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Abstract: In recent years, the pounding effect during earthquake is a subject of high significance 
for structural engineers. In this paper, a state space formulation of the equation of motion is used in 
a MATLAB code. The pounding forces are calculated using nonlinear viscoelastic impact element. 
The numerical study is performed on SDOF structures subjected by 1940 EL-Centro and 1977 
Vrancea N-S recording. While most of the studies available in the literature are related to Newmark 
implicit time integration method, in this study the equations of motion in state space form are direct 
integrated. The time domain is chosen instead of the complex one in order to catch the nonlinear 
behavior of the structures. The physical nonlinear behavior of the structures is modeled according to 
the Force Analogy Method. The coupling of the Force Analogy Method with the state space approach 
conducts to an explicit time integration method. Consequently, the collision is easily checked and the 
pounding forces are taken into account into the equation of motion in an easier manner than in an 
implicit integration method. A comparison with available data in the literature is presented.  
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1. Introduction  

During seismic actions a new problem arises in the case of tall buildings in urban areas, namely 
pounding of adjacent buildings. This phenomenon consists of collisions at different levels due 
the different dynamic characteristics of the adjacent structures. Pounding failure of structures is 
illustrated in many papers. The work of Dhakal et. al. [1] reveals the pounding damages 
observed in the 2011 Christchurch earthquake. Also, the recent work of Shrestha and Hao [2] 
illustrate the pounding damages observed in the 2015 Gorkha Earthquake.  

The common procedure for pounding phenomenon idealization involves using single degree of 
freedom (SDOF) or multi degree of freedom (MDOF) models. In these models the mass of each 
story is considered lumped. The study of Anagnostopoulos [3] is one of the first papers using 
stick models. Recent work of Mate et al. [4],[5],[10] and the studies of Jankowski [6-9] are also 
performed on stick models. The time integration method used in these studies is implicit. The 
previous study of Nica and Pricopie [11] presents an explicit time integration methodology based 
on central finite difference, and compares the data obtained using the stereomechanics approach 
with the ones from the nonlinear viscoelastic impact element.  

In this paper, two idealized SDOF structures are acted by El-Centro recording and their non-
linear response is obtained using a direct integration method of the equations in the state-space 
form, i.e. an explicit code developed in MATLAB. The time domain is chosen instead of the 
complex one in order to catch the physical nonlinear behavior of the structures. The Force 
Analogy Method is chosen to represent the plastic displacement.  The pounding forces between 
the two SDOF structures are evaluated using the nonlinear viscoelastic impact element model. 
The numerical data is compared in terms displacement time-history, pounding forces, collision 
time and total transferred momentum.  

2. State Space formulation: Nonlinear seismic response of the reference SDOF structures 

In this chapter the state space formulation is presented. The seismic response of the two 
reference structures is obtained, in order to validate the results. First, the two structures are 
considered independent, namely no contact arises between the structures.  
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2.1 State Space formulation of the equations of motion 

The state space formulation is a mathematical model of a physical system. The input, output and 
state variables are related by first order differential equations. Thus, the state space is a euclidian 
space in which the state variables are the variables on the axes. A vector within that space 
represents the state of the system.  

The equation of motion describing the structures is a second order differential equation. Equation 
(1) represents the equation of motion for a SDOF system, where , ,  represent the mass, 
damping coefficient and stiffness, , ,  represent the displacement, velocity and acceleration, 
and  represent the exterior loads. In the state space form, the number of states is the equal to the 
order of the differential equation. Denote by  the state vector, containing the displacement  
and the velocity 	(2). Introducing (2) in (1), one obtains the acceleration as a function of  and 
the exterior loads  (3). Also the second order differential equation (1) is transformed in two first 
order differential equations (4).  

 (1) 

↔  (2) 

	 ↔ ↔	

 

(3) 

0 I 0 ↔  (4) 

The traditional notation of the state space representation is through the matrices , , ,  (5): 

Σ , , , , where 

0 I , 0 , ,

 

or		
0 I 0

 

(5) 

Equation (4) is a first order linear matrix equation, also called the continous state spate equation 
of motion. Thus, in general, the solution for any , where  represents the time when the 
initial velocity and displacement are given, can be written as [13]: 

→ for 0 → 

 

(6) 

In the analysis of linear structures subjected to arbitrary dynamic loads the complex domain 
representation generally leads to the most convenient solution. It must be emphasized that since 
the principle of superposition is employed in the derivation of these techniques, they may be 
employed only with linear systems, i.e. for the systems for which the properties , ,  remain 
constant during the response. In the case of structures subjected to earthquake motion, severe 
damages (nonlinearity) occur. This is the reason why the time domain is employed generally in 
the nonlinear structural analysis. In order to use the step-by-step time integration procedures, the 
displacement vector is regarded as a combination of the elastic and plastic displacement.  
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2.2 Nonlinear response of the reference SDOF structures 

The Force Analogy Method presented in [13],[14] is used in this study. In this method, the 
resisting force term in the equation of motion ( , which is related to the physical nonlinearity 
of the equation, is regarded as the difference between the resisting forces coresponding to a total 
elastic response  and the forces producing a plastic displacement	 " . Thus, the initial 
stiffness is kept constant, and the displacement vector is split in two components, according to 
equation (8):  

,  
"  
,  

(7)

"  (8)

Changing the displacement, not the stiffness, is the basic concept of the force analogy method. 
Figure 1 illustrates the concept of the force analogy method, and introduces the member force 
recovery matrix  and member restoring force matrix [13]. The plastic rotation at the base of 
the cantilever beam is denoted by	 " and the goal is to find a relation between the inelastic  
moment " due to inelastic displacement and ". To represent the permanent deformation " as 
a force one will imagine that a force is applied to restore the structural displacement back to its 
original position. 

Fig 1 - a) Force Analogy Method for SDOF [14] b) Moment at different level of structural displacement [13]   

"
3

"		
" " 3

" ↔

3
 

(9)

	
3

" ↔
3

 
(10)

Equations (9) and (10) will be used in eq. (8) written in state space form (11). With the notation 
from eq. (2), one will obtain eq. (11) in the same manner as eq. (4) was obtained.The solution (6) 
is further used in (12) and discretized with ∆  to obtain eq. (13). For , 
using Delta forcing function to represent the ground acceleration  and inelastic displacement 
" , one will obtain eq. (15):   

0 I 0
1

0 " ↔ " (11) 
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"  (12) 

∆ "  (13) 

∆  

" " ∆  
(14) 

∆ ∆ ∆ ∆ " ∆  (15) 

Note that giving all the information at step k, both the displacement and velocity at step k+1 is 
calculated, thus the time integration method is said to be explicit. The problem of the matrix 
exponential is overcome by the expm function available in MATLAB, which uses a scaling a 
squaring technique to accurately calculate the coefficient ∆  in eq. (15). In each time step the 
inelastic displacement "  will be calculated and the information will be used to calculate 

. Figure 2 gives a schematic view of the explicit time integration argorithm implemented. 

 
Fig 2 - Explicit time integration used to calculate the structural response 

By comparison, refference [15] uses the Force Analogy Method to obtain the structural response 
of different structural patterns combined with the Wilson-Teta integration method. The 
integration method being implicit, iterations are required in each time step to solve simultaneosly 
both the equation of motion and the specific nonlinear inequality M t M t .  

 
Fig 3 - Explicit time integration used to calculate the structural response 

The implicit time integration algorithm used in [15] is given schematically in fig. 3. Note that 
once the pounding forces are introduced in the equation of motion, more iterations will be 
required, because the pounding force, the total displacement and the inelastic displacement will 
depend one to the other. This is the main reason why an explicit time integration is preffered in 
this paer instead of an implicit one. Also, the two relations, namely the equation of motion and 
the bending moment inequality specific for nonlinear problems are decoupled and solved one by 
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one, according to Fig.2 . The mathematical explanation of the reason why the bending moment 
inequality is decoupled of the equation of motion is underlaying in equation (14), where the 
inelastic displacement "	is aproximated using the backward value. The physical explanation of 
this issue can be understood judging that the inelastic displacement requires a greater time to be 
exhibited than the time step, i.e. the inelastic wave velocity is smaller than the loading velocity. 

Figure 1b gives the calculation procedure for the bending moment, and detailed in equation (16): 

" → "  (16) 

The decomposition depicted in Figure 1a gives the general equation that relates the plastic 
rotation " to the plastic displacement ": 

↔ (t)=Ku ↔ t =K-1KP θ → 

" "  
(17) 

In order to compare the results including the pounding forces, first an analysis for two 
independent structures is performed. The data for the two structures data is tabulated in table 1. 
The values in table 1 are consistent with the data available in [9] and [11]. Proportional damping 
(Rayleigh) to the mass and stiffness is used.  

Table 1 

Dynamic characteristics of the reference structures 

 Reference 
weak 
structure (a) 

Reference 
stiff 
structure (b) 

 

 

 

 

 

 

 

             (a)             (b) 

Mass (kg) 75000 3000000 

Stiffness coefficient (kN/m) 2056 1316000 

Natural period (s) 1.2 0.3 

Damping ratio 0.05 0.05 

Yield force (kN) 70 4000 

Yield deformation (m) 0.034 0.003 

The first 10 s of the NS component of El Centro recording is used in this study, and the 
recording is plotted in Fig. 4. The nonlinear time histories for both structures are plotted in Fig. 
5. Figures 6 and 7 illustrate the comparison of the data obtained by state space approach  to 
another explicit solver based on central difference method [11]. The numerical values of the 
displacement time-history are tabulated in Table 2 presented in the appendix for comparison 
reasons. The values presented are obtained for timestep ∆ 0.005 . 

 

Fig. 4 - First 10s of  NS component of El Centro Recording used in this paper  
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Fig.5 - Nonlinear time histories under the first 10 s of the NS component 
of the El Centro recording for both SDOF’s 

 

Fig.6 - Nonlinear time histories for the stiff SDOF  

 

Fig.7 - Nonlinear time histories for the weak SDOF 

3. Structural pounding between two adjacent structures 

In this chapter the nonlinear viscoelastic impact element is employed and the values are 
compared with the data presented in [11]. The refference data in [11] is obtained with 
stereomechanics aproach as well as the nonlinear viscoleastic impact element, but with another 
time integration method, i.e. the finite central difference method. The two structures are 
considered to be in the close proximity, i.e a gap distance equal to 3 cm is used, as it was used in 
[9]. Again, the major difference is the time integration method – in reference [9] the Newmark 
implicit time integration is used - and the comparison with the stereomechanics approach. 

Stiff SDOF 

Weak SDOF 

15 cm gap 
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Not only the mass, but also on the surface geometry, material properties, prior impact velocities 
and material history influence the pounding force time history [9]. Table 3 summarizes the 
pounding forces during approach period  and restitution period . The deformation of 
colliding structural elements is represented by . 

Table 3 

Expression of the pounding forces in the nonlinear viscoelastic model [9] 

 

 

| |  

.  

 
 
 

Approach period 

 

. / .  

 
 
 
 

Restitution period 

The pounding force  obtained using the relations from table 3 is added to equation (8), 
obtaining equation (18): 

"  (18) 

Further, the state space representatin is employed, and equation (11) becomes (19). Equation 
(20) is the solution of (19). Equation (21) is the representation of the pounding force with Delta 
forcing function. Further, using equations (21) and (15), one will obtain the solution in the time 
domain as a explicit recursive equation (22): 

0 I 0
1

0 " 0 ↔ 

"  

(19) 

" 	 (20) 

∆  (21) 

∆ ∆ ∆ ∆ " ∆ ∆ ∆  (22) 

With the calcultated displacement  the check of the collision is performed and if it exist, 
addtitional forces are calculated. The schematic representation of the explicit time integration 
method is depicted in Fig. 8a. In each time step both the inelastic displacement is checked and 
calculated and the collision check is performed. The values obtained in each step are further used 
in the following step.  

Figure 8b shows a schematic representation of what operations an implicit time integration method 
would require in each step. The iterations performed would result in a less computational efficiency 
compared to an explicit time integration method. One such example is the algorithm proposed in 
[16], where a smaller time step is chosen compared to the initial timestep when collision is detected, 
i.e. a trial is performed in each timestep to estimate whether a collision would exist or no in that step, 
and if exist the timestep is lowered. A sub-iteration is thus proposed and performed in [16] if the 
collision is detected, in order to obtain the exact collision time. 

̅ 
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Fig. 8a - Explicit time integration method developed in this paper to account for structural pounding 

 

Fig. 8b - Schematic representation of an implicit time integration to account for structural pounding 

Fig. 9 illustrates the displacement time-history of the two structures for the 3 cm gap considered, 
while in the right side of the time-history representation the displacement values are given at 
different time intervals. 

 

 

Fig.9 - Nonlinear time histories under the first 10 s of the NS 
component of the El Centro recording for both SDOF’s, in the case of 

structural pounding. 

Time 
(s) 

State Space Formulation 
Nonlinear response (m) 

Weak 
SDOF Stiff SDOF 

0 0 0 
1 6.15E-05 -0.00032 
2 0.036726 0.009164 
3 -0.03125 -0.01408 
4 -0.04066 -0.0181 
5 -0.07799 -0.01979 
6 -0.11626 -0.00346 
7 -0.08254 -0.00712 
8 -0.08167 -0.00119 
9 -0.07535 -8.09E-05 

10 -0.08783 -0.0051 
11 -0.08548 -0.00089 
12 -0.0856 -0.002 
13 -0.08696 -0.00262 
14 -0.08788 -0.00193 

15 -0.08781 -0.00214 

Stiff SDOF 

3 cm gap 

Weak SDOF 
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Figure 10 illustrates the pounding force time history. Two collisions are detected and the values 
of the pounding forces are tabulated. The transferred momentum, calculated as the area under the 
impact forces time history, is ,

	 12.61	 ∗ , for the first collision, and 

,
	 10.82	 ∗  for the second collision. The total transferred momentum is  

,
	 23.43	 ∗   

Time 
(s) 

Pounding force 
for Weak  

SDOF [kN] 
2.01 -341.348 
2.02 -420.886 
2.03 -302.766 
2.04 -174.655 
2.05 -66.6551 

 

2.95 -299.773 
2.96 -247.213 
2.97 -172.632 
2.98 -112.051 
2.99 -70.0039 

3 -43.2924 
3.01 -27.2711 

3.02 -17.7322 

Fig.10 - Pounding force time history obtained with direct integration the state-space formulation and the nonlinear 
viscoelastic impact element. 

3.1. Comparison between the analyzed model and liteature data. 

Fig. 11 illustrates the displacement time-history in comparison with the displacement time-
history obtained by central finite difference method [11], which is another explicit time 
integration method. The displacement time-history of the two structures is basically the same, the 
only difference is that this paper two collisions are detected. For the stiff SDOF the same time-
history is obtained, while for the weak SDOF, the two-step collision leads to a ~15% difference 
is the residual displacement. 

 

Fig.11 - Comparison between the displacement time history obtained in this study and the values presented in [11] 

Stiff SDOF: [9] 

Weak SDOF, this study 

Weak SDOF [9] 

Stiff SDOF: this study 

Detail A 

3 cm gap 
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The peak value of the first collision obtained in this paper is smaller than the one presented in 
[11]. From the point of view of the total transferred momentum, in this paper was obtained 

,
	 23.43	 ∗  , which is very close value to the one reported in [11], i.e, while in 

paper [9] is 	 24.35	 ∗ . The conclusion is that although the number of 
collisions is different, the same total momentum is transferred between structures and the same 
residual displacement is obtained at the end of the ground motion 

 

Fig.12 - Detail A: First collision duration 

3.2. The influence of different earthquake recordings  

The use of other ground motion recording having various frequency contents is further 
investigated. The 1977 Vrancea N-S earthquake recording is used and illustrated in Fig. 13. First, 
no collision is considered, i.e. the gap between the structures is considered 18 cm. Consequently, 
the nonlinear time history of the two SDOF is plotted in Fig. 14.  

 

Fig. 13 - First 30 s of  NS component of 1977 Vrancea recording  

 

Fig. 14 - Nonlinear time histories under the first 30 s of 1977 Vrancea recording for both SDOF’s 

Stiff SDOF: [9] 

Weak SDOF, this study 

Weak SDOF [9] 

Stiff SDOF: this study 

18 cm gap 
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The gap distance is lowered to 3 cm and the stereomechanical approach is employed. Figure 15 
illustrates the displacement time history of the two SDOF for a 3 cm gap distance. Finally, the 
nonlinear viscoelastic impact element is employed to obtain the displacement time history. 
Comparing figures 15 and 16, one observes a good match for the considered cases. The minor 
tangling observed when the impact element is considered is due to the fact that some 
deformation is allowed to the colliding bodies (see table 3). The corresponding pounding forces 
are plotted in figure 17-18. Although the peak value of the pounding force is highly different in 
the stereomechanical approach and nonlinear viscoelastic impact element approach, the same 
number of collisions and collision time is registered. The corresponding linear momentum 
transferred through the collision is the same order of magnitude, namely 	

27.1	 ∗ .  

 

Fig. 15 - Displacement time histories obtained using the stereomechanical approach 

 

Fig. 16 - Displacement time histories obtained using the nonlinear viscoelastic impact element 

 

Fig. 17 - Pounding force time histories 

3 cm gap 

3 cm gap 

Detail B 
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Fig. 18 - Detail B: Pounding force time histories  

4. Conclusions  

In this paper the pounding forces are modeled using the nonlinear viscoelastic impact element. 
Using the state space representation, an explicit time integration method is developed in a 
MATLAB code. In the first part of the paper the state space formulation and the direct 
integration is presented. The nonlinear structural response for the two SDOF structures is 
calculated using the Force Analogy Method. To that extent the authors developed a routine in 
MATLAB which has been validated with results from reference [9] and [11].  

Chapter 3 of the study, implements a nonlinear viscoelastic impact element which models 
accurately the pounding forces. As previously shown [11], the result of the using of the nonlinear 
viscoelastic impact element is a significant decrease of the peak value of the pounding forces 
with respect to the stereomechanical model. Although the pounding force is reduced by an order 
of magnitude, the transferred momentum suffers only a slight reduction of about 20%. The Delta 
function is used to represent the pounding force in the state space formulation, leading to an 
explicit time integration procedure. The state space formulation, along with the Force Analogy 
Method and nonlinear viscoelastic impact element prove to be computationally efficient.  

Thus, the displacement time history, first collision time and duration and the overall residual 
displacement are correctly predicted. The only difference, i.e. two collisions instead of one, is 
not a significant difference because the total transferred momentum is the same as the reference 
one. The reason of this difference is a result of the different peak values of the pounding force 
calculated in the first collision, which mean a smaller quantity of energy is transferred between 
the two structures. Thus, the weak SDOF undergoes a smaller inelastic displacement after the 
first collision compared to the reference study. The result of the smaller quantity of transferred 
energy is that a second collision is detected where another quantity if energy is transferred 
making the model developed in this study comparable with the reference one. 

In this paper the earthquake was considered as acting from left to right, so the research in the 
article can be continued by considering the directionality effect of the earthquake. A second 
earthquake recording is used to analyze the pounding effects. Future work may investigate the 
effect of different frequency content recordings. A MDOF model would represent more 
accurately the effect of pounding on regular structures. The state space approach has the main 
advantage that control procedures can be easily implemented in the case of structural problems. 
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Appendix 

Table 2 

Comparison between the nonlinear response of the two structures ( no pounding considered ) 

Time (s) 

Finite Difference Method [9]  State Space formulation 
Weak SDOF 

(m) Stiff SDOF (m) 
 

Weak SDOF (m) Stiff SDOF (m) 

0 0 0  0 0 

1 0.000637 -0.00044  0.000121 -0.00033 

2 0.032648 0.010405  0.036733 0.008991 

3 0.066989 -0.01646  0.070426 -0.01541 

4 0.058457 -0.01835  0.058593 -0.01934 

5 0.020104 -0.02334  0.020477 -0.02052 

6 -0.0156 -0.004  -0.01752 -0.00386 

7 0.019669 -0.00949  0.016202 -0.00753 

8 0.016788 -0.00338  0.017061 -0.0014 

9 0.025369 -0.00146  0.023344 -0.00024 

10 0.01139 -0.00683  0.010882 -0.00533 

11 0.014038 -0.00326  0.013632 -0.00125 

12 0.013508 -0.00329  0.013412 -0.00211 

13 0.011675 -0.00435  0.011761 -0.00287 

14 0.010633 -0.00373  0.010682 -0.0022 

15 0.010871 -0.00377  0.010797 -0.00234 
 

 


