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Abstract: The gas-liquid two-phase flow is characterized by continuous and local change of 
surface separation of phases and by their mutual interactions. Due to the instability of the flow, heat 
transfer and mass, a precise analytical approach is difficult to achieve. Despite these difficulties, 
efforts are underway to progress from the more frequent empirical studies to reliable analytical 
models. This requires an accurate research of the processes involved in the two phase flow and how 
they interact with one another. This paper aims to determine the pressure drop for a two-phase flow 
in a horizontal pipe of a heating plant. The author compares the results obtained by numerical 
simulation with existing results in the domain. The mixture is air-water, at an environmental 
temperature of 25˚C. 
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1. Introduction. Importance of Pressure Drop Monitoring in Pipes 

When designing a thermo-hydraulic apparatus in which a two-phase flow takes place, it is 
important to correctly determine the pressure drop for measuring and functioning of the 
aggregate in economical and technically adequate conditions. Experimental research on pressure 
drop occupies a large part in the literature referring to two-phase flows. Despite numerous 
researches in this domain, the pressure drop in a two-phase flow can be measured, in most cases, 
with a precision of ±50%, and in extreme conditions, with ±100%. 

In the case of a two-phase flow in a pipe, the total pressure drop is calculated by taking into 
account the next components, expressed in the form of pressure drops (variations) [1]: 

- the component that occurs due to friction, caused by phenomena taking place at the pipe 
wall and the friction between phases; 

- the component that occurs after the acceleration of the phases due to pressure drop or 
change of phase; 

- the component that occurs due to the difference in height of slanted or vertical pipes. 

Therefore, on the unit length, the pressure variation can be expressed by the equation: 
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2. Mathematical Models Used in Pressure Drops Calculation in Flows Through Pipes 

Compared with the single-phase flow, in the case of the two-phase flow the pressure drop due to 
friction can be determined both from the momentum transfer at the wall and from the momentum 
transfer at the separation surface between the two phases. The friction between the phases 
usually depends on the manner of the flow and on the flow motion (boundary-layer or turbulent) 
of the two phases. 



 
Mathematical Modelling in Civil Engineering, no.2 - 2013 2 

 

There are a few empirical correlations for calculating the pressure drop due to friction in the 
internal two-phase flows [2]: 

- the Friedel Correlation (1979) begins with a single-phase model and determines a 
correction factor for adjusting the energy and momentum transfer in the two-phase flow. 
The method is generally recommended when the viscosity ratio vl μμ  is less than 1000; 

- the Lockhart-Martinelli Correlation (Method) – one of the very first correlations for 
pressure drop in two-phase flows, proposed by Martinelli and Nelson (1948) and 
improved by Lockhart and Martinelli (1949); 

- the Grönnerud Correlation – a large part of t pressure drop modeling in a two-phase flow 
was based on neglecting the heat transfer between air and water. In order to remedy this, 
Grönnerud (1979) developed a correlation based on data obtained from the flow of 
refrigerants and  using an extra correction factor; 

- the KRIEGEL method – he investigated the boundary-layer motion of gas and liquid. He 
calculated the velocity profile in the sheath and in the core in the case of an annular flow, 
with the hypothesis of a smooth surfaced sheath, and determined the pressure drop based 
on those data; 

- the WALLIS Method – started from the drift model. The two phases flow through two 
separated cylinders, the cross-sections of which are equal to the total section of the pipe 
when amounted together. The pressure drop in each cylinder is the real pressure drop of 
the two-phase flow and can be determined by starting from the single-phase flow and 
using the average values of velocity; 

- the CHAWLA Method – started from the representation of a separate flow of the two 
phases in a horizontal pipe and calculated the ratio of the velocities of the two phases 
with the equivalent hydraulic diameter for the cross-section occupied by gas. 

Many bibliographical references recommend using the Lockhart-Martinelli correlation (1949) 
[3]. This method was at first used only in the case of an annular flow of an air-water mixture in a 
horizontal pipe. Later, it was extended to all domains of flow, as well as to single-component 
systems and for other substances. Even though there are more precise methods for other 
domains, this method leads to gratifying results for most of the research conducted up to now 
(±50% precision). Large deviations can occur in the case of tubing with D > 0, 1 m diameter, at 
high density flows and at large pressures [4], [5]. Its advantage is its ease of use. 

3. The Lockhart-Martinelli Model 

This model postulates the equality of pressure drops between the two simultaneously flowing 
phases. These are calculated by taking into account the dimensionless ratio X between the fictive 
pressure drops for the two phases, which are considered as independently flowing through the pipe. 

Therefore, for the section i-e, pressure drop on length unit will be determined with the equation: 
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Δ  = pressure variation on length unit if we assume the liquid flows by itself; 

lΦ = a dimensionless coefficient that depends on X and on the structure of the flow. 
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Further, a set of equations will be developed for the liquid phase. A similar set will be needed for 
the gas phase, which will be obtained by changing the indices. 

The static pressure created by the flow of the liquid, expressed according to the friction factor, is 
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where: 

ld  = hydraulic diameter of the flow of the liquid, [m], 

lf = friction factor 

lρ =density of the liquid phase, [kg/m3] 

lv = average velocity of the liquid phase, [m/s] 

For a more complicated transition section: 
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In a similar fashion, the β factor is used for gas. For circular sections α = β = 1. 

Therefore: 
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where: 
lc , n = dimensionless coefficients for the liquid phase (tab.1) 

lMQ =mass flow of the liquid, [kg/s] 

lμ  =dynamic viscosity of the liquid, [Pa⋅s] 

0d = pipe diameter, [m] 

Pressure variation on length unit for liquid is: 
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From (4), (5) it results that: 
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From equations (6) and (1) is obtained 
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A similar analysis results in corresponding equations for gas (by m, β resulting gΦ ). 
The occupation degree of the section with liquid is determined with the equation: 
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From where it results that 
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From equations (6), (8) and (9) four variables are obtained 
0d

dl , 
0d

d g , α, β that can be expressed 

with the help of four experimental variables lΦ , gΦ , Alr , Agr . 

From equations (1), (5) and (7) the following fraction results 
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By using a new Reynolds number: 
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It results that 
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Therefore ( )lg ccmnfX ,,,=  coefficients are determined through experimental research, which 
have highlighted four flow structures, according to table 1. 

 
Table 1 

Martinelli’s multiplier, coefficients and indices for the calculation of X 

Flow 
structure  

Re0,i Indices 
[Kj] 

cl cg m n 

L G L G       
t t >2000 >2000 t t 0,046 0,046 0,2 0,2 
t l >2000 <2000 t l 0,046 16 1 0,2 
l t <2000 >2000 l t 16 0,046 0,2 1 
l l <2000 <2000 l l 16 16 1 1 

Note: t = turbulent, l = laminar 
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The algorithm for determining the pressure 
drop for the two-phase gas-liquid flow is: 

a) lRe , gRe , lf , gf  are calculated; 

b) X is calculated; 

c) by the flow regime and the value of X, Φ 
results; 
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Fig. 1 - Variation curves ( )Xf=Φ  

The variation curves ( )Xf=Φ  for the flow regimes mentioned in table 1 are resented in figure 1. 

4. Numerical Simulation of Pressure Drops in a Two-phase Air-water Flow 

On the basis of the algorithm presented in point 3 and the equations (1)-(10), a numerical 
simulation program for pressure drops in a two-phase flow of fluids through pipes was created. 
The program was written in FORTRAN. The logic scheme for the calculation program is 
presented in fig. 2. 

  

Fig. 2 - The logic scheme of the program (Ro version) 



 
Mathematical Modelling in Civil Engineering, no.2 - 2013 6 

 

Table 2 
Values of mass velocities chosen for the numerical simulation 

gMv  
lMv  [kg/(h m2)] 

Case 1 
336,72 329,888 989,664 3298,88 32988,8 329888 3298880 

Case 2 
3367,2 3,29888⋅103 9,89664⋅103 32,9888⋅103 329,888⋅103 3298,88⋅103 32988,8⋅103 

Case 3 
33672 3,29888⋅104 9,89664⋅104 32,9888⋅104 329,888⋅104 3298,88⋅104 32988,8⋅104 

10101,9 3,29888⋅3⋅104 9,89664⋅3⋅104 32,9888⋅3⋅104 329,888⋅3⋅104 3298,88⋅3⋅104 32988,8⋅3⋅104 
Case 4 
336720 3,29888⋅105 9,89664⋅105 32,9888⋅105 329,888⋅105 3298,88⋅105 32988,8⋅105 

For verifying the functionality of the numerical simulation program, an air-water mixture that is 
to be transported over a length of 152,4 m, through a pipe the diameter of which can have the 
next values: 0d  = 0,078 m; 0,102 m; 0,154 m was used. The mass flows of gas and liquid 

gMQ , 

lMQ  are pairs chosen from the Baker diagram (cases 1, 2, 3, 4). lcpΔ  and gcpΔ are calculated. 
Table 3 

Results as shown in figures 3 – 8 

Figure 3 
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The results obtained were transposed in the diagrams in figures 3, 4, 5, 6, 7, 8. 

Fig. 3 Fig. 4 

 
Fig. 5 Fig. 6 

Fig. 7 
 

Fig. 8 
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It can be observed that the calculation model Lockhart-Martinelli is valid for [ ]32 10...10∈
g

l

M

M

v

v
. 

5. Conclusions 

The elaborate calculation program is based on the Lockhart-Martinelli method and is easily 
usable for reproducing an entire range of practical calculation situations. Referring to the 
Lockhart-Martinelli method it can be ascertained that the hypotheses that are at its basis are 

verified in the fraction 
g

l

M

M

v

v
 between 102 and 103, mainly consisting of bubbly and liquid burst 

flows. For these types of flow, gl pp Δ≈Δ . 
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