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Theoretical formalism based on the orthogonalized plane wave method supplemented by a potential scaling scheme was
used to predict the temperature dependence of energy gap of CuSi2P3 semiconductor. A computer code in Pascal was used to
perform the variation of fundamental energy gap with temperature in the range of 150 K to 800 K. The dependence of energy
gap on temperature for lattice dilation contribution, lattice vibration contribution and total temperature effect were performed
separately. The results revealed that, as temperature increases, the top of the valence band and the bottom of the conduction
band increase, while the energy band gap decreases. Generally, at low temperatures, the energy gap varies slowly and exhibits a
nonlinear dependence and approaches linearity as temperature increases. The calculated energy gap of CuSi2P3 at T = 300 K is
0.4155 eV. The temperature coefficients in the linear region due to lattice dilation contribution, lattice vibration contribution and
total temperature effect were calculated as –1.101 × 10−5 eV/K, –1.637 × 10−4 eV/K and –1.7523 × 10−4 eV/K, respectively.
Also, the ratio of temperature coefficient of the energy gap due to LV contribution to its value and LD contribution in the
linear region is equal to 14.868. That ratio is compared to those of CuGe2P3 and III-V compounds, where those of the latter
show a systematic change with Eg. Moreover, the Eg of all the compounds shows a quadratic dependence on the inverse
of mean bond length.
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1. Introduction

From the point of view of basic science and
solid state physics in particular, studies of semicon-
ductor band structures have been central and funda-
mental. The knowledge of energy gap of semicon-
ductors along with their temperature dependence
is of considerable interest from both technological
and theoretical points of view. The great interest
in the properties of modern materials has led, in re-
cent years, to an extensive and increasing search for
new ternary and multinary compounds with tetra-
hedral structure. Theoretical and experimental ef-
forts have been performed in order to understand
the properties of ternary semiconductors, which
provide a natural means of tuning the magnitude
of the forbidden gap so as to optimize and widen
the applications of semiconductor devices [1,
2]. Ternary semiconductors have opened a new
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generation of device applications by increasing
dramatically the possibilities for engineering the
material properties. The band gap and the lattice
parameter are among the most important physi-
cal parameters, since they are strongly connected
with the operating wavelength of opto-electronic
devices and also control the band offset and mis-
matching in different devices [3]. For this purpose,
the dependence of the fundamental energy gap on
temperature is of a particular importance. The ef-
fect of temperature can be estimated by comput-
ing the changes of the individual energy bands with
temperature.

The (Si, Ge) phases adopt a diamond struc-
ture in which tetrahedral bonding around every
atom is achieved by providing four electrons per
atom [4, 5]. Similar bonding models are also
realized in other semiconductors, such as II-VI
and III-V [6]. There are also ternary phases with
four electrons per atom and tetrahedral bonds,
but now elements with a larger range of valences
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and different ratios can be combined to ob-
tain the same electron count, e.g. II-IV-V2 and
I-IV2-V3. Among these ternary phases, CuSi2P3
and CuGe2P3, discovered in 1961 [7], have bond-
ing features similar to those of the (Si, Ge) al-
loys. Both CuSi2P3 and CuGe2P3 were found to
adopt zinc blende structure with the Cu–Si or
Cu–Ge atoms being mixed on one site. It has
also been reported that alloying CuGe2P3 with Ge
yields the CuGe4P3 phase with the same struc-
ture as CuGe2P3 [8]. But in CuGe4P3, the Cu
and P atoms have to be mixed on one site as op-
posed to the Cu–Ge mixture in CuGe2P3. Sim-
ilarly, alloying CuSi2P3 with Si has been re-
ported to produce phases with a general for-
mula of CuSi2 + xP3 (where x = 1, 2 and 3), but
the atomic distribution was not established [9].
All phases, regardless of Si or Ge concentration,
were found to adopt zinc blende structure. The
Cu–Si–P and Cu–Ge–P phases may be very attrac-
tive in terms of thermoelectric properties and as sta-
tistical mixtures are likely to reduce their thermal
conductivity. The presence of elements with differ-
ent electronegativities may decrease the band gap,
making these phosphides suitable for power gener-
ation at low temperatures. Omar et al. [10–12] have
reported the Hall effect, conductivity, mobility, car-
rier concentration, energy gap, melting point, bond
length, lattice parameter and thermal expansion as
a part of elucidation of physical properties of these
compounds. Recently, the authors studied the tem-
perature dependence of the energy band gaps of Si,
III-V and CuGe2P3 semiconductors [13–15].

The energy bands of semiconductors exhibit
considerable and large shifts with temperature. The
shifts are due to two effects: the first effect is at-
tributed to the change in the energy of the elec-
trons with volume and the second effect is due to
the electron-phonon interaction [16, 17]. The pur-
pose of the present work is to calculate theoreti-
cally the temperature dependence of the fundamen-
tal energy gap of copper silicon phosphide CuSi2P3
semiconductor, which has the zinc blende struc-
ture, with a space group F4̄3m, and belongs to the
ternary normal tetrahedral structures of adamantine
compounds [8, 13]. The temperature dependence

of the energy gap is determined once considering
the lattice dilation only, then considering the lat-
tice vibration only and lastly considering both for
the total effect. In order to carry out the calcula-
tions, the computer code in Pascal PSOPW.pas was
developed and used to simulate variation of en-
ergy gap with temperature in the range of 150 K to
800 K. The code was first written by Sami [13] for
binary semiconductours and, afterwards, was mod-
ified by Abdullah [14] to suit ternaries.

2. The OPW method
The widely used term “band structure” com-

monly refers to the energy levels of electrons which
move around in a three dimensional translational
invariant system, for example a bulk crystal. In the
band approximation, the problem reduces to solv-
ing the one-electron Schrödinger equation, in a.u.:

[−∇
2 +V (r)]ψi(k,r) = Ei(k)ψi(k,r) (1)

where the crystal potential V(r) is invariant un-
der all symmetry operations of the space group
of the crystal.

In the present work, among various methods of
band structure calculations, the potential-scaled or-
thogonalized plane wave (PSOPW) method [13–
15] was used to calculate explicitly the eigenfunc-
tions and energy eigenvalues of an electron in the
periodic field of a crystal. The PSOPW method is a
modification of orthogonalized plane wave (OPW)
method [18]. The conceptual basis of OPW method
is the expansion of electronic states in terms of
plane waves that are orthogonal to the atomic core
states. In OPW method, a valence or conduction
state function ψ(k, r) of vector k is expanded in
terms of OPWs:

ψ
α(k,r) = ∑

j
c(k j)χ

α(k j,r) (2)

where kj = k + hj; hj being reciprocal lattice
vectors including zero, and χα(kj,r) are the plane
waves orthogonalized to core states using Schmidt
orthogonalization procedure [19]:

χ
α
k j ≡ χ

α(k j,r) =W α
k j−∑

c

〈
ψc
∣∣W α

k j
〉
ψc (3)
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where Wα
kj is a plane wave with kj = k + hj, ψc are

the core wave functions, whose eigenvalues Ec are
known, and the summation runs over all core states.
The index α stands for the irreducible representa-
tion to which the state function belongs. Hence, the
valence and conduction functions are:

ψ
α(k,r) = ∑

j
c j(W α

k j−∑
c

〈
ψc
∣∣W α

k j
〉
ψc) (4)

where the coefficients of expansion cj ≡ c(kj) as
well as the eigenvalues E(k) are obtained by solv-
ing equation 1. With equation 2, the Schrödinger
equation 1 yields the secular equation:

〈χα
ki |H−E| χα

k j
〉
= 0 (5)

In OPW method, the crystal potential, V(r) in
equation 1, is approximated as a sum of atomic-like
potentials:

V (r) =V (r+dν) = ∑
ν

υ(r+dν) (6)

where υ(r + dν) is the potential due to the ion at the
lattice site dν. The atomic-like potential is a sum of
Coulomb potential and exchange potential [20].

The Hamiltonian matrix can be brought into
block diagonalization where each block corre-
sponds to an irreducible representation of a small
group Gk [21]. This can be done by expand-
ing the function in equation 2 in terms of linear
combination of symmetry-adapted orthogonalized
plane waves [13].

3. Temperature effect
The temperature effect on the energy bands of

a semiconductor is a cumulative effect of ther-
mal lattice expansion and electron-phonon interac-
tion [22, 23], which are known as lattice dilation
(LD) and lattice vibration (LV), respectively. The
LV contribution is commonly referred to as Debye-
Waller screening of the effective potential [17, 24].
Thus, the total change of the energy gap Eg with
temperature is [16, 17]:(

dEg

dT

)
total

=

(
dEg

dT

)
LD

+

(
dEg

dT

)
LV

(7)

The one-electron theory of electronic energy
band of a crystalline solid is based on the assump-
tion that the crystal is perfect, which is true only at
absolute zero degree temperature, where the struc-
ture factor is exp(ih·Rν). According to Brooks-
Yu theory, the structure factor at temperature T
is given by [25, 26]:

Sν(h,T ) = exp(ih ·Rν)exp [−Wν(|h| ,T )] (8)

where Wv(|h|,T) is the Debye-Waller factor of the
νth atom, located at Rν, and is given by:

Wν(|h| ,T ) =
1
6
|h|2
〈
u2

ν

〉
(9)

where
〈
u2
ν

〉
is the total mean-square displacement

of the νth atom from its equilibrium position. The
quantity

〈
u2
ν

〉
is temperature-dependent through

its dependence on the phonon occupation num-
ber [27]. In band calculations, if the structure fac-
tors are considered to be exp(ih·Rν), the atomic po-
tentials must be temperature-dependent:

Vν(|h| ,T ) =Vν(|h|)exp
[
−1

6
|h|2
〈
u2

ν

〉]
; (10)

ν = 1,2 for zinc blende

Thus, at a finite temperature T, the ionic poten-
tial seen by an electron is attenuated by the Debye-
Waller factor.

In LV calculations, the lattice constant is kept
at its absolute zero temperature value while, in LD,
the atoms are considered to be rigid at their abso-
lute zero temperature positions. The total effect of
temperature requires considering both lattice con-
stant change and potential attenuation. The effect
of temperature on the potential due to LV contri-
bution is included in equation 10, while there is
not any consideration of the effect of the change
of lattice constant on the potential. To account
for the change in lattice constant, the potential
scaling scheme:

VC(a) =V (0)
C

(a0

a

)η

;η = 2 (11)

was proposed by Sami [13], where V(0)
C is the crys-

tal potential at temperature T = 0 K, when the lat-
tice constant is a0, and Vc and a are the crystal po-
tential and lattice constant at a given temperature,
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respectively. In PSOPW method, the crystal poten-
tial in LD-contribution calculation is scaled accord-
ing to equation 11, while, for total effect of temper-
ature, the same scaling is performed in addition to
the potential attenuation given by equation 10.

4. Temperature dependence calcu-
lations

The temperature dependence of the valence
band and conduction band and hence the energy
band gap is implicit in the lattice constant and
Debye-Waller factor. Thus, in calculations, it is suf-
ficient to have values of the crystal lattice constant
at different temperatures as well as the correspond-
ing values of mean-square displacements from
equilibrium positions for the constituent atoms.
The calculations were performed according to the
irreducible representations of the point group Td
of F4̄3m. The results revealed that the fundamen-
tal energy gap is indirect and is given by:

E indirect
g = E

1X1
c −E

3Γ15
υ (12)

where E
3Γ15
υ is the energy of the top of the valence

band and E
1X1
c is the energy of the bottom of the

conduction band.

In the present work, for CuSi2P3 semicon-
ductor, the lattice constants at various temper-
atures were calculated from the linear thermal
expansion coefficient [10, 28] and the mean-
square atomic displacements from equilibrium po-
sition at various temperatures were calculated from
the Debye theory [29].

For semiconductors, the variation of lattice con-
stant with temperature starting from zero absolute
temperature is nonlinear up to nearly 150 K from
which it is almost linear to beyond room tempera-
ture [16]. In the linear region, the change of lattice
constant with temperature is given by [10, 28]:

a(T2) = a(T1)[1+α(T2−T1)] (13)

where a(Ti) is the lattice constant at temperature
Ti and α is the linear thermal expansion coefficient
at room temperature. Knowing that a = 5.2481 Å
and α = 5.35 × 10−6 K−1 at T = 300 K [1, 10],

equation 13 was used to calculate the a – T data for
CuSi2P3 semiconductor, and the results are given
in Table 1.

According to Debye theory, the mean-square
vibrational amplitude of an atom in a crystal
is given by [29, 30]:

〈u2〉 = 3h2T
4π2MakBΘ2

D

[
1
4
+

T
ΘD

ϕ

(
ΘD

T

)]
(14)

where

ϕ(x) =
1
x

x∫
0

t
exp t−1

dt , x =
ΘD

T
(15)

is the Debye integral, T is the crystal temperature,
ΘD is the Debye temperature, h is Planck constant,
kB is Boltzmann constant and Ma is the mass of the
vibrating atom.

In the present work, the Debye temperature for
CuSi2P3 was calculated from [31, 32]:

ΘD = c[
Tm

MaV 2/3 ]
1/2 (16)

where Tm is the melting point, V equals to a3/8, is
the lattice volume, Ma is the atomic mass and c is a
constant that has the same value for all compounds
within a group. Knowing that the Debye temper-
ature is 429 K for CuGe2P3 and using the values
of the parameters in equation 16 for CuGe2P3 and
CuSi2P3 [1, 10, 33], the Debye temperature for
CuSi2P3 was obtained (Table 2).

5. Results and analysis
In LD contribution calculation, for each temper-

ature value, the corresponding lattice constant in
Table 1 was used in the calculations without con-
sidering the Debye-Waller attenuation of atomic
potentials. The calculated variation of Eυ, Ec and
Eg with temperature due to LD contribution are
plotted in Fig. 1, which shows that, as temperature
increases, Eυ and Ec increase while Eg decreases.

Fig. 1 implies that the dependence of the energy
gap on temperature is very close to linearity in the
temperature range of 200 K to 400 K. Comparison
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Table 1. Lattice constants and mean-square atomic displacements from equilibrium position at various tempera-
tures for CuSi2P3 crystal calculated using equation 13 and equation 14, respectively.

T [K] a [Å] ‹u2› [10−16 cm2]
for Cu/Si atoms

‹u2› [10−16 cm2]
for P atom

50 – 0.003758 0.005107
100 – 0.005426 0.00643
150 5.24379 0.007438 0.008233
200 5.24519 0.009574 0.010255
250 5.24660 0.011764 0.012384
300 5.24800 0.013982 0.014571
350 5.24940 0.016218 0.016793
400 5.25081 0.018464 0.019038
450 5.25221 0.020717 0.021299
500 5.25362 0.022976 0.02357
550 5.25502 0.025238 0.025849
600 5.25642 0.027503 0.028134
650 5.25783 0.029770 0.030424
700 5.25923 0.032039 0.032718
750 5.26063 0.034309 0.035015
800 5.26204 0.036580 0.037314

between Fig. 1a and Fig. 1b reveals that the effect
of temperature change on the top of valence band is
about 1.5 times greater than its effect on the bottom
of conduction band; the variation in Eυ is nearly
21.167 meV as temperature increases from 150 K
to 800 K, while it is nearly 14.64 meV for Ec. The
temperature coefficient of the energy band gap in
the linear range of 200 K to 400 K due to LD con-
tribution is –1.101 × 10−5 eV/K.

The LV contribution to the temperature effect
was calculated by taking into account the Debye-
Waller attenuation of the potentials, while the lat-
tice constant was considered unchanged with tem-
perature. The temperature dependences of Eυ, Ec
and Eg due to LV contribution were calculated and
are plotted in Fig. 2 which, similar to the LD con-
tribution, shows that Eυ and Ec increase while Eg
decreases as temperature increases.

Comparison between Fig. 2a and Fig. 2b re-
veals that the variation in Eυ is nearly 163.33 meV
as temperature increases from 150 K to 800 K,
while it is nearly 68.96 meV for Ec, that is, the ef-
fect of temperature change on the top of valence
band is about 2.5 times greater than its effect on

the bottom of conduction band. The temperature
coefficient of the energy gap in the linear range
of 200 K to 400 K due to LV contribution is
−1.637 × 10−4 eV/K.

The total effect of temperature, LDV contri-
bution, was calculated by considering the change
of lattice constant with temperature along with
Debye-Waller attenuation. The calculated total
temperature dependence of Eυ, Ec and Eg are plot-
ted in Fig. 3 which also shows that, as temperature
increases, Eυ and Ec increase, while Eg decreases.
Comparison between Fig. 3a and Fig. 3b shows
that the effect of temperature change on Eυ, sim-
ilar to LV contribution, is nearly 2.5 times greater
than its effect on Ec; the variation in Eυ is nearly
187.077 meV as temperature increases from 150 K
to 800 K, while it is nearly 83.56 meV for Ec. This
similarity to the LV case is obvious because the
dominant contribution to the temperature effect is
that of the LV. The calculated energy gap at room
temperature for CuSi2P3 and the temperature co-
efficient of the energy gap in the linear range of
200 K to 400 K due to LDV contribution are given
in Table 3.
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Table 2. Debye temperature for CuSi2P3 compound calculated from the parameters in equation 16, which are also
given.

Compound Melting temperature
Tm [K]

Lattice constant
a [Å]

Mean atomic mass
M [a.u.]

Debye temperature
ΘD [K]

CuGe2P3 1103 [10] 5.3777 [33]
1
3 Cu+ 2

3 Ge+P =
100.55

429 [33]

CuSi2P3 1451 [10] 5.2480 [1, 33] 1
3 Cu+ 2

3 Si+P = 70.88 601 [This work]

Table 3. Energy gap, temperature coefficient of en-
ergy gap in the linear range and αLV/αLD for
CuSi2P3 compared with CuGe2P3 [14] and
some III-V compounds [13], all at room tem-
perature.

Compound
Energy

gap [eV]
dEg

dT
[eV/K]

αLV

αLD

CuSi2P3 0.4155 –1.7523 × 10−4 14.868
CuGe2P3 0.2945 –2.1946 × 10−4 15.272
GaP 2.2659 –3.7636 × 10−4 13.676
GaAs 1.4368 –3.4003 × 10−4 7.7434
InP 1.3418 –3.2972 × 10−4 3.9860
GaSb 0.7525 –3.7500 × 10−4 1.5335
InAs 0.3631 –3.2952 × 10−4 2.1439

Comparison between Fig. 1 and Fig. 2 shows
that LV contribution to the changes in Eυ, Ec and
Eg is greater than that of LD; actually, by a factor
of 7.7 for Eυ, 4.7 for Ec and 14.4 for Eg. On the
other hand, the temperature coefficient of the en-
ergy gap in the linear region, around T = 300 K,
due to LV contribution is grater than that due to
LD contribution by a factor 14.868 and this factor
is comparable with the same factors of CuGe2P3
and GaP [13, 14] (Table 3). The LV contribution
is greater because the effect of thermal agitation
of the constituent atoms is much greater than that
of thermal expansion of the lattice. Thermal ex-
pansion coefficients of the family of the groups
I-IV2-V3 and III-V compounds are of order of
10−6 K−1 which is true for most semiconduc-
tors [10]. The increase of valence and conduction
band energies with temperature, which is observed
in the present work, is implicit in the formation
of the valence and conduction bands. Present re-
sults are consistent with the fact that an increase

in temperature causes lattice dilation and lattice vi-
bration, where both result in a reduction of poten-
tial because of an increase in lattice constant for
the former and the Debye-Waller attenuation for
the latter as well as the potential scaling for lattice
dilation and total effect of temperature.

Since both CuSi2P3 and CuGe2P3 compounds
belong to the same group and have the same crys-
tal structure and atomic distribution except that Ge
is exchanged by Si, so any difference in electronic
properties could be expected to be similar to that
between Ge and Si. Accordingly, the ratio of the en-
ergy gaps [Eg(Si)/Eg(Ge)] could be approximately
equal to that of [Eg(CuSi2P3)/Eg(CuGe2P3)],
that is:

Eg(CuSi2P3)

Eg(CuGe2P3)
∼=

Eg(Si)
Eg(Ge)

(17)

According to this relation the energy gap of
0.27 eV for CuGe2P3 calculated from the exper-
imental data [34] gives a value of 0.48 eV for
CuSi2P3, which is 10 % higher than that obtained
from the PSOPW method in this work.

Both compounds CuSi2P3 and CuGe2P3 are
members of the ternary I-IV2-V3 family and are
direct analogues to binary III-V group compounds,
which arises by the replacement of the III cations
by Cu and Si (or Ge) atoms. Thus, the results of
the present work can be compared with those of
CuGe2P3 and III-V compounds. For that purpose,
the dependence of (αLV/αLD) in the linear region
(200 K to 400 K) on energy gap Eg at 300 K as well
as on the reciprocal mean bond length (1/dmean)
are considered as shown in Fig. 4 and Fig. 5.
Values of (αLV/ αLD) for CuSi2P3, CuGe2P3 [14]
and compounds from group III-V [13]
are given in Table 3.
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Fig. 1. Lattice dilation contribution to the temperature
dependence of (a) top of the valence band, (b)
bottom of the conduction band and (c) the en-
ergy gap for CuSi2P3.

The fitting relation obtained from Fig. 4 for III-
V which is in the form Eg = 57572 × (1/dmean)

12.03

was modified to a form Eg = 9154 × (1/dmean)
12.28

with the assumption of being applicable to
CuGe2P3 since this ternary and CuSi2P3

Fig. 2. Lattice vibration contribution to the temperature
dependence of (a) top of the valence band, (b)
bottom of the conduction band and (c) the en-
ergy gap for CuSi2P3.

both belong to the same group compounds of I-IV2-
V3. This relation is obtained by multiplying the
x-axis values of (1/dmean) by a factor of 1.182.
According to this form, an energy gap of
0.45 eV was obtained for CuSi2P3. This value
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Fig. 3. Total temperature dependence of (a) top of the
valence band, (b) bottom of the conduction band
and (c) the energy gap for CuSi2P3.

is in the mid point between that obtained
from equation 17 and that calculated
by PSOPW method. To verify values of
(αLV/αLD) for CuSi2P3, the fitting curve
relation to the binary compounds from III-V
in the form of (αLV/αLD) = 3.802 × Eg

1.334 was

Fig. 4. Energy gap as a function of inverse mean bond-
ing length for III-V and CuGe2P3 compounds.
The diamond shape circle point is for CuGe2P3.

modified to the form (αLV/αLD) = 82.11 × Eg
1.381

which is applicable to CuGe2P3. According to
this relation, the Eg value of 0.45 eV for CuSi2P3
obtained from Fig. 4 gives the ratio (αLV/αLD) of
27 which is higher than that reported for CuGe2P3.
The differences between the dependences for
I-IV2-V3 and III-V compounds in Fig. 4 and
Fig. 5 are due to the differences between their
ionicities, however the modifications to the em-
pirical relations obtained from these two figures
are dependent on the same principles explained in
references [31, 35].

As CuSi2P3 has not been so well studied, es-
pecially in zinc blende structure, experimentally
measured energy gap and/or its change with tem-
perature was not found. However, an energy gap
related property for CuSi2P3 can be compared to
that of some III-V semiconductors. The calculated
αLD/αtotal for CuSi2P3 (equals to 0.0628 at 300 K
with a = 5.248 Å) compared with that of CuGe2P3
(equals to 0.060 at 300 K with a = 5.377 A) [14]
fits very well to the curve obtained from αLD/αtotal
“temperature coefficient of lattice dilation contri-
bution relative to its value due to the total effect of
temperature on the energy gap” versus lattice con-
stant for some III-V semiconductors [13] as shown
in Fig. 6. This may be considered, to some extent,
as a justification of the theoretical framework pro-
posed in this work.
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Fig. 5. αLV/αLD as a function of energy gap for
III-V [13] and CuGe2P3 compounds. The solid
diamond shape point is for CuGe2P3.

Fig. 6. αLD/αtotal of the energy gap as a function of lat-
tice constant at T = 300 K for some III-V semi-
conductors [13], CuGe2P3 [14] and CuSi2P3 in
the present work. The solid line is a fit to the
points for III-V compounds.

6. Conclusions
The theoretical calculation using OPW method

with a potential scaling scheme (termed PSOPW
method) is successful to predict the temperature
dependence of the fundamental energy band gap
of CuSi2P3 zinc blende type semiconductor. The
energy gap temperature dependence implies that
variation of Eυ with temperature has greater con-
tribution to changes in the energy band gap than
the variation of Ec has. The results of the temper-
ature coefficients near T = 300 K due to lattice
dilation contribution and lattice vibration contri-
bution as well as total effect of temperature show

that the most important contribution to the energy
gap-temperature dependence is the lattice vibration
contribution.
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