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Abstract: The cubic translation model is a well know tool in wind engineering, which provides a 
mathematical description of a non-Gaussian pressure as a cubic transformation of a Gaussian process. 
This simple model is widely used in practice since it offers a direct evaluation of the peak factors as 
a function of the statistics of the wind pressure data. This transformation is rather versatile but limited 
to processes which are said to be in the monotonic region. For processes falling outside this domain, 
this paper describes an alternative which is based on the physics of the wind flow. First, it is shown, 
with a classical example of a flow involving corner vortices on a flat roof, that the pressure data 
which does not meet the monotonic criterion is in fact associated with a bimodal distribution. Then, 
the proposed approach is to decompose this data into the two governing modes (slow background 
turbulence and fast corner vortices) and apply the usual translation model to each of them. 

Keywords: peak factor – non Gaussianity – wind tunnel tests – low-rise building – monotone 
criterion 

1. Introduction 

This work focuses on the statistical analysis of wind pressures, involving significant non-
Gaussianity, in the scope of building roofs. Peak factor estimation is necessary for the prediction 
of wind loads and thus the design of structures. The precision of wind tunnel measurements is 
necessary to keep important information: high sampling frequency, fine tap spatial distribution, 
long samples. With the increasing of pressure sensors precision in terms of sampling frequency, 
local effects can be better captured; however the question can be raised about the relevance of very 
local effects, negligible in term of spatial and time scale compared to the entire structure.  

Many research works have been carried about the non-Gaussian statistics analysis of wind pressure 
[1, 2, 3, 4, 5]. Their purpose is to estimate peak factors, based on the translation process [6]. Peak 
factor can be estimated using the Hermite moment-based model [7] applied to the Gaussian peak 
factor of the classical peak factor model [8]. This Hermite moment-based approach relies on a 
transformation of a Gaussian into a non-Gaussian softening process (cubic translation) [4]. For 
many wind pressures, there is a good correlation between the peak factor 𝑔 and high-order statistics 
(skewness 𝛾ଷ and kurtosis 𝛾ସ).  

There exist also more advanced models, such as the modified Hermite model [9] or the revised 
Hermite model [10] which are able to deal with stronger non-Gaussianity. The former is quite 
heavier to solve due to a non-linear system; the latter requires conditions on 𝛾ଷ and 𝛾ସ. However, 
the Hermite moment-based model is less precise when pressures are significantly non-Gaussian. 
The cubic translation model requires the process to satisfy the monotone condition [11]. Peng [12] 
proposes a mapping of statistics in the ሺ𝛾ଷ, 𝛾ସሻ plane to reach the monotone condition by adjusting 
their value but the physical interpretation is less easy.  

Another kind of solution is a point-to-point distribution function mapping between Gaussian and 
non-Gaussian processes, assuming a Weibull or Gamma distribution [2]. This model allows to 
obtain an analytical evaluation of the peak factor but only in the case of a Weibull or Gamma 
distribution and is not general enough to handle multiple mode distributions. Indeed, wind pressure 
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on a low-rise building roof can be highly non-Gaussian and present different modes: e.g. the 
turbulent background and a component linked to the main flow behavior (corner vortices). By 
studying the probability density function (PDF), such modes can be highlighted, together with the 
analysis of higher rank properties such as the autocorrelation. An accurate separation of the modes 
makes it possible to select the process of interest in the tail of the distribution and to restore the 
good agreement between 𝑔 and ሺ𝛾ଷ, 𝛾ସሻ by satisfying the monotone condition. This is the option 
that is followed in our study. 

The main contribution of the paper is to propose a solution for the treatment of significantly non-
Gaussian pressure processes, thanks to a new way to separate the different contributions in the 
wind flow and to estimate peak factors based on long time wind pressure measurements. High-
order and rank statistics are studied, and instead of adjusting skewness and kurtosis through 
mapping, we suggest dealing with these processes by first de-mixing the wind pressure process, 
and then applying a cubic translation model to the tail component. By doing so, the peak factor 
predicted by the model (after de-mixing) is not only computable with the model but also in much 
better agreement with the peak factor obtained with statistical treatment of long data series. The 
general methodology that is proposed to decompose the wind pressure. The developed 
methodology will be illustrated with the analysis of wind pressure measurement on a square low-
rise building flat roof, with a 45° wind orientation but can be applied to other practical cases of 
wind around buildings that require an estimate of wind loads on areas. After understanding the 
kind of flow involved and basic pressure statistics, the de-mixing methodology is explained. Then, 
processes with bimodal distributions are simulated to deduce statistical parameters violating the 
monotone condition. A parallel between autocorrelation and probability distribution 
decomposition is applied to decompose the pressure into simple components. Finally, it is shown 
that usual peak factor formulations are sufficiently accurate to model extreme values. 

2. Case study 

The setup made by Blaise et al. [13] consists of a square plan-form low-rise building (sides of 45 
m and a height of 25 m), uniformly instrumented by 121 pressure taps in a quarter of its roof (see 
Figures 1 and 2), sampled at 𝑓௦ ൌ 500 Hz. The model is placed at an incidence of 45° in the 
atmospheric boundary layer test section of the wind tunnel (WT) of the University of Liege. This 
direction is fixed to obtain a symmetry in the complex nature of the corner vortices developed at 
the edges [14]. 

 

Fig. 1 - (a) Model inside the WT, (b) location of pressure taps on the model (wind direction fixed at 45°). 

The atmospheric boundary layer test section creates a turbulent wind of category III according to 
the Eurocode [15], with 𝑧଴ ൌ 0.3 m and 𝑧௠௜௡ ൌ 5 m. The mean velocity (Equation (1)) and 
turbulence intensity (Equation (2)) profiles are presented in Figure 2. 

𝑈ஶሺ𝑧ሻ ൌ 𝑈௥௘௙𝑘௥ lnሺ𝑧/𝑧଴ሻ , 𝑘௥ ൌ 0.19ሺ20𝑧଴ሻ଴.଴଻, (1) 

𝐼௨ሺ𝑧ሻ ൌ
1

ln ቀ 𝑧
𝑧଴

ቁ
. 

(2) 

Pressure taps are linked to the scanner using pneumatic connection (vinyl tubes) of internal diameter 
of 1.32 mm and length 600 mm. The static pressure is well measured but unsteady components have 
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to be dynamically corrected, thanks to the theoretical formulation of Bergh and Tijdeman [16] and 
the experimental apparatus of Rigo [17]. Figure 3 presents the transfer function, in amplitude and 
phase, necessary to correct measurements, until the sampling frequency of 500 Hz. 

 

Fig. 2 - (a) Mean velocity 𝑈ஶሺ𝑧ሻ and (b) turbulence intensity 𝐼௨ሺ𝑧ሻ profiles of the atmospheric boundary layer: 
measurements and comparison with suburban category III terrain, from Eurocode (1991), (Blaise et al. (2017)). 

 

Fig. 3 - Transfer function of the pressure tubes, in amplitude and phase of corrected pressure as a function of the 
frequency [16, 17] 

2.1. WT results: First rank statistics 

The geometric scaling is 𝜆௅ ൌ 1/100. The Reynolds condition would require a velocity scaling of 
𝜆௎ ൌ 𝜆௅

ିଵ ൌ 100, which would impose WT speed of about 1000 m/s, impossible. The Reynolds 
dependency is more critical for smooth and mainly circular shapes such as cylinder or sphere. 
When the flow is completely separated and turbulent, the Strouhal scaling is preferred. Because of 
WT performances, the velocity scaling is chosen as 𝜆௎ ൌ 1/3.5. The Strouhal condition imposes 

𝜆் ൌ ఒಽ

ఒೆ
ൌ  1/28.6 (time). 
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Fig. 4 - Map of (a) mean, (b) standard deviation, (c) skewness and (d) kurtosis (excess). 

Every measurement is converted in full scale. A total of 13 h of measurement has been taken in 
the WT, corresponding to 371.8 h full scale. This long information allows to compute precise PDF 
tail, necessary to study the extreme values. In the following, statistics are presented in a non-
dimensional way: position ሺ𝜉, 𝜂ሻ ൌ ሺ𝑥/𝐿, 𝑦/𝐿ሻ and pressure coefficient with Equation (3). 

𝐶௣ ൌ
𝑝 െ 𝑝ஶ

1
2 𝜌𝑈ஶ

ଶ
 (3)

The Reynolds number of the WT model is 6.8 ൈ 10ହ. The flow around this low-rise building is 
characterized by corner vortices, that roll in a cone shape. The pressure is mainly negative because 
of the separated nature of the flow (𝜇൫𝐶௣൯ in Figure 4(a)) and is the most negative where it starts 
to separate, just after the edges, on the corner. The two cones on both corners have a main axis, 
recognizable by the ridgelines of the standard deviation of the pressure coefficient 𝜎൫𝐶௣൯, in Figure 
4(b). The non-Gaussianity happens in the corner vortices boundaries, where ห𝛾ଷ൫𝐶௣൯ห and ห𝛾௘൫𝐶௣൯ห 
are the highest. For a Gaussian process, 𝛾ଷ ൌ 0 and 𝛾ସ ൌ 3. The excess 𝛾௘ ൌ 𝛾ସ െ 3 ൌ 0. On 
Figure 4, a lower right triangle appears systematically, with low statistics values. This region is 
mainly Gaussian, with a low dispersion and mean pressure value. Physically, the flow in this region 
is the case of a simple turbulent flow on a flat plate. This region is not studied here, since it has 
smaller extreme values and represents less interest compared to the complex flow in corner 
vortices. As suggested by Kawai and Nishimura [14], there is one main vortex at the corner, but a 
secondary small one develops just next to the edge, below the main vortex. Pressure taps in this 
setup were not close enough to the edge to capture well this secondary vortex. Nevertheless, in 
Figure 4, 𝛾ଷ൫𝐶௣൯ increases just next to the edge, at ሺ𝜉, 𝜂ሻ ൌ ሺ0.05,0.4ሻ, suggesting the presence of 
another vortex. By looking at skewness and kurtosis values, each pressure distribution in the corner 
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vortices has a negative skewness (negative extreme pressure events) and a positive excess kurtosis 
(called softening process, the PDF has a flatter shape compared to a Gaussian process). Figure 5 
shows a typical pressure coefficient signal (at tap 4): with local negative extreme pressures (𝛾ଷ ൏
0) and wide range of distributed values, no concentrated values around the mean. Moreover, the 
two modes are identifiable with two principal levels at around 𝐶௣ ൌ െ0.9 and െ2.1. 

 
Fig. 5 - Pressure signal at tap 4 and PDF (log-scale). 

Figure 6 allows to have a quick qualitative view of the PDF. Each PDF is represented in log-scale 
at all 121 pressure tap locations. The same scaling is used to represent them and have a quick 
comparative view of the dispersion and asymmetry of PDFs. Those in the corner vortices are 
highly non-Gaussian and two modes (two bumps) are clearly identifiable. This motivates the 
discussion of Section 4.  

 

Fig. 6 - Map of all PDFs. 

2.2. Extreme values 

As done for pressure coefficient signal, it is possible to compute statistics and draw probability 
density functions for extreme (peak) pressures. Based on time series, the peak value of 𝑪𝒑 over a 
time window 𝑻 (conventionally 10 min full-scale) is taken. This operation is repeated for the whole 
signal so that the peak pressure is not unique and has a distribution. Figure 7 shows PDF of extreme 
pressures for taps 56 to 60, which cross the corner vortices region: (i) close to the edge (56), the 
pressure is significantly negative, (ii) in the corner vortices region (from tap 57 to 59), the extreme 
distribution is wider, (iii) after the corner vortices, where only background turbulence remains, the 
peak pressure is less negative and its distribution narrow.  
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Fig. 7 – PDF of peak pressure coefficient (10 min windowing) in corner vortices region.  

The peak factor is computed as 𝑔 ൌ max
்

ቚ
஼೛ିఓ

ఙ
ቚ. Figure 8(a) shows a map of the mean value of 

peak factor of the pressure coefficient 𝜇௚൫𝐶௣൯, the highest values happening were the vortex cone 
touches the roof, similarly to 𝛾ଷ and 𝛾௘.  

 

Fig. 8 - Map of peak factor (a) mean and (b) standard deviation.  

2.2. Cubic translation and peak factor estimation 

A usual way to estimate peak factors from pressure measurement uses cubic translation from a 
Gaussian process 𝑢 to a non-Gaussian (softening) one 𝑥 [7]: the Hermite moment-based model, 

𝑥 ൌ 𝜅 ൥𝑢 ൅ ෍ ℎ௡𝐻௡ିଵሺ𝑢ሻ

ஶ

௡ୀଷ

൩ ൎ 𝜅ሾ𝑢 ൅ ℎଷሺ𝑢ଶ െ 1ሻ ൅ ℎସሺ𝑢ଷ െ 3𝑢ሻሿ (4)

where 𝜅 is a scale factor that ensures 𝑥 has unit variance and 𝐻௡ is the 𝑛௧௛ Hermite polynomial. A 
softening process is characterized by a wider tail in the distribution compared to a Gaussian one 
(i.e. with 𝛾௘ ൐ 0).  Most of wind pressure measured on buildings and roofs are softening processes. 
The mean peak factor is computed by [1], 

𝑔௡ீ ൌ 𝜇௚ு௘௥
ൌ 𝜅 ቊ൬𝛽 ൅

𝛾
𝛽

൰ ൅ ℎଷ ൤𝛽ଶ ൅ 2𝛾 െ 1 ൅
1.98
𝛽ଶ ൨

൅ ℎସ ቈ𝛽ଷ ൅ 3𝛽ሺ𝛾 െ 1ሻ ൅
3
𝛽

ቆ
𝜋ଶ

6
െ 𝛾 ൅ 𝛾ଶቇ ൅

5.44
𝛽ଷ ቉ቋ 

(5)

where ℎଷ, ℎସ, 𝜅 are coefficients of moment-based Hermite model [7], the Euler’s constant is 𝛾 ൎ
0.5772, and 
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𝛽 ൌ ඥ2 lnሺ𝜈଴𝑇ሻ ,     𝜈଴ ൌ ට
௠మ

௠బ
, 𝑚௜ ൌ ׬ 𝑛௜𝑆௬ሺ𝑛ሻ𝑑𝑛, ℎଷ ൌ ఊయ

ସାଶඥଵାଵ.ହఊర
,

ஶ
଴

     ℎସ ൌ ඥଵାଵ.ହఊరିଵ

ଵ଼
, 𝜅 ൌ ଵ

ටଵାଶ௛య
మା଺௛ర

మ
  

 (6)

where 𝜈଴ is the mean zero upcrossing rate of process 𝑦 (standardized non-Gaussian process 
obtained from a non-Gaussian process 𝑥, 𝑦 ൌ ሺ𝑥 െ 𝐸ሾ𝑥ሿሻ/𝜎௫), 𝑇 is the duration, 𝑚௜ is the 𝑖௧௛ 
spectral moment of 𝑦, 𝑆௬ሺ𝑛ሻ is the one-sided power spectral density of 𝑦, 𝑛 is the frequency in 
Hz. The validity range of the application of Hermite model is defined in a monotonic region, i.e. 

corresponding to a monotone transformation of 𝑥ሺ𝑢ሻ, requiring 
ௗ௫

ௗ௨
൐ 0, satisfying [4, 11], 

𝛾௘ ൒ ሺ1.25𝛾ଷሻଶ (7)

This boundary is shown in Figure 9(a), where pressure taps in the lower region are not eligible. 
These taps a represented on the roof in Figure 9(b), precisely in the corner vortices region.  

   

Fig. 9 - (a) Skewness and kurtosis pairs of all taps ( taps inside the limit and  outside), with the monotone limit 
(solid line), (b) Taps outside the limit. 

Choi [18] studied the different regions and monotone limits of Hermite-based model (for softening 
and hardening processes). Strong negative wind pressures measured on buildings and roofs are 
mostly softening processes. In our case, taps falling outside the monotone limit are in region III of 
Figure 10(a). Choi [18] proposes to overcome this limit by taking a softening-hardening-softening 
transformation (Figure 10(b)) in order to keep an increasing (monotone) transformation 𝑥ሺ𝑢ሻ and 
cross the decreasing part of the softening process. This technique requires a hybrid model 
depending on the value of 𝑥 and deform the nature of the process.  

 

Fig. 10 - (a) Regions of Hermite model applicability, (b) Region III of Fig. 10a: softening-hardening-softening 
truncation for monotone transformation 𝑥ሺ𝑢ሻ (Choi (2010)).  
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Another methodology to deal with these processes is proposed in the next section, based on 
physical interpretation in the case of bimodal processes. 

For processes inside the monotone region, Yang [19] computes bias and sampling errors of peak 
factor estimation based on translation process models. Davenport [8] suggests that Gaussian 
processes are assumed to have a small variability of the extreme distribution. On contrary, non-
Gaussian processes exhibit a large variability in extreme (for either positive or negative skewness). 
Yang [19] suggested to compute the variance of the non-Gaussian peak factor 𝑔௡ீ , to take into 
account the sampling errors of estimated skewness and kurtosis (because of a limited length of 
data) that leads to errors in the translation model function and thus peak factor estimation. 

Varሺ𝑔௡ீሻ ൌ 𝜎௚ு௘௥
ଶ ൌ ൬

𝜕𝑔
𝜕𝛾ଷ

൰
ଶ

Varሺγଷሻ ൅ ൬
𝜕𝑔
𝜕𝛾ସ

൰
ଶ

Varሺγସሻ ൅ 2
𝜕𝑔
𝜕𝛾ଷ

𝜕𝑔
𝜕𝛾ସ

Covሺ𝛾ଷ, 𝛾ସሻ (8)

Kareem and Zhao (2011) estimated the variance of the peak factor for a softening process 
(related to Equation (5)), 

𝜎௚ு௘௥
ଶ ≅ 𝜅ଶ ቊ

𝜋ଶ

6𝛽ଶ ൅ 6.58ℎଷ
ଶ ൅ 9ℎସ

ଶ ൤1.64𝛽ଶ ൅
12.69

𝛽ଶ ൅ 5.32൨ ൅ 6.58
ℎଷ

𝛽

൅ 6ℎସ ൤
2.66
𝛽ଶ ൅ 1.64൨ ൅ 12 ℎଷℎସ ൤1.64𝛽 ൅

2.66
𝛽

൨ቋ 

(9)

3. Methodology: de-mixing and adaptation to the cubic model 

Pressure processes in the corner vortices region are highly non-Gaussian and bimodal. Based on 
this physical interpretation, instead of using the whole PDF in a non-monotone transformation, we 
propose to use only the mode of interest in the cubic model: the one containing the tail. Each PDF 
has thus first to be decomposed.  

Cook [20] proposed to model the wind pressure data as a sum of several components, the Skew 
Gaussian Exponential Mixture Model (SGEMM). Inspired by this model, we suggest modeling 
the wind pressure as a mixture of two skew-Gaussian (SG) distributions. The skew-gaussian (SG) 
is given by 

𝑝ௌீሺ𝑥ሻ ൌ 2𝜙 ൬
𝑥 െ 𝜉

𝜔
൰ Φ ൬𝛼

𝑥 െ 𝜉
𝜔

൰ (10)

where 𝜙 and Φ are the standard gaussian PDF and cumulative density distribution (CDF), 𝜉 a 
location parameter, 𝜔 a scale parameter and 𝛼 a skewness parameter. It is also possible to use 
another distribution, the skew-hyperbolic secant, to fit only the tail but we keep only two SG 
distributions thanks to the physical interpretation: (i) mode 1 corresponding to the turbulent 
background flow (as the one present on the roof region without vortex) and (ii) mode 2 to the 
corner vortices fluctuation (separated flow). The resulting PDF is the weighted combination of 
those distributions, 

𝑃ሺ𝑥ሻ ൌ 𝑤ଵ𝑝ଵሺ𝑥ሻ ൅ 𝑤ଶ𝑝ଶሺ𝑥ሻ (11) 

where 𝑤௜ are weighted parameters. Standard adjustment methods would recommend proceeding 
to a non-linear least-squares fitting to find appropriate estimates of 8 model parameters, under the 
constraint 𝑤ଵ ൅ 𝑤ଶ ൌ 1. In the case of a bi-modal PDF, the mean and the variance of the total PDF 
can be linked to those of its components 1 and 2, 

𝜇 ൌ 𝑤ଵ𝜇ଵ ൅ 𝑤ଶ𝜇ଶ, with 𝑤ଵ ൅ 𝑤ଶ ൌ 1 (12)
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𝜎ଶ ൌ 𝑤ଵ𝜎ଵ
ଶ ൅ 𝑤ଶ𝜎ଶ

ଶ ൅ 𝑤ଵ𝑤ଶሺ𝜇ଵ െ 𝜇ଶሻଶ (13)

When bumps are clearly identifiable, initial guesses for the location and scale parameters ሺ𝜉, 𝜔ሻ 
are easy to choose and the fitting converges quickly.  

Standard adjustment methods work well when the modes are easy to identify but can be ill-
conditioned in some limit cases (e.g. same average and/or standard deviation for two modes). In 
this case, a more robust method is necessary. The idea comes from a physical interpretation of the 
modes from a timescale point of view. Close to edges of buildings, two phenomena are involved 
in the pressure, a mixture between a slow background turbulence (mode 1) and a fast shedding 
(mode 2), which is visible in the autocorrelation function of the mixed process as a kink in the 
shape. The autocorrelation is defined by: 

𝑅൫𝑡ଵ,𝑡ଶ൯ ൌ ඵ ሺ𝑥ଵ െ 𝜇ሻሺ𝑥ଶ െ 𝜇ሻ𝑃௫ሺ𝑥ଵ, 𝑥ଶ, 𝑡ଵ, 𝑡ଶሻd𝑥ଵd𝑥ଶ

ାஶ

ିஶ

 
(14)

where 𝑃௫ሺ𝑥ଵ, 𝑥ଶ, 𝑡ଵ, 𝑡ଶሻ is the probability to have the pressure coefficient 𝑥 ൌ 𝑥ଵ at 𝑡ଵ and 𝑥 ൌ 𝑥ଶ 
at 𝑡ଶ. In a mixture model, the random variable is either in mode 1 or mode 2. The pressure 
coefficient can be represented by, 

𝑐௣ሺ𝑡ሻ ൌ 𝑤ଵሺ𝑡ሻ𝑐௣,ଵሺ𝑡ሻ ൅ 𝑤ଶሺ𝑡ሻ𝑐௣,ଶሺ𝑡ሻ (15)

where 𝑤௜ሺ𝑡ሻ = 1 if 𝑐௣ is in mode 1, and 0 otherwise. The weight has thus also a certain dynamics, 

and probability distribution 𝑃௪భ
ሺ𝑖, 𝑗, 𝑡ଵ, 𝑡ଶሻ where 𝑖 at time 𝑡ଵ and 𝑗 at time 𝑡ଶ are equal to 0 or 1. 

We have 𝑃௪భ
ሺ1,0, 𝑡ଵ, 𝑡ଶሻ ൌ 𝑃௪మ

ሺ0,1, 𝑡ଵ, 𝑡ଶሻ. The signal being stationary, we can rewrite the 

autocorrelation depending on 𝜏 ൌ 𝑡ଵ െ 𝑡ଶ, 

𝑅ሺ𝜏ሻ ൌ 𝑃௪భ
ሺ1,1, 𝜏ሻ𝑅ଵሺ𝜏ሻ ൅ 𝑃௪భ

ሺ0,0, 𝜏ሻ𝑅ଶሺ𝜏ሻ ൅ 𝑃௪భ
ሺ1,1, 𝜏ሻሺ𝜇ଵ

ଶ െ 2𝜇𝜇ଵሻ

൅ 𝑃௪భ
ሺ0,0, 𝜏ሻሺ𝜇ଶ

ଶ െ 2𝜇𝜇ଶሻ ൅ 2𝑃௪భ
ሺ1,0, 𝜏ሻሺ𝜇ଵ𝜇ଶ

െ 𝜇ሺ𝜇ଵ൅𝜇ଶሻሻ ൅ 𝜇ଶ 

(16)

The general expression of the autocorrelation is thus based on the sum of two decreasing 
exponentials, the autocorrelation of each mode, 

𝑅௜ሺ𝜏ሻ ൌ 𝜎௜
ଶ𝑒ିఛ/ఛ೔ (17)

where 𝜏௜ is the characteristic time of mode 𝑖 (𝑖 ൌ 1, 2). Two limit cases are interesting to analyze: 
lim
ఛ→଴

𝑅ሺ𝜏ሻ ൌ 𝑤ഥଵ𝑅ଵሺ0ሻ ൅ 𝑤ഥଶ𝑅ଶሺ0ሻ ൅ 𝑤ഥଵ𝑤ഥଶሺ𝜇ଵ െ 𝜇ଶሻଶ (18)

where 𝑤ഥ௜ is the mean of 𝑤௜ሺ𝑡ሻ. Equation 15 is consistent with Equation 12. 

lim
ఛ→ஶ

𝑅ሺ𝜏ሻ ൌ 𝑤ഥଵ
ଶ𝑅ଵሺ𝜏 → ∞ሻ ൅ 𝑤ഥଶ

ଶ𝑅ଶሺ𝜏 → ∞ሻ ൌ 0 (19)

It is thus possible to fit the autocorrelation as a sum of two decreasing exponentials. When the 
mean pressures in both modes are close to each other (standard methods are ill-conditioned), the 
third term in Equation (15) is negligible and by identifying the two components in the 
autocorrelation function, it is possible to extract at 𝜏 ൌ 0 the weighted variance of each mode and 
use them as an additional constraint in the fitting. Figure 11 summarizes the autocorrelation-aided 
de-mixing methodology in two modes. Once the bi-modal distribution is properly de-mixed, the 
peak factor estimation is performed using the model of Kareem and Zhao [1] on Mode 2 only (the 
one associated to the most negative pressures). 
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Fig. 11 - Autocorrelation-aided de-mixing methodology. 

4. Results 

Figure 12 shows the decomposition in modes of the PDF at pressure tap 4. The two modes are 
easy to identify by looking at the two bumps in the PDF (Figure 12(a)). Figure 12(b) show that the 
de-mixing algorithm and modes identification is not susceptible to the duration of measurement, 
only the tail is limited to probability of 10ିସ. While the computation of peak factor directly from 
data requires long measurements, the peak factor estimation from de-mixing is quicker. Figure 
13(a) show the PDF at tap 11, modes are almost superimposed and less easy to identify. The 
autocorrelation (Figure 13(b)) is decomposed in two modes and the weighted variance of each 
mode is extracted from the value at the origin to constrain the PDF fitting.  

  

Fig. 12 – Tap 4: (a) PDF decomposition in mode 1, 2, tail (log-scale) and (b) influence of duration measurement. 
 

   

 
Fig. 13 – Tap 11: (a) PDF decomposition in mode 1, 2, tail (log-scale) and (c) autocorrelation decomposition in 

modes 1 and 2. 

(a)

(a) (b)
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In the case of bimodal distribution, even the sum of two nearly Gaussian can be highly non-
Gaussian and does not meet the criterion. It is possible to study that by simulating non-Gaussian 
bimodal distribution using Ornstein-Uhlenbeck processes. This is done in Figure 14, where the 
skewness-kurtosis ((a) and (c)) map is represented with the monotone limit. The two modes are 
generated separately with a given mean and standard deviation. The weight (transition) between 
both modes 𝑤ଵሺ𝑡ሻ is also generated randomly with 0 or 1 values, such that the resultant is 
computed using Equation (14).  

In parallel with 𝛾ଷ െ 𝛾௘ map results, the associated density distributions with simulated signals is 
represented in (b) and (d). Characteristics of mode 1 are kept (mean and standard deviation, 
physically associated to the turbulence) and the mean of mode 2 is changed in (b) (more negative, 
with a constant standard deviation). The higher the mean difference between both modes, the more 
likely the skewness increases, and the criterion is no more met. This can also be observed in (d), 
where the mean is kept and the standard deviation of mode 2 is increased. This is clearly in 
accordance with the characteristics of pressure processes present is the corner vortices and justify 
the de-mixing of them. 

 

Fig. 14 – Simulation of bimodal processes: Regions of Hermite model applicability in skewness-kurtosis map by 
changing (a) the mean of mode 2 and (c) its variance. Corresponding density distributions (b) and (d), drawn for 

both modes 𝑝ଵ, 𝑝ଶ and the resultant (weighted sum) 𝑃. 

Figure 15 compares results (a) before and (b) after de-mixing: the taps outside the monotone limit 
(before de-mixing) are used in the de-mixing methodology and the skewness-kurtosis map of each 
mode is reproduced. The monotone criterion is fulfilled for all taps after de-mixing: (i) Mode 1 
represents the background turbulence and is almost Gaussian (low 𝛾ଷ and 𝛾௘) while (ii) Mode 2 
associated to corner vortices and peak pressure is more non-Gaussian but still inside the monotone 
region. Figure 15(c) shows the peak factor estimation compared to the measured one without and 
with de-mixing. Thanks to the decomposition, the statistics used from mode 2 allows to satisfy the 
monotone limit and improve the peak factor estimation. 
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                    (c) 

 

 

 

 

 

Fig. 15 – De-mixing methodology results: (a) skewness-kurtosis monotone region (a) before de-mixing ( taps 
inside the limit and  outside) and (b) after de-mixing of taps that were outside in (a) for the two modes,  

(c) peak factor estimation improvement. 

5. Conclusions 

In conclusion, in order to correct peak factor estimations based on cubic translation model, strong 
non-Gaussian pressure processes that are not inside the monotonic region have been corrected by 
decomposing their PDF into two competing sources of wind pressure, associated to different 
known physical phenomena: (1) the fast shedding in separated regions (corner vortices) and (2) 
the slow background turbulence. Mode 2 is responsible for large negative peaks and is therefore 
the relevant one to estimate peak factors using Hermite moment-based model. Doing so provides 
a much better agreement with long time series. 
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