangement of the level 1 nodes covers the whole
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Fig. 1: The structure of the HTM network for learning invariant rep-
resentations of the binary line drawings. The picture is derived from
the one contained in [16].

retina with no overlap between neighboring patches. The ef-
fective input area – patch – from which any node receives its
input is called field of view or receptive field. At the level 2,
each node receives its input from 2× 2 patch of the child
nodes at the level 1 again with no overlap. The single node
at the top-most level 3 is connected to all 4× 4 nodes at the
level 2 and so it covers the entire network’s input by pooling
outputs from all its child nodes.

The depicted HTM network is trained by sequences of im-
ages that show each object in various smoothly changing po-
sitions within the sensory field of view. At any time, only
a single frame of the training movie is presented to the net-
work. It is convenient to consider that each HTM node op-
erates in two distinct stages – learning and inference. During
the learning stage, all network layers are being learned in con-
secutive order from the lower to the higher ones. The network
is repeatedly exposed to the training movie until all the nodes
at all the levels form their own representations of the input
space. Once all the nodes at all the levels of the hierarchy are
learned, the whole network can be switched to the inference
mode. The task of the HTM network during the inference is
to recognize the category of a potentially unseen input pat-
tern. This information can be read at the top of the network
hierarchy.

In the following, we describe briefly the algorithms used
for learning and inference within the HTM nodes.

2.1. Learning in a node

During the learning stage, each node of the network performs
the following basic operations:

1. memorization of input patterns,

2. learning transition probabilities,

3. temporal grouping.

Memorization of input patterns

In the first step of the learning process, the node memorizes
the representative patterns that were seen in its receptive field.
In general, the memorization of spatial patterns which are rep-
resented by fragments of individual movie frames can be con-
sidered as a vector quantization process of the input data. In
the HTM terminology, this process is called the spatial pool-
ing. The detected quantization points (or coincidences) rep-
resent the centroids of the pools containing one or more input
vector patterns [17]. When the Euclidean distance between
the input pattern and the already existing quantization points
exceeds the value of the parameter maxDist, a new quantiza-
tion point is generated. After processing all input patterns, the
memorization process is finished and all detected quantization
points are stored in the node’s internal memory.

The mentioned memorization procedure is usually applied
only to the lowest level of the HTM network. In the higher
levels, a sort of sparsification of the memorized patterns is
usually considered, mainly due to significantly reduced mem-
ory demands and presumably better scaling to larger prob-
lems. The basic idea of the sparsification is that the memo-
rized coincidence vectors are not stored in their dense form,
but rather in a sparse format (i.e., majority of the elements
are zeros) which preserves only single maximum belief com-
ponent per each child node. All other beliefs in each mem-
orized vector are zeroed so they do not occupy any memory.
There is a significant difference in the calculation of the dis-
tance between dense (non-sparse) and sparse vectors. Authors
of the NuPIC have considered measuring the vector distance
based on non-sparse elements only, whereas all sparse ele-
ments are simply excluded from the calculation. From such
a point of view, each memorized coincidence behaves exactly
as a vector of the length corresponding to the number of the
child nodes. For more details on the sparsification used in the
NuPIC, see Numenta discussion forum.

Learning transition probabilities

The ultimate goal of the HTM learning is to generate correct
invariant representations of the input world’s causes based on
the temporal relations contained in the training sequence. To
achieve this goal, authors of the HTM model proposed to eval-
uate a frequency of transition events, i.e., cooccurrences of the
memorized coincidences in adjacent time instances [16]. The
temporal relations are then described in a form of the first-
order Markov graph where vertices represent the memorized
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coincidences and links stand for the transitions between coin-
cidences in time. Such a graph structure can be expressed as
a square matrix called Time Adjacency Matrix (TAM), where
the rows and columns represent coincidences in adjacent time
instances and the particular matrix elements contain the fre-
quencies of transitions between them. In each HTM node,
an individual TAM characterizing local temporal transitions
is constructed and maintained.

As for the TAM construction during the learning phase, a
sequence of the input vector patterns generates a sequence of
the closest coincidences within each node. When two coin-
cidences appear nearby in time in this sequence, the relevant
TAM element is increased until the whole sequence is pre-
sented to the network. In the basic configuration, only transi-
tions between immediately preceding coincidences are being
increased by the constant value 1. However, sometimes it may
be reasonable not to focus only on immediate temporal neigh-
bors, but also to increase transitions between current and few
older coincidences. The number of affected coincidences in
the past is defined by the parameter transitionMemory. In
this case, the increment is not constant but rather ruled by the
formula: It = transitionMemory− t + 1, where t is the time
gap between the current and past coincidence. When high val-
ues of transitionMemory are being considered, the temporal
transitions are smoothed out so that the temporal jitter and re-
peated states in the input sequence do not produce undesired
behavior [17]. Furthermore, it also leads to a higher occupa-
tion of the TAM that may result in more stable statistics when
the training sequence is short.

Temporal grouping

Once learning of the TAM is finished and numbers of occur-
rences of each particular transition are recorded, one can con-
struct the so-called normalized Markov graph in which the
links represent relative frequencies (i.e., probabilities) of the
transitions between individual quantization points.

The last step of the learning process in each HTM node is
to analyze the normalized Markov graph with the aim of its
partitioning into a set of temporal groups. The goal of this
partitioning is to group together coincidences (i.e., vertices
of the Markov graph) which highly likely follow one another
and so they are likely to share a common cause. To form these
groups, the HTM nodes use the well-established Agglomera-
tive Hierarchical Clustering (AHC) method [18]. The AHC
algorithm takes a set of patterns and their pair-wise similar-
ities as an input, and produces a tree-like hierarchy of clus-
ters (dendrogram) such that patterns in the same cluster are as
similar as possible. The probability of the transition between
any two coincidences is used as the similarity measure for
the AHC algorithm. Clustering based on a such measure puts
patterns that are likely to follow one another into the same
branch of the AHC dendrogram. The final coincidence clus-
ters are obtained by cropping the dendrogram at a certain level
according to the requested maximum number of the temporal
clusters specified separately for each network level by the pa-

rameter requestedGroupCount.
In general, the optimal value of this parameter has highly

data- and problem-dependent nature, therefore it is consid-
ered as one of the most crucial parameters of the HTM model
since it may significantly influence the overall performance
of the network. On one hand, if the requestedGroupCount
takes too small values, the nodes have tendency to overgen-
eralize the learned information and consequently their perfor-
mance goes down. On the other hand, if too high values of
requestedGroupCount are used, the nodes do not realize a
sufficient temporal grouping which leads to an approximation
of the simple vector quantization approach.

2.2. Inference in a node

A node that has completed its learning phase can be switched
to the inference mode. The characteristics of the input to the
node during inference are identical to those during the learn-
ing. The moving objects are exposed to the network’s retina
from where the different image fragments are passing to the
particular nodes according to their field of view. A node be-
ing in the inference mode produces an output vector for ev-
ery input pattern being seen. This vector indicates the degree
of membership of the input pattern in each of its temporal
groups. There are two phases of the inference process – the
spatial and the temporal inference.

Given the actual input pattern in a vector form, a close-
ness to every memorized pattern must be calculated in the
first step. Typically, most of the input patterns do not per-
fectly match any of the memorized coincidences. Let di be
the Euclidean distance of the i-th coincidence from the input
pattern. The larger is the distance, the smaller should be the
match between compared vectors. It can be assumed that the
match of the patterns can be expressed as a Gaussian function
of their Euclidean distances with zero mean:

yi = e−(di/sigma)2
, (1)

where sigma is a parameter of the node. Calculating this quan-
tity for all coincidences, one produces the overall belief vector
y = (y1,y2, . . . ,yn) which is the result of the first phase of the
inference in each node.

In the second phase, the calculated belief vector y is em-
ployed to produce the beliefs that express membership of
the actual input pattern to each of the memorized temporal
groups. In the NuPIC, this can be performed by two different
methods, i.e., sumProp and maxProp, however, in our exper-
iments we have considered only the latter one. The maxProp
approach basically associates each temporal group with the
maximum belief among all coincidences connected to that
particular temporal group. The resulting belief vector, where
each element stands for a single temporal group, represents
the node’s output given the actual input pattern.

The training of the HTM network is performed gradually
layer-by-layer from the bottom up to the top. Once the learn-
ing process is finished at some level, all HTM nodes at this
level are switched from the learning to the inference mode,
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thus the learning can continue at the next level. When learn-
ing is started at some level, the HTM network must process
all training sequences again and each frame must be passed
through all the previously trained layers until the information
(i.e., generated belief vectors) reaches the nodes that are cur-
rently learned. The whole training process is finished only
when the top-level of the network is successfully trained.

3. TRAINING SEQUENCE GENERATION

3.1. Static image sweeping

The ImageSensor is a NuPIC sensor node which reads data
from image files and passes them to the nodes at the first level
of the network [19]. In the NuPIC 1.7.1, the ImageSensor
can load binary or gray-level images. It can also load color
images, but they are treated the same way as the gray-level
images. Besides the technical matters, a key capability of the
ImageSensor is the ability to generate smoothly-varying pat-
terns forming “virtual” temporal sequences out of the static
input images. According to these sequences, the nodes should
be able to group together patterns that occur nearby in time,
which means, the patterns likely containing similar geometri-
cal structures.

It is the explorer plug-ins that generate the temporal se-
quences within the ImageSensor object. They are responsi-
ble for “exploring” the input space of possible images accom-
plishing the following two main goals:

• efficiently select patterns that need to be presented to the
network, out of a large number of potential input pat-
terns. In a large training set, there can be far more images
than needed for successful training of invariant represen-
tations;

• generate smooth temporal sequences for learning the
temporal transitions. Note that only some explorers gen-
erate smooth temporal sequences that are suitable for
training the HTM networks.

In the NuPIC, a conventional approach to the construction
of the training sequence out of static images, which focuses
only on the latter goal, is called ExhaustiveSweep explorer.
This explorer performs an exhaustive raster scan through all
possible translations of the given static image within the net-
work’s retina. An original image is gradually shifted line-by-
line horizontally and vertically with constant one pixel step.
The sequences generated this way are rather long and there-
fore imply highly memory and time demanding training pro-
cess and also large trained HTM networks. On the other hand,
the networks trained on such sequences are able to learn cor-
rect invariances even on very small number of training exam-
ples. The ExhaustiveSweep explorer builds mostly positional
invariances, however, it does not explicitly strive for any ro-
tational or scale invariance. Nonetheless, if the network is
trained using this explorer, it still exhibits some robustness
against these transformations too. For more detailed analysis
of learning invariances in the HTM model, see [16].

When classification methods are benchmarked on strictly
defined training and testing sets of examples, one could raise
an objection against the ExhaustiveSweep explorer that it ba-
sically blows up the training set while every training pattern
is presented to the network several times in various translated
positions. In can be expected that if other classification meth-
ods got the same expanded training set (i.e., the basic patterns
accompanied by all their translations), they would also exhibit
improved performance. Therefore, in the context of correct
benchmarking methodology, we were obliged to introduce an
alternative method for construction of the training temporal
sequence consisting of only original training images.

3.2. Training set ordering

The structure of the digit patterns in the USPS database, i.e.,
quite rich classes of the individual digits, enables to consider
an alternative approach to the generation of the virtual tempo-
ral sequences. This approach can save memory and computa-
tional time significantly without negative influence on the per-
formance of the HTM model. The method consists in ordering
the training images, separately in each of the digit classes, that
exploits their mutual spatial similarities. The natural attribute
of the appropriate ordering is that similar patterns (with re-
spect to some distance measure, e.g., L2 metric) appear nearby
in the sequence while dissimilar ones should be as distant as
possible. Given rich enough set of the static images and satis-
fying this condition, we can produce a reasonably smooth im-
age sequence. Such a generated sequence can be considered
as a virtual temporal sequence, even if there are no inherent
temporal relations between any of the used images.

In our experiments, we considered the ordering based on
the traditional L2 metric. Note that this metric completely ig-
nore 2-dimensional nature of the visual information and there-
fore it is not the best choice for this task. Finding the opti-
mal ordering of a finite set of the static images that minimizes
the total sum of distances between all adjacent images can
be understood as the well-known Travelling Salesman Prob-
lem (TSP). The problematic point about TSP is that, since it
belongs to the NP-complete complexity class, there exists no
deterministic algorithm for solving this problem in less than
exponential time (i.e., algorithm equivalent to the checking of
all possible permutations). However, there is a great deal of
heuristic algorithms which are capable of finding satisfactory
semi-optimal solutions in a reasonable time.

We have considered the following two possibilities of how
to accomplish semi-optimal ordering:

• greedy approach,

• genetic algorithm approach.

Greedy approach

The greedy approach is typical for its strictly local decisions
that minimize cost of each particular step, assuming that the
sum of all such decisions will lead to the small total cost. Of
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course, this concept is not generally true, however, in our ex-
periments, it proved to be quite efficient.

For each pattern class, the algorithm begins with finding
the nearest pattern to the class mean and, in every consecu-
tive step, the process continues by finding the closest pattern
(in L2 sense) to the previous one. The result of such an al-
gorithm should be a piecewise smooth sequence of the digits
with occasional “jumps”, mostly at transitions between the
digit classes.

Results of the greedy method applied to the USPS database
of the hand-written digits are described in details in Sec-
tion 5.1.

Genetic algorithm approach

The Genetic Algorithms (GA) are a stochastic search tech-
nique that guides a population of solutions using the princi-
ples of evolution and natural genetics [20]. Such approaches
are often used for solving difficult optimization problems that
do not have known analytical solutions, such as TSP. In gen-
eral, given large enough number and size of the populations,
the GA have potential to converge quite close to the global
solution, however, in many practical situations, achieving the
convergence may be too slow.

Preliminary experiments with the GA used for finding the
optimal ordering of the USPS hand-written digits showed that
the semi-optimal solutions found by GA are hardly as good as
the solution found by the greedy algorithm. When the greedy
solution was used for initialization of GA, just a slightly better
solution could be achieved only after a vast number of itera-
tions. Due to these two reasons, we did not consider the GA
approach in our further analysis.

4. USPS DATABASE OF HAND-WRITTEN DIGITS

The problems of optimum architecture design of the novel
HTM network are connected to particular application prob-
lems. For the research in the area of applications of the HTM
model to the visual pattern recognition we chose a task of the
hand-written digit recognition that could serve as a suitable
starting point for more complex PR problems. The important
advantage of selecting such a PR task was that a great number
of benchmarks have been performed for different classifica-
tion methods applied to this problem. For the purpose of test-
ing the performance of HTM applied to this problem, we have
decided on the standard USPS (U.S. Post Service) database of
hand-written digits collected by CEDAR, Buffalo [21]. Ex-
istence of this image database, as well as other databases in
different domains, confirms the overall popularity of bench-
mark testing among the communities of machine learning and
optical character recognition. Unfortunately, the experience
with this database, as reported in some publications [22, 23],
as well as our own experience showed that the generation of
this frequently referred database suffers from several draw-
backs (e.g., errors in digit class labeling, inclusion of confus-
ing samples into the training and testing sets). Therefore we

Fig. 2: Examples of the hand-written digits of 10 classes extracted
from the USPS database.

decided to analyze the data included in this database in a more
details.

4.1. Basic description of the USPS database

We start with the basic description of the USPS database, as
it has been stated in the literature. The hand-written ZIP-
codes containing digits from “0” to “9” were scanned from
envelopes at the resolution of 300 pixels per inch [21, 24].
The acquired gray-level images were afterward converted
to binary (bi-tonal) format by application of a thresholding
algorithm. Later on, LeCun’s research group [25] performed
conversion from the binary format back to the 256 gray-level
format achieved by resampling all digits into the normalized
dimensions of 16× 16 pixels and applying a linear trans-
formation in order to center the patterns within the given
bounding box. Intensity values of the resulting gray-level
images were normalized (i.e., scaled and translated) to fall
within the range 〈−1,1〉. Few examples of the resulting digit
images are shown in Fig. 2. The final database contains 9298
digits (each of 16× 16 pixels) which are divided into two
non-overlapping groups: 7291 (78.4%) digits for training and
2007 (21.6%) digits for testing. Exact digit quantities in each
particular digit class are shown in the left part of Tab. 1. The
USPS database can be found, e.g., at the following website:
http://www.cenparmi.concordia.ca/∼jdong/HeroSvm/data.zip.

4.2. Labeling errors and severely distorted digits

The first question on the quality of the USPS database was
whether all the digits in the training and testing sets are prop-
erly labeled and whether these sets contain only symbols
uniquely recognizable by humans. To answer this question
we have scrupulously analyzed both sets and discovered sev-
eral discrepancies. In the training set the digits with the fol-
lowing indices have been found as symbols which cannot be
recognized as written digits or having undoubtedly incorrect
labels: #431 (labeled as the digit “2”), #2466 (as “5”), #5146
(as “8”), #5297 (as “4”), #6761 (as “5”). In the testing set,
the following either severely distorted or falsely labeled dig-
its have been found: #528, #995, and #1007 (labeled as the
digit “0”), #234 (as “1”), #915 (as “2”), #1358, and #1432
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Table 1: Some quantitative characteristics of the USPS training and
testing sets. Left: absolute quantities of particular digits in each data
set are shown. Right: results of the permutation test for difference
between the training and testing sets are summarized. The gray rows
stand for the classes where the significant difference (p-value≤ 0.05)
has been obtained. The confidence intervals of the p-values are de-
rived from the fitted binomial distribution given 10000 simulations
(trials).

USPS database
digit quantities

Class Train set Test set Total
“0” 1194 359 1553
“1” 1005 264 1269
“2” 731 198 929
“3” 658 166 824
“4” 652 200 852
“5” 556 160 716
“6” 664 170 834
“7” 645 147 792
“8” 542 166 708
“9” 644 177 821

Total 7291 2007 9298

Test set vs train set
permutation diff. test

Class P-value Conf. int.
“0” 0.026 0.023 - 0.030
“1” 0.000 0.000 - 0.001
“2” 0.076 0.071 - 0.081
“3” 0.047 0.043 - 0.051
“4” 0.047 0.043 - 0.051
“5” 0.000 0.000 - 0.001
“6” 0.157 0.150 - 0.164
“7” 0.012 0.010 - 0.014
“8” 0.008 0.007 - 0.010
“9” 0.510 0.500 - 0.520

(as “3”), #266, and #971 (as “4”), #562, #994, and #1978 (as
“5”), #1529 (as “7”), #199 as “8”). The incorrect digits con-
tained in the training set could be removed from this set with-
out violating the equal conditions for benchmark evaluation of
the recognition results. However, to ensure a fair comparison
of the HTM performance to the performance of other bench-
marked classifiers, the removal of any, even falsely labeled,
symbols from the testing set is not permissible.

4.3. Distributions of the digit classes, differences between
the training and testing sets, noise

Another interesting question concerns a mutual separation of
the individual digit classes in the vector space (of dimension
16×16 = 256) generated by the intensity values of the image
pixels. The visualization of such a separation can be demon-
strated by means of the PCA method. In the main plot in
Fig. 3, one can see the distribution of all the digit classes
(including both training and testing data sets) projected onto
the first two largest PCA components. The mean values of
the digit classes are clearly separated which means that the
classifiers applied to the USPS database may benefit from the
so-called pixel overlap information (the class can be assessed
from its average sample). On the other hand, some of the digit
populations are highly overlapped, and so the classification in
particular cases may be very difficult. When one deals with
such overlapped data, it is very important that the training set
describes a manifold associated with a specific digit class in
sufficient details. If the training set were less informative and
descriptive than the testing set (i.e., the testing set would con-
tain principally new patterns), a low classification accuracy
should be expected in that particular digit class.

Our next question has been focused on verification of the
hypothesis that the USPS training and testing sets were ran-
domly chosen from a common distribution of digits, despite

the fact that this statement was explicitly claimed in the liter-
ature [24]. We were particularly interested in discovering the
case where not all objects in the testing set have corresponding
representatives (i.e., digits of similar spatial characteristics) in
the training set. We have decided to verify this assumption by
the permutation test method described in [26]. The permuta-
tion test of the null hypothesis (H0) that the distributions that
generated two populations A and B are actually the same dis-
tributions is based on the so-called randomization distribution
constructed by calculating some characteristic function (test
statistic) for all possible random divisions of A∪B into the
sets A′ and B′ of the the same cardinality as the original sets A
and B. The p-value and its confidence interval can be then es-
timated by fitting the binomial distribution into the sequence
of successes and failures derived from the simulated random-
ization distribution compared to the test statistic of the sets A
and B. The more samples from the randomization distribution
lie below the test statistic of A and B, the higher p-value is ob-
tained, and vice versa. Of course, if the sets A and B contain
more than just few samples, it is not computationally feasi-
ble to evaluate all possible combinations of the sets A′ and
B′. Therefore a simulation approach is usually considered for
estimating the randomization distribution.

In the case of testing equality of distributions of the USPS
training and testing sets, we have proposed a test statistic
which is focused on the presence of outliers within the testing
set with respect to the training set. The test statistic evaluates
the following ratio:

T (A,B) =
VBB (A∩B)

VBB (A)
, (2)

where A and B are the evaluated data sets and VBB (�) esti-
mates the volume of a tightest box covering the data (bound-
ing boxes). The rationale behind this statistic is as follows:
if the testing set contains any samples that are not within the
range of the training set, the test statistic will likely receive a
value close to 0. On the other hand, when the whole testing
set lies within the range of the training set, the test statistics
value approaches 1. To assure that the bounding boxes fol-
low basic orientation of the data and have nonzero volumes,
prior to the test, the data have been projected onto the largest
PCA components that altogether cover 99% of the original
data variance. By this operation, all insignificant PCA com-
ponents (i.e., the components with very small or zero eigen-
values) were eliminated. The permutation test was carried out
for each digit class separately performing 10000 random sim-
ulations. Only after this number of simulations a sufficient
convergence of the p-value has been achieved.

The results of the permutation test are shown in the right
part of Tab. 1. One can see that the test proved significant
differences (p-value≤ 0.05) between the training and testing
sets in 7 from 10 digit classes (“0”, “1”, “3”, “4”, “5”, “7”,
“8”). Only 3 digit classes (“2”, “6”, “9”) seem to be gener-
ated by the genuine random process. In all other cases the
generation process was either not random or the random se-
lection was very improbable. Therefore one should expect
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Fig. 3: The visualization of the PCA results for the USPS data using the first two largest components. The main plot (left) shows the
distributions of all digit classes plotted as the gray ellipses (2σ , 1σ , 1/2σ , 1/4σ , 1/8σ , and 1/16σ ) centered in the class means. In other 10
plots (right and bottom), the PCA results for separate digit classes are displayed.

the most classification errors exactly in these classes due to
the expected insufficiency of the training set.

As will be clarified later, the nature of noise in the USPS
data, has considerable influence on the design of the optimiza-
tion procedure of the basic HTM network parameter maxDist
that controls the generation of quantization centers in each
node of the first network level. Given the information on
the USPS digit acquisition and post-processing procedures,
we can assume that the quantization noise occurring in this
process may manifest itself only on the digit boundaries and
introduces only insignificant changes into the final recogni-
tion operation. We think that the only stochastic component,
which may be considered as noise, is generated by the in-
terindividual differences in writing the digits among the peo-
ple whose envelopes have been processed by the U.S. Post
Service. Since in our task this influence is significant, it
should be reflected in the search of an optimum value of the
maxDist parameter.

5. APPLICATION OF HTM TO THE USPS
CLASSIFICATION PROBLEM

5.1. USPS training sequence

As described in Section 2, the HTM networks must be trained
on the temporal sequences. When a native temporal sequence
is not available for certain problem domain, one must generate
a virtual temporal sequence out of the available data. Two

alternative methods for generating virtual temporal sequences
are discussed in Section 3.

In this study we have decided to use the greedy approach
for generating the training sequence out of the static images.
The obtained sequence consists of 7286 frames (images of
digits), since 5 digits were excluded due to the presence of
labeling errors or severe distortions. Within the sequence, the
digit classes are ordered lexicographically from “0” to “9”.
The evolution of certain characteristics, such as the L2 dis-
tance between any two consecutive images, the distance from
the class or global means, are shown in Fig. 4. It can be
seen that within each digit class there is a general upward ten-
dency of the distances between any two neighboring images
while the biggest difference is always reached when switch-
ing from one class to another. A similar behavior can be ob-
served in the evolution of the distances from the individual
class means. However, quite a different picture is generated
by the distances from the global mean where no upward trend
but the clear oscillations are visible in certain intervals of the
sequence. These clues altogether suggest that for each digit
class the sequence is likely traversing the data manifold along
gradually expanding hyper-spheres with the identical center
in the class mean.

5.2. Suitable HTM network architectures

One of the most important attributes of the HTM model ad-
dressed in this paper is the network architecture and its suit-
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Fig. 4: Some L2 metric characteristics of the training sequence generated by the greedy ordering method. Top: the plot of the distances
between two consecutive digit images as they appear in the training sequence. Middle and bottom: the plots of the distances between
individual digit images and the class mean or the global mean, respectively.

ability for the USPS classification problem. As already men-
tioned, we have restricted ourselves to the single-level HTM
networks in order to study in more details effects of two sub-
stantial parameters of the architecture: the patch size and the
overlap. The patch size defines the extent of an effective
node’s input area, while the overlap parameter defines how
big is the overlap between patches of two neighboring nodes
at a certain level. One can understand the overlap also as a pa-
rameter that controls the spatial resolution of each HTM layer.
These concepts are graphically demonstrated in Fig. 5. It can
be seen that, in case of the single-layer HTM networks, there
are only four dependent parameters which define the whole
network architecture: retina size (retina), patch size (patch),
overlap, and grid size (grid). Hereinafter, we introduce
the following unified code expressing any single-level HTM
architecture: retina_patch_overlap_grid (e.g., “28_8_6_11”
stands for the network with the retina of 28× 28 pixels, the
patch of 8×8 pixels, the overlap of 6,6 pixels, and finally the
grid size of 11×11 nodes).

Assuming that the crucial information contributing to a suc-
cessful classification may appear in any position of an input
image (area of 16× 16 pixels), the prerequisite of a success-
ful architecture is that it utilizes information from all image
pixels homogeneously. In all single-level HTM architectures
studied in this paper, Zeta1TopNode exploits homogeneously
all the nodes at the first HTM level, i.e., the nodes at the first
level have exactly the same influence on the total network’s
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Fig. 5: An example of the single-level HTM network architecture
with the retina of 28×28 pixels, the patch of 8×8 pixels, the over-
lap of 6,6 pixels, and finally the grid size of 11× 11 nodes (i.e.,
28_8_6_11). The relations between these four dependent parameters
are graphically demonstrated.

output. However, when the nonzero overlaps are being con-
sidered, the output of the first network level as a whole may
prefer some of the retinal pixels. According to the various
overlap schemes one can differentiate between four different
modes of the pixel information usage which are illustrated in
Fig. 6. From all these cases, only two overlap schemes pro-
duce a compact homogeneous area:

• no overlap produces the homogeneous usage of all reti-
nal pixels,

• some large overlaps generate the inhomogeneous border
effect, which however preserves a homogeneous zone in
the center of the retina.
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Fig. 6: The examples of a homogeneous and inhomogeneous usage
of the retinal 16× 16 pixels. Top-left: the 4× 4 patch with zero
overlap generates fully homogeneous retina usage. Top-right: the
4× 4 patch with the one pixel overlap produces an inhomogeneous
interlaced usage. Bottom-left: the 4×4 patch with the overlap of 3,3
pixels results in inhomogeneous usage with a border effect, however,
with a homogeneous zone in the center of the retina. Bottom-right:
the case with the combined inhomogeneity (patch 5×5 and overlap
3,3) is displayed.

We assume that only these two modes may become the ba-
sis for a successful HTM network architecture. The first non-
overlapped case of the network architecture can be applied di-
rectly. In the second case with the border effect, for achieving
the homogeneous coverage of at least the area of an input im-
age (16×16 pixels), we need to pad the retina by zero-valued
dummy pixels. For the given application it is reasonable to
assume maximum patch size of 8× 8 pixels (a quarter of an
input image). To obtain at least some reduction in the network
hierarchy, the maximum size of the node’s grid is limited to
16×16 nodes. These two assumptions yield only 19 architec-
tures that cover homogeneously the central 16×16 pixel area
of the retina (see Fig. 7 and Tab. 2). Only these architectures
will further be explored.

5.3. Estimation of the optimal values of the parameter
maxDist

As described in Section 2.1, the parameter maxDist serves
for specification of the maximum distance between the clos-
est coincidences created by the vector quantization process
during the node’s learning. It is known fact that the optimum
vector quantization, i.e., classification of M training vectors
into N clusters under two optimality conditions ((i) the near-
est neighbor condition, and (ii) the centroid condition), is the
NP-hard problem. It means that there is no algorithm leading

to the globally optimal solution in the polynomial time. How-
ever, the HTM vector quantization procedure, as proposed by
Numenta, produces a set of coincidences (a codebook) in the
polynomial time. Depending on the choice of maxDist, vari-
ous kinds of codebooks can be obtained – from small to large,
from underspecified to overspecified ones. The detected co-
incidences are distributed regularly over the whole extent of
the data, no matter how are they distributed in the particular
regions. In other words, the HTM spatial pooling procedure
ignores the density of the input data, while the only exploited
property is the data extent. It is clear that such a method of the
codebook generation typically produces highly non-optimal
solutions. In the following, we propose a method for estimat-
ing the optimum maxDist values that produce the most opti-
mal codebook given the HTM vector quantization procedure.

Preserving a sufficient quantization resolution in the cru-
cial dense regions of the data is the essential part of successful
training. Too few quantization points lead to the low-specific
temporal grouping that may seriously affect the total recog-
nition accuracy. On the other hand, too many quantization
points usually result, besides the large memory demands, in
too specific temporal grouping that also leads to poor recog-
nition performance. To avoid these undesirable effects, it is
very important to assess the optimum maxDist value for the
given training data. Instead of laborious experimentation, we
propose to base the optimization procedure on characteriza-
tion of the data structure via the method inspired by principles
used in fractal theory.

First, the USPS database admits deviations between indi-
vidual participating writers that is reflected in random dif-
ferences among digitized hand-written numerals within each
class (see Section 4.3). Then, a natural requirement to the
quantization process is to find such a value of the parameter
maxDist that ensures the generation of the coincidences repre-
senting the macroscopic structure of the data in maximum de-
tails, while maximally ignoring the low-amplitude noisy com-
ponent.

Second, the number of detected coincidences during the
HTM learning corresponds approximately to the number of
hyperspheres of the diameter maxDist which cover the entire
training data. Performing multiple runs of the spatial pool-
ing for various maxDist values, it is possible to examine the
functional relationship between maxDist and the number of
detected coincidences.

Third, all hand-written digits contained in the USPS
database form a vector cloud embedded in a 256-dimensional
space that is bounded by the hypercube of all possible images
of the given size (16×16). Based on the PCA results, shown
in Fig. 3 (a good separation of digit classes has been achieved
already in a projection into two main PCA components), it can
be assumed that the digit cloud is rather a low-dimensional
manifold which does not fill in the whole 256-dimensional
hypercube. Using such an interpretation of our input data, it
is appropriate to identify the optimum maxDist value with the
scale at which the useful data and the noisy component are
structurally most differentiated.
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Fig. 7: Usage of the retinal pixels for all 19 explored HTM network architectures. The gray-level scales displayed next to each architecture
indicate how many times the particular image pixels are utilized during the learning and inference stages of the network.
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Table 2: Left: all considered single level HTM architectures which proved to have the homogeneous coverage of at least the area of 16×16
pixels in the center of the retina. All other subtables: three setups – low, medium, and high – of the parameters maxDist and sigma. The
“spatial coincidences” columns show the mean numbers of coincidences detected by the nodes given the data and the particular maxDist
value.

Retina Overlap Low setup Medium setup High setup
Patch Grid maxDist Spat. coinc. sigma maxDist Spat. coinc. sigma maxDist Spat. coinc. sigma

16 2 0 8 11.90 1451.59 308.32 14.87 1170.44 308.60 17.84 960.16 308.75
18 2 0 9 10.37 1204.67 309.64 12.96 998.79 310.72 15.55 830.25 311.13
18 3 0 6 46.63 1148.44 496.56 58.28 860.92 499.85 69.94 653.44 501.34
16 4 0 4 99.23 1682.75 691.14 124.04 1182.44 693.83 148.84 828.81 695.43
20 4 0 5 94.96 1014.84 676.63 118.70 727.92 683.97 142.44 521.80 688.79
20 4 2 9 96.99 1295.85 682.60 121.24 921.11 687.90 145.49 652.12 691.05
22 4 2 10 94.00 1056.70 679.63 117.49 757.77 685.30 140.99 542.70 688.95
20 5 0 4 145.70 1098.13 831.15 182.12 765.19 848.46 218.55 525.56 859.05
18 6 0 3 193.83 1717.56 948.36 242.28 1159.78 962.82 290.74 758.89 972.57
24 6 0 4 197.34 919.56 1026.48 246.68 661.81 1039.79 296.01 455.31 1047.66
24 6 3 7 198.18 1190.73 981.84 247.72 821.71 998.82 297.27 550.04 1010.26
24 6 4 10 201.22 1304.71 986.02 251.52 898.70 1004.37 301.82 598.69 1018.08
26 6 4 11 197.01 1092.98 981.33 246.27 755.67 999.64 295.52 509.68 1013.08
28 7 0 4 244.59 866.56 1150.60 305.74 611.13 1163.52 366.89 410.56 1176.51
16 8 0 2 309.74 2892.50 1215.58 387.17 1836.00 1235.10 464.61 1095.50 1254.54
24 8 0 3 296.42 981.11 1214.07 370.52 649.44 1275.40 444.62 417.89 1325.68
24 8 4 5 310.67 1530.16 1248.71 388.34 1018.60 1289.06 466.00 645.96 1319.47
28 8 4 6 296.42 1133.25 1237.06 370.52 767.47 1268.66 444.63 493.83 1295.17
28 8 6 11 303.92 1301.15 1243.21 379.90 873.41 1279.49 455.88 557.32 1307.40

In fractal theory, there are methods for estimating various
kinds of fractal dimensions of low-dimensional manifolds em-
bedded into high-dimensional spaces. One such method is the
box counting method for assessing the Minkowski-Bouligand
dimension [27]:

Db = lim
ε→0

log N (ε)

log 1/ε

, (3)

where ε is the box scale and N (ε) is the count of boxes that
cover the data set at the given scale.

It can be shown that the uniformly sampled solid manifold
produces the power-law decay of the box count with respect
to the scale. The exponent of the power law is related to the
manifold dimension. Note that the power-law function plot-
ted in the log-log scale turns into the linear function with the
slope identical to the power-law exponent. When the man-
ifold is either sampled randomly or some low-dimensional
noise is present in the data (e.g., differences between individ-
ual handwriting types), the power-law decay is being eased
at the small scales. The turning point, at which the observed
decay starts to have a tendency to follow the power law, rep-
resents the optimum scale at which the noise already declines
in its influence, while the macroscopic structure of the data is
not yet significantly affected. Because there is a close anal-
ogy between the spatial pooling procedure used in HTM and
the box counting method, we propose to apply this method-
ological approach to the USPS data, interpreted as the low-
dimensional manifold, and to set the optimum value of the
parameter maxDist near to the mentioned turning point.

Since each HTM node at the first level receives its input
from a different region of the retina, various nodes may de-
tect various sets of coincidences for the same maxDist value.
In order to arrive at the common optimum of the parame-

ter maxDist, we have considered the mean numbers of co-
incidences over all nodes instead of analyzing all the nodes
individually. For all considered network architectures, the
mean numbers of coincidences were evaluated for 50 differ-
ent maxDist values ranging from the minimum to the max-
imum pairwise distances present in the data. Typically, the
number of detected coincidences decrease very slowly at the
small scales but it falls much faster at the large scales. For
determining position of the turning point we have proposed
a method that models the decay by two tangent lines in the
log-log scale. The first tangent approximates the function at
the very small scales, whereas the other tangent approximates
the function in the steepest linear part (i.e., the part which
follows the power law). This linear part is usually used as the
scaling interval for estimating Db. The point of intersection of
these two tangent lines provide us with an estimate of the turn-
ing point that is directly identified with the optimal maxDist
value. An example of the turning point estimation is shown in
Fig. 8.

As the proposed method for estimation of the optimal
maxDist value uses several approximations, there is a pos-
sibility of missing the true maxDist optimum. To reduce such
a possibility, we have conducted all our experiments with re-
spect to the following three maxDist setups:

• Low setup – the estimated value reduced by 20%,

• Medium setup – the actual estimated maxDist value,

• High setup – the estimated value increased by 20%.

All the considered maxDist values for all the network archi-
tectures are summarized in Tab. 2.

39



MEASUREMENT SCIENCE REVIEW, Volume 10, No. 2, 2010

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Low setup (−20%):  maxDist = 303.92

Medium setup:  maxDist = 379.90

High setup (+20%):  maxDist = 455.88

→

→

→

∝  maxDist−6.62

 maxDist

M
ea

n 
nu

m
be

r 
of

 d
et

ec
te

d 
co

in
ci

de
nc

es

28_8_6_11

Fig. 8: Estimation of the optimum range of the parameter maxDist
by exploiting the box counting method. The mean number of de-
tected coincidences through all the nodes vs maxDist is shown in the
log-log scale. The “star” symbol represents the turning point of the
function being searched for.

5.4. Estimation of the optimal values of the parameter sigma

Assume that we have already performed a successful vector
quantization in all the nodes using the optimal maxDist value
estimated by the method explained in the previous section.
During the inference, for calculation of the belief in a partic-
ular coincidence given the inferred pattern, the Gaussian in-
ference function (1) is employed. This function is controlled
by the only parameter sigma. Depending on the choice of
sigma, one may achieve various inference regimes which may
result in a very different classification performance. The small
sigma values cause that high beliefs are assigned only to the
coincidences which are very close to the inferred pattern. On
the contrary, when too large sigma values are used, all the co-
incidences receive high belief values regardless of their dis-
tance from the inferred pattern.

For the purposes of this study, it is reasonable to derive the
sigma values from the data and the actual set of coincidences
memorized within each node. It can be seen that the Gaussian
inference function is a monotonically decreasing function that
transforms each distance value from the interval 〈0,∞) into
the belief from the interval (0,1〉. The main task of the Gaus-
sian inference in the HTM model is to appropriately cover
gaps between the coincidences to reach a desired generaliza-
tion behavior.

Let us now focus on a particular coincidence stored within
any HTM node. When all unique training patterns are com-
pared with the given coincidence, a set of distances is gener-
ated which can be interpreted as a random sample from the
distribution of distances associated with this coincidence. By
application of the Gaussian inference function, the unbounded
distribution of the distances is transformed into the bounded

belief distribution. Regardless of character of the distance dis-
tribution, we have no particular reason for preferring any spe-
cific subrange of the potential belief values. Therefore, our
goal in obtaining the optimal sigma value is to transform the
distance distribution into the interval (0,1〉, so that it covers
the whole interval as uniformly as possible. This task can be
formulated by means of the entropy measure defined for a dis-
crete distribution [28]:

H (X) =−∑
x∈X

p(x) log p(x) , (4)

where X is a discrete random variable and p(�) is its proba-
bility mass function. Then, the optimal sigma value can be
found by maximization of the entropy H of the belief distri-
bution p(x) with respect to the parameter sigma.

To be able to calculate the entropy according to the above
discrete formula, it is necessary to discretize the belief distri-
bution. Without loss of generality we can use a division of
the interval (0,1〉 into only two equal bins: B1 = (0,1/2〉 and
B2 = (1/2,1〉. In such a scheme, any distribution with an equal
50%/50% occupation of the both bins possesses the maxi-
mum entropy. This claim is equivalent with the condition for
a distribution to have the median value equal to 1/2.

An important consequence of the monotonicity of the
Gaussian function is that the median of the distance popu-
lation is always mapped onto the median of the belief pop-
ulation. Based on this property, for maximization of the en-
tropy of the belief distribution within the two-bin discretiza-
tion scheme, we just need to find such a sigma that maps the
distance median onto the belief equal to 1/2. For each co-
incidence, this operation can be expressed by means of the
Gaussian inference function:

e−(median(D)/sigmaopt)
2

= 1/2, (5)

where D is the distance distribution obtained for this coinci-
dence. Finally, the optimum sigmaopt is given as follows:

sigmaopt =
median(D)√
− ln 1/2

. (6)

When all the sigmaopt values are calculated for all the coin-
cidences within each individual node, we can proceed towards
the estimation of the sigma optima characterizing each node
as a whole. Finally, based on these node’s sigma values, it
is necessary to calculate a global sigma optimum valid for all
the nodes at the given network level. Since no assumption
can be made about the distributions of the coincidences and
the data observed by any particular node, for calculation of
the node’s optimum, we use the median rather than the mean
of the sigmaopt values within the node. The global optimum
sigma value is then calculated as the weighted average of the
node’s optima. Due to the presence of repeated blank patterns
in some nodes (originating mainly from the zero-padded bor-
ders of the retina), the weight of each node’s sigmaopt was
derived from the number of unique patterns observed by each
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Table 3: Other relevant parameters of the NuPIC platform which
were considered in all reported HTM network configurations.

Level 0: ImageSensor
background 0
blankWithReset true

Level 1a: SpatialPoolerNode
clonedNodes false
sparsi f y false
explorer Flash

Level 1b: TemporalPoolerNode
clonedNodes false
equalizeGroupSize false
temporalPoolerAlgorithm maxProp
explorer Flash

Level 2: Zeta1TopNode
out putElementCount 10
spatialPoolerAlgorithm dot
mapperAlgorithm maxProp
explorer Flash

particular node. As these nodes receive a lower number of rel-
evant training patterns, their outputs is adequately penalized
in the ultimate sigmaopt estimation.

All the sigmaopt values calculated by the proposed method
for all the network architectures, as well as for three maxDist
setups, are shown in Tab. 2.

5.5. Search for the optimal values of the parameters
transitionMemory and requestedGroupCount

Unlike both preceding cases, the parameters
transitionMemory and requestedGroupCount concern
the temporal learning that is the crucial part of the HTM
model. For estimation of the optimal values of these param-
eters, we decided to perform a systematic search through
the reasonable ranges of parameter values. This approach
allowed us to draw interesting conclusions about the nature
of the HTM temporal learning.

Since the HTM network learning process is, in gen-
eral, computationally highly demanding job, we have re-
stricted ourselves to a search through 4 fixed values of
transitionMemory (i.e., {1, 4, 16, 64}) and 12 fixed values of
requestedGroupCount (i.e., {2, 5, 10, 22, 46, 100, 215, 464,
1000, 2154, 4642, 10000}). All the parameter combinations
have been investigated with respect to each of 19 considered
network architectures, and for all three setups of the param-
eters maxDist and sigma (see Tab. 2). Altogether, we have
analyzed 4×12×19×3 = 2736 different network configura-
tions.

5.6. Other relevant parameters of the NuPIC platform

For the completeness, we also provide the values of the re-
maining NuPIC parameters which are relevant to the reported
classification problem (see Tab. 3). For detailed description
of the stated parameters, see [17].

6. RESULTS

In Section 5 we have described our main theoretical contribu-
tions to the estimation of the optimal controlling parameters
of the single-level HTM network applied to the recognition
of the USPS hand-written digits. The search for actual val-
ues of these parameters required an extensive set of computer
experiments. In this section we provide the reader with the
comprehensive description of the achieved classification ac-
curacy values for the cases explored in our experiments, with
the comments on the influences of the individual parameters
on the achieved accuracy.

6.1. Performance of individual HTM network architectures

For all 19 considered HTM architectures described in Sec-
tion 5.2, we have carried out extensive computer experiments
for many combinations of the parameter values. We have cal-
culated the maximum classification accuracy (MCA) obtained
for each architecture separately and collected also the 95-th
percentile over all accuracy values obtained for the given ar-
chitecture. In Fig. 9, the MCA values are plotted in increasing
order, whereas the 95-th accuracy percentiles are represented
by the lower bounds of the arrow-marked intervals. From this
plot it is apparent that the architectures can be divided into
two clear groups: (i) the group of architectures which use zero
overlap of the node patches, and (ii) the group in which the
overlaps with various sizes are used. The former architectures
exhibit lower MCA values, while significantly higher MCA
values were achieved for the latter ones. The architecture
16_2_0_8 with the minimum patch and having zero overlap
is the second worst case, while the architecture 28_8_6_11
with the maximum patch as well as overlap is the best one.
Note that the architecture 28_8_6_11 has also a narrow inter-
val of values greater than 95-th percentile, which means that it
is quite robust against inaccurately chosen values of the HTM
parameters.

6.2. Influence of the maxDist and sigma parameters on the
classification performance

In our experiments we also intended to analyze the influence
of the parameters maxDist and sigma on the classification
performance. Based on the technique, we developed in Sec-
tions 5.3 and 5.4, the computer experiments have been carried
out in the three setup modes: low setup, medium setup, and
high setup. As the optimum values of the parameter sigma
are calculated in relation to the previously found values of
the parameter maxDist, in all three setups, the optimum val-
ues of these parameters are coupled. From Fig.10a it is clear
that the most of architectures reach their MCA for the low
setup which corresponds to the 20% underestimation of the
estimated medium maxDist value. Interestingly, this trend is
equally present in both groups of the architectures without and
with overlaps.
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Fig. 9: Maximum classification accuracy obtained for each considered HTM network architecture when the most appropriate parameter
values were used. Arrow-marked intervals represent the 5% range of the most successful network configurations (i.e., the upper value is the
maximum accuracy while the lower value is the 95-th percentile of all obtained accuracies for the given architecture). The narrower is the
range, the more stable is the network architecture or, in other words, the less sensitive is the network to the choice of optimal parameters.
Numbers above the arrows stand for the architecture indices when ordered according to the achieved maximum accuracy. Numbers below
the arrows stand for the indices of the ordering according to the 95-th accuracy percentile.

6.3. Influence of the transitionMemory parameter on the
classification performance

The optimization of the further two parameters, namely pa-
rameter transitionMemory and requestedGroupCount, has
been performed as a systematic search through reason-
able ranges of their values. In case of the parameter
transitionMemory we have chosen four representative values
(see Section 5.5). We have observed the following trends in
the results (see Fig.10b). First, in the less successful archi-
tectures with zero overlap the higher MCA values have been
achieved in majority of cases (7 of 11) for the lower values
of the transitionMemory (≤ 4). Second, for more successful
architectures with various overlaps, the trend is quite oppo-
site. The most of architectures (5 of 8) achieved the maximum
MCA for higher values of the transitionMemory (≥ 16). This
finding indicates that these architectures are capable to better
utilize the temporal information contained in data.

6.4. Influence of the requestedGroupCount parameter on
the classification performance

This section is devoted to the most important property of
the HTM model – the temporal grouping. In Fig. 11a we
show the plots of MCA vs requestedGroupCount (the irrel-
evant parts are cut out) which express the best achieved per-
formance (MCA) given the specific value of the parameter
requestedGroupCount. In this picture a separation of the net-
work architectures into two sets showing different character-
istic behavior is apparent.

The architectures within the first set contain the networks
without overlap and exhibit lower MCA values for most val-
ues of the requestedGroupCount parameter. Furthermore,
these architectures are also distinguished by achieving highest
MCA values for much higher requestedGroupCount values in
comparison with the other group of architectures. This means
that there is usually only an insignificant difference between
the number of temporal groups and the number of spatial co-
incidences what is also reflected by low temporal reduction
factor (see Fig. 11b and Tab. 4). In other words, the perfor-
mance of such HTM network architectures is comparable with
the performance of a simple vector quantization approach.

The architectures contained in the second character-
istic set achieve best results for small values of the
requestedGroupCount. It should be noted that in this case,
the difference between the MCA maxima and the values cor-
responding to the right tails of curves (expressing the per-
formance of a simple vector quantization approach), is much
more expressed. Consequently, these architectures can signif-
icantly benefit from the temporal information in the training
sequence. This indicates that the strong point of HTM can
fully be demonstrated exactly by these architectures.

Another finding based on the inspection of Fig. 11b is, that
three most successful architectures posses also a significant
temporal reduction factor, while it is small and almost con-
stant for all remaining architectures explored. This knowl-
edge suggests a potential diagnostic tool for testing a suitabil-
ity of the given HTM architecture. If the given architecture
would reach the best results without a sufficient temporal re-
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Fig. 10: Maximum classification accuracy values of the individual architectures explored: a) for three setups of the parameters maxDist
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Table 4: All considered HTM network architectures ordered with re-
spect to the obtained maximum classification accuracy. The columns
“input patterns”, “spatial coincidences” and “temporal groups” sum-
marize the mean numbers of the unique patterns, the detected coin-
cidences and the temporal groups within the nodes of the particular
HTM architecture, respectively. The gray rows stand for three most
successful architectures which are also distinguished by high values
of the temporal reduction factor (B/C).

Input Spatial Temp. Reduction
Architecture patterns coinc. groups factor Accuracy

(A) (B) (C) (A/B) (B/C) (%)
24_8_0_3 5130.33 981.11 138.78 5.23 7.07 94.82
16_2_0_8 3356.03 1170.44 212.45 2.87 5.51 94.87
18_3_0_6 3861.67 1148.44 363.47 3.36 3.16 94.87
18_6_0_3 5810.11 1717.56 813.67 3.38 2.11 94.92
18_2_0_9 2726.19 1204.67 350.64 2.26 3.44 94.97
28_7_0_4 3409.38 866.56 120.81 3.93 7.17 94.97
24_6_0_4 4091.75 919.56 294.13 4.45 3.13 95.02
16_8_0_2 7278.00 2892.50 1000.00 2.52 2.89 95.12
20_5_0_4 4707.69 1098.13 324.00 4.29 3.39 95.12
16_4_0_4 5359.88 1682.75 215.00 3.19 7.83 95.17
20_4_0_5 3871.80 1014.84 163.76 3.82 6.20 95.17
20_4_2_9 4502.93 1295.85 182.95 3.47 7.08 95.62
22_4_2_10 3871.45 1056.70 72.57 3.66 14.56 95.62
24_6_3_7 4750.86 1190.73 138.39 3.99 8.60 95.71
24_6_4_10 5003.13 1304.71 155.33 3.83 8.40 95.76
28_8_4_6 4718.61 767.47 27.64 6.15 27.77 95.76
26_6_4_11 4395.42 1092.98 17.74 4.02 61.60 96.01
24_8_4_5 6072.36 1530.16 22.00 3.97 69.55 96.06
28_8_6_11 5315.35 1301.15 19.84 4.09 65.57 96.21

duction, it would be justified to consider this architecture as
non-optimal.

6.5. Overall the best HTM network configuration

Using the best HTM network architecture 28_8_6_11, which
resulted from the above described basic parameter op-
timization procedure, we have performed an additional
smooth tuning with slightly modified parameter values. For
the following values of the HTM controlling parameters:
maxDist = 312.73, sigma = 1247.80, TransitionMemory =
64, RequestedGroupCount = 11, we have reached the high-
est overall classification accuracy of 96.36%. In Tab. 5 we
present the ultimate classification confusion matrix for 10
hand-written digit classes from the USPS testing set, classi-
fied by the best HTM network architecture, using the men-
tioned parameter values. The highest classification accuracy
(99.44%) has been achieved for the digit “9”, and the lowest
one (93.37%) for the digit “3”.

Eventually, we were interested in a comparison of the per-
formance of the best HTM network configuration in relation
to the digits which we declared as “unidentifiable” (erroneous
labeling or too distorted shape) in Section 4.2. In Fig. 12 we
display all the symbols which have been misclassified by the
best HTM network. Note that 13 of 14 “unidentifiable” dig-
its (marked by the crossed squares) are present in the set of
HTM misclassified symbols. Despite the presence of substan-
tial distortions, the testing digit #266 (“4”) has been correctly
classified.

Table 5: The classification confusion matrix of 10 digit classes for
the best HTM network configuration 28_8_6_11.

Predicted True group
group “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“0” 355 0 1 0 0 3 0 0 1 0
“1” 0 256 0 0 1 0 0 0 0 0
“2” 1 0 186 3 1 1 1 0 2 0
“3” 0 0 5 155 0 1 0 1 3 0
“4” 0 4 2 0 191 0 4 5 0 1
“5” 0 0 0 7 0 155 4 0 1 0
“6” 0 3 0 0 1 0 161 0 0 0
“7” 2 1 2 0 1 0 0 141 0 0
“8” 0 0 2 0 0 0 0 0 158 0
“9” 1 0 0 1 5 0 0 0 1 176

Accuracy 98.89 93.94 95.50 94.71 95.18
(%) 96.97 93.37 96.88 95.92 99.44

7. CONCLUSIONS

The focus of this paper is in a systematic exploration of possi-
bilities how to optimize several important controlling parame-
ters of the Hierarchical Temporal Memory network when ap-
plied to a problem of visual pattern recognition. This model,
as outlined in Section 2, represents a biologically inspired
memory-prediction network model that takes advantage of the
Bayesian belief propagation and revision techniques. As any
optimization of the HTM parameters has to be inevitably tai-
lored to the data being processed, the first task was to se-
lect suitable data. We decided for the well-known USPS
database of hand-written digits which serves as a suitable
starting point for applying the HTM to more complex PR
problems in the future. The important advantage of selecting
the USPS database was that a great number of benchmarks
were performed for different classification methods. In spite
of this advantage, several recent papers reported on some de-
fects occurred in the generation of this data set. Therefore
in Section 4.3 we have analyzed in details the distributions
of individual digit classes and differences between the given
training and testing subsets of the whole database. The results
of the permutation test, based on the so-called randomization
distribution, showed significant differences (p-value ≤ 0.05;
see the right part of Tab. 1) between the training and testing
sets in 7 from 10 digit classes. This means that the generation
process was either not random or the current random selection
is highly improbable. We think that the PR community which
still uses the USPS database should be aware of these find-
ings and may initiate a generation of statistically more reliable
data. Furthermore, we have found 5 undoubtedly incorrectly
labeled digits in the training set, and 14 severely distorted or
falsely labeled digits in the testing set. We have removed de-
fective digits from the training set, however, for preserving
equivalent benchmark conditions, we retained the defective
digits in the testing set. Only for a demonstration of the in-
fluence of these defect digits on the recognition accuracy, we
have removed them from the testing set and performed tests
with the best found HTM configuration.

For any implementation of the HTM network the design of
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Fig. 12: All classification errors produced by the best HTM network.
The crossed digits belong to the set that has been suggested for re-
moval from the USPS testing set due to the presence of labeling er-
rors or severe distortions (see Section 4.2). The denotation x→ y
stands for misclassification of the true digit x as the digit y.

a module responsible for forming virtual temporal sequences
for the static training data is important. There are several
such modules, called explorers, implemented in the NuPIC
platform by Numenta. Basically, all these modules gener-
ate smooth temporal sequences suitable for learning, thereby
blow up the training set, because every training pattern varied
and presented to the network in several versions. However,
such an expansion of the training set turned out unaccept-
able regarding the correct benchmarking of the HTM model.
Therefore, we have proposed an alternative method for con-
struction of the training sequence consisting of only original
training images. The method is based on a greedy algorithm
which orders the digits within each class according to their
mutual distances (in L2 metric). Such an ordered sequence of
images is then considered as a virtual temporal sequence suit-
able for training the HTM network. The proposed approach
has no negative influence on the HTM performance in this
particular application, but it saves memory and computational
time significantly.

Each level of any HTM architecture is fully determined by
three parameters – patch size, overlap, and retina size. The
patch size determines the extent of the node’s field of view.
The overlap parameter controls how significant is an overlap
between patches of any two neighboring nodes. The retina

size specifies the size of an input image and defines the possi-
ble ranges of the previous two parameters. However, their par-
ticular values which would be optimal for the given PR task,
are variable and not a priory known. The additional parameter
of the HTM architecture is the grid size which is dependent
on the previous three parameters. It turned out that a deeper
study of the influence of the patch size and overlap values on
the network performance, needs to restrict our research only
to the single-level HTM networks.

In the paper we have introduced a novel view of relation
between the first two parameters of the HTM architecture (the
patch size and the overlap). Given the retina size, instead of
considering all possible overlaps for all possible patch sizes,
we set the methodological requirement for a reasonable com-
bination of the patch and overlap values that is given by the
homogeneous usage of a certain central part of the retina.
This requirement is anchored in observations that the arbitrary
value of the overlap for the given patch size may result in pre-
ferring some of the retinal pixels in construction of the output
of the first network level. To avoid such undesirable behavior,
19 admissible architectures have been selected for the USPS
classification task. In Fig. 7 the results of the pixel cover-
age simulation for all 19 architectures are demonstrated which
correspond to such patch sizes and overlaps which guarantee
the homogeneous usage of at least the central area containing
the original digit images (16×16 pixels). Only these architec-
tures have been included in the further analysis.

At each HTM level, for controlling the node’s learn-
ing and inference processes, the following four parame-
ters are used: maxDist, sigma, transitionMemory, and
requestedGroupCount. In the existing works on various
HTM applications, the search for the optimum values of all
these parameters is left solely on the user’s computer exper-
imentation. However, this job is feasible only under strong
constraints on parameter working spaces, thus enabling to
reach only their suboptimal solutions.

The experiments with the HTM using empirically found
“optimum” values of the parameter maxDist revealed that
the spatial pooling procedure tends to ignore the density of
the input data, thereby inevitably leads to highly non-optimal
recognition rates. In the paper a novel method for estimation
of the parameter maxDist is proposed that is based on some
principles used in fractal theory. We have analyzed proper-
ties of the data clouds (representing digit fragments) in high-
dimensional spaces, interpreted as low-dimensional mani-
folds, by the approach similar to the box counting method (see
Section 5.3). We have developed a procedure for estimating
the turning point position of the power-low decay of the scal-
ing function (i.e., mean number of detected coincidences vs
maxDist) in the log-log scale (see Fig. 8). A common maxDist
optimum for all nodes in the given level is calculated by aver-
aging the coincidence numbers over all nodes. The obtained
values of the maxDist optimum are summarized in Tab. 2.

For the inference, applied to a pattern presented to the al-
ready learned level of the HTM network, the belief values are
calculated using the Gaussian function (1) with the only con-
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trolling parameter sigma. The main task of the Gaussian infer-
ence is to appropriately cover gaps between the coincidences
memorized in the node. The optimum value of this parameter
should guarantee a desired generalization and it is closely re-
lated to the distribution of the distances between the fixed set
of coincidences and all possible input patterns for the given
node. Therefore we were interested in investigation of the
way by which the parameter sigma can mediate the relation
of the distance distribution to the distribution of the beliefs.
Since there is no particular reason to prefer a specific subrange
of the belief values, we have formulated the task to find such
an optimum sigma that yields a maximally uniform coverage
of the interval (0,1〉 after the distance transformation. For
solving this task we proposed a method that maximizes the
entropy of the belief distribution. The assumption of the sim-
plest possible two-bin discretization of this distribution has
finally arrived at the formula (6) in which the optimum value
of sigma for the one fixed coincidence is given by introducing
the median of the distance distribution into the Gaussian infer-
ence function. The optimum value for the whole node is ob-
tained as the median value over all the coincidences within the
node. Finally the global optimum sigma value for the whole
layer of the nodes is found as a weighted average of the node’s
optima.

The search for optimum values of the parameters
transitionMemory and requestedGroupCount lead to the
finding of two characteristically distinguished groups of ar-
chitectures with respect to the obtained maximum classifica-
tion accuracy. The more successful architectures with vari-
ous overlaps achieve greater MCA values for higher values
of the parameter transitionMemory (see Fig. 10). A conclu-
sion can be drawn that these architectures are able to bet-
ter utilize the temporal information contained in the train-
ing sequence. If we plot the values of MCA in relation
to the parameter requestedGroupCount (see Fig. 11) a sim-
ilar division into two different architecture groups can be
observed. The architectures without patch overlap achieve
generally lower MCA values and prefer much higher values
of the requestedGroupCount. The architectures with vari-
ous patch overlaps achieve better results for small values of
requestedGroupCount. They can significantly benefit from
the temporal information in the data.

In Tab. 6 the final overview of the classification results is
summarized. It contains the classification accuracy values
achieved by various conventional classifiers benchmarked in
the cited literature and those achieved by the three previously
published HTM implementations. The classification accuracy
of our HTM network with systematically optimized param-
eters slightly outperforms all the previous HTM implemen-
tations, however, the difference is not statistically significant
(see confidence intervals in Tab. 6). Considering the accu-
racy confidence interval, this result is only significantly bet-
ter than the Optimal margin classifier (95.40%) and classi-
fiers below. On the other hand, it is significantly worse than
the Boosted neural nets (97.40%) and methods above. There-
fore, all four HTM implementations, as well as the both Vir-

Table 6: The overview of different classification methods applied to
the USPS classification problem [9, 10].

Classification method Accur. Conf. int.
(%) (%) ***

Human error rate (1) 98.49
Combination of tangent vector and local
representation 98.00

Feature-based virtual SVM 97.66
Human error rate (2) 97.50
Tangent distance * 97.40
Boosted neural nets * 97.40
Virtual SVM (local kernel) 97.00
Single level HTM (this study) ** 96.99 96.22 – 97.77
Virtual SVM 96.80
Local learning * 96.70
Single level HTM (this study) 96.36 95.52 – 97.20
Two level HTM (Java implementation) [11] 96.32
Two level HTM (NuPIC “Pict. Demo”) [13] 96.26
HTM with “eye movements” [14] 96.26
SVM 96.00
Optimal margin classifier 95.40
LeNet1 * 95.00
Nearest-neighbor * 94.10

* Classifiers trained on the USPS database extended by some machine-
printed patterns.

** In this case, we have considered the testing set without 14 severely dis-
torted or falsely labeled digits.

*** The confidence intervals were calculated at the significance level of 5%
(α = 0.05) according to Eq. (2) in [29].

tual SVMs (97.00% and 96.80%), the Local learning method
(96.70%) and the SVM method (96.00%) form a group of clas-
sifiers which are not statistically differentiable given the stan-
dard USPS testing set. For the completeness, we report also
on the HTM performance achieved for the corrected testing
set (i.e., excluding the digits which cannot be correctly clas-
sified due to the presence of labeling errors or severe distor-
tions). In this case, the achieved classification accuracy has
been as much as 96.99%.

The following key original contributions of the presented
paper can be summarized:

• the statistical analysis of the USPS digit database,

• a novel method for construction of the training sequences
by ordering series of the static images,

• a novel characterization and selection of the acceptable
HTM architectures for the given task which uses the
analysis of the node’s overlaps and the criterion of the
homogeneous usage of the retinal pixels in learning and
inference procedures,

• a novel method for estimation of the parameter maxDist
based on the box counting method,

• a novel optimization method for the parameter sigma
based on the maximization of the entropy of the belief
distribution,
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• findings based on the analysis of the influences of the pa-
rameters transitionMemory and requestedGroupCount
on the HTM network performance.

Since the whole study has been focused solely on the single-
level HTM architectures which appeared to be sufficient for
the given classification problem, no explicit references to the
performance of the multi-level architectures could be made.
Nevertheless, the proposed methods for estimating opera-
tional values of the parameters maxDist and sigma can equally
be applied to the higher levels of the HTM hierarchy. In such
a case, however, one may experience memory problems, since
the data dimensionality usually rises with the level of the hi-
erarchy.

In the further research into the HTM network structure and
methods for optimization of its parameters, we intend to con-
centrate ourselves on possible improvements of the vector
quantization algorithm (spatial pooling) by using more ade-
quate clustering schemes and pattern similarity measures. We
will also deal with design and implementational aspects of
the multi-level HTM networks which would be suitable for
fast detection and classification of visual objects at different
scales and locations.

ACKNOWLEDGMENTS

The research reported in this paper has been partially sup-
ported by the Slovak Grant Agency for Science (project
No. 2/0019/10).

REFERENCES

[1] Felleman, D., van Essen, D. (1991). Distributed hierar-
chical processing in the primate cerebral cortex. Cere-
bral Cortex (1), 1–47.

[2] Serre, T., Oliva, A., Poggio, T. (2007). A feedforward
architecture accounts for rapid categorization. In: Proc.
National Academy of Sciences of the USA, Vol. 15. pp.
6424–6429.

[3] Lee, T. S., Mumford, D. (2003). Hierarchical Bayesian
inference in visual cortex. Journal of Optical Society of
America A 20(7), 1434–1448.

[4] Dean, T. (2006). Scalable inference in hierarchical gen-
erative models. In: Proc. 9th Int. Symp. on Artificial
Intelligence and mathematics. pp. 1–9.

[5] Hawkins, J., Blakeslee, S. (2004). On intelligence.
Henry Holt and Company, New York.

[6] George, D., Hawkins, J. (2009). Towards a mathematical
theory of cortical micro-circuits. PLoS Computational
Biology 5(10). DOI 10.1371/journal.pcbi.1000532.

[7] George, D., Hawkins, J. (2005). Hierarchical Bayesian
model of invariant pattern recognition in the visual cor-
tex. In: Proc. Int. Joint Conf. on Neural Networks. Mon-
treal, Canada.

[8] Numenta (2007). Zeta1 algorithms reference. Document
version 1.0.

[9] Dong, J. (2001). Statistical results of human perfor-
mance on USPS database. Technical report, CEN-
PARMI, Concordia University.

[10] Dong, J. (2005). HeroSvm 2.1. http:

//www.cenparmi.concordia.ca/~jdong/

HeroSvm.html.
[11] Thornton, J. R., Gustafsson, T., Blumenstein, M., Hine,

T. (2006). Robust character recognition using hierarchi-
cal Bayesian network. In: Proc. 19th Australian Joint
Conf. on Artificial Intelligence, Hobart, Australia. pp.
1259–1264.

[12] Thornton, J. R., Faichney, J., Blumenstein, M., Hine,
T. (2008). Character recognition using hierarchical vec-
tor quantization and temporal pooling. In: Wobcke, W.,
Zhang, M. (eds.) Proc 21st Australasian Joint Conf. Ar-
tificial Intelligence, Vol. Lecture Notes in Computer Sci-
ence. pp. 562–572.

[13] Bobier, B. (2007). Hand-written digit recogni-
tion using Hierarchical Temporal Memory. http:

//arts.uwaterloo.ca/~cnrglab/?q=system/

files/SoftComputingFinalProject.pdf.
[14] Numenta (2009). Numenta forum: benchmark

with USPS handwritten digit dataset. http://www.

numenta.com/phpBB2/viewtopic.php?t=224.
[15] Numenta (2008). Hierarchical temporal memory, con-

cepts, theory, and terminology. Document version 1.8.0.
[16] George, D. (2008). How the brain might work: a hierar-

chical and temporal model for learning and recognition.
Ph.D. thesis, Dept. of Electrical Engineering, Stanford
University, USA.

[17] Numenta (2009). Numenta node algorithms guide,
NuPIC 1.7.

[18] Johnson, S. T. (1967). Hierarchical clustering schemes.
Psychometrika 32, 241–254.

[19] Numenta (2008). Vision framework guide, NuPIC 1.6.1.
[20] Goldberg, D. E. (1989). Genetic algorithms in search,

optimization and machine learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[21] Wang, C. H., Srihari, S. N. (1988). A framework for ob-
ject recognition in a visually complex environment and
its application to locating address blocks on mail pieces.
Int. Journal of Computer Vision 2(2), 125–151.

[22] Dong, J., Krzyzak, A., Suen, C. Y. (2001). Statistical
results of human performance on USPS database. Tech-
nical report, Centre of Pattern Recognition and Machine
Intelligence, Concordia University.

[23] Seewald, A. K. (2005). Digits – a dataset for hand-
written digit recognition. Technical Report TR-2005-27,
OFAI, Wien.

[24] Hull, J. J. (1994). A database for hand-written text
recognition research. IEEE Transactions on Pattern

48

http://dx.doi.org/10.1371/journal.pcbi.1000532
http://www.cenparmi.concordia.ca/~jdong/HeroSvm.html
http://www.cenparmi.concordia.ca/~jdong/HeroSvm.html
http://www.cenparmi.concordia.ca/~jdong/HeroSvm.html
http://arts.uwaterloo.ca/~cnrglab/?q=system/files/SoftComputingFinalProject.pdf
http://arts.uwaterloo.ca/~cnrglab/?q=system/files/SoftComputingFinalProject.pdf
http://arts.uwaterloo.ca/~cnrglab/?q=system/files/SoftComputingFinalProject.pdf
http://www.numenta.com/phpBB2/viewtopic.php?t=224
http://www.numenta.com/phpBB2/viewtopic.php?t=224


MEASUREMENT SCIENCE REVIEW, Volume 10, No. 2, 2010

Analysis and Machine Intelligence 16, 550–554.
[25] LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,

Howard, R. E., Hubbard, W., Jackel, L. D. (1989). Back-
propagation applied to handwritten zip code recognition.
Neural Computing 1(4), 541–551.

[26] Ernst, M. D. (2004). Permutation methods: A basis for
exact inference. Statistical Science 19(4), 676–685. DOI
10.1214/088342304000000396.

[27] Schroeder, M. R. (1991). Fractals, chaos, power laws :
minutes from an infinite paradise. W. H. Freeman, New

York.
[28] Shannon, C. E. (1948). A mathematical theory of com-

munication. Bell System Technical Journal 27, 379–423.
[29] Martin, K. J., Hirschberg, D. S. (1996). Small sample

statistics for classification error rates II: confidence in-
tervals and significance tests.

Received February 24, 2010.
Accepted April 6, 2010.

49


	Introduction
	Hierarchical Temporal Memory
	Learning in a node
	Inference in a node

	Training sequence generation
	Static image sweeping
	Training set ordering

	USPS database of hand-written digits
	Basic description of the USPS database
	Labeling errors and severely distorted digits
	Distributions of the digit classes, differences between the training and testing sets, noise

	Application of HTM to the USPS classification problem
	USPS training sequence
	Suitable HTM network architectures
	Estimation of the optimal values of the parameter maxDist
	Estimation of the optimal values of the parameter sigma
	Search for the optimal values of the parameters transitionMemory and requestedGroupCount
	Other relevant parameters of the NuPIC platform

	Results
	Performance of individual HTM network architectures
	Influence of the maxDist and sigma parameters on the classification performance
	Influence of the transitionMemory parameter on the classification performance
	Influence of the requestedGroupCount parameter on the classification performance
	Overall the best HTM network configuration

	Conclusions

