
 

Mathematical Modelling in Civil Engineering
Vol. 11‐No. 3: 1‐7 – 2015 

Doi: 10.1515/mmce‐2015‐0010 
 

 

COMPARATIVE STUDY FOR  BUCKLING RESISTANCE OF STEEL 
SHEETS PROVIDED WITH STIFFENERS USED IN BRIDGE 

STRUCTURES 

MARIAN DARABAN - Assistant, PhD, Technical University of Civil Engineering,  Faculty of Railways, Roads 
and Bridges, e-mail: marian_daraban@cfdp.utcb.ro  

Abstract: The subject discussed in this paper is based on an experimental bridge model which was 
built to study the pre-critical and post-critical buckling behaviour of steel webs of box girders 
provided with longitudinal and transversal stiffeners. The article presents a comparison between the 
experimental results and the numerical ones for buckling resistance of stiffened steel webs. For this 
purpose two types of analysis will be carried out: an analysis to establish the values and 
eigenvectors of buckling, after which the critical factor for the first mode of buckling will be 
obtained, and then a geometrical and physical nonlinear analysis will be performed. 
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1. Introduction  

The main feature of modern bridge structures with I girders or box girders is the use for webs, 
and for flanges respectively in the case of box girders, of thin webs provided with stiffeners in 
one or two orthogonal directions. In determining the thickness of the webs, the number and the 
position of the stiffeners, the stability problems have the decisive role. 

The first researches in the area were made since 1850 by a team consisting of an engineer of bridges 
and railways, R. Stephenson, a shipbuilder and a mathematician, and E. Fairbairn W. Hodgkinson, 
who designed and built the famous bridges Conway and Britannia in Great Britain. The bridges 
have maximum spans of 122m, and 142m, respectively, being the first steel bridges with large 
openings, which were made by using steel box girders made of stiffened thin webs and flanges. 

Between 1907 and 1936 Timoshenko [3] developed what it is called the theory of linear 
buckling. In his studies, he approached the problem of buckling stability of webs provided with 
stiffeners. He also introduced the concept of relative rigidity for stiffeners, a notion underlying 
the establishment of stiffener dimensions. 

The calculation method that is based on the linear buckling theory was developed almost to 
perfection by prof. K. Klöppel and his collaborators. They published two works of reference [4], 
[5] between 1960 and 1968. 

The linear buckling theory is based on very restrictive assumptions which are never carried out 
in real structures. The structural elements which are madeindustrially, have numerous 
imperfections: the initial deformation, the deformations due to the thermal welding process, the 
initial residual efforts or the ones that are due to welding, various eccentricities appearing in the 
case of joints, etc. All these imperfections were reduced in the old structures of riveted bridges. 

Between November 1969 and November 1971 serious accidents occurred during the construction 
of four steel bridges with box girders that had large openings: the bridge over the Danube in 
Vienna, November 6, 1969, the bridge Milford Haven in the UK, June 2, 1970, the bridge over 
the Yarra in Melbourne, Australia, October 15, 1970 and the bridge over the Rhine at Koblenz 
November 10, 1971. These accidents highlighted the shortcomings of the linear buckling theory 
which was the basis of design specifications in most countries. 
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Therefore, it is necessary, for the stability problems of modern structures of bridges with I 
girders and box girders, that corrections to the results obtained with the theory of linear buckling 
be applied, with a view to cover the adverse effects of imperfections that inevitably occur in 
practice. Corrections should be based on the good knowledge of post critical behavior of each 
element of the structure and of the whole structure. 

If the frames subjected to compression have no post critical resistance reserves beyond the buckling 
load, the thin girder webs resting on the 4 sides and subjected to compression in their plan, the post 
critical strength reserve might be important because of the possibility of redistribution of stresses 
after buckling, when the webs take a new configuration of stable equilibrium. 

One of the possible methods for analyzing the post critical behavior of structures with thin webs 
is the one based on the nonlinear theory. This method raises problems because of the 
simultaneous influence of geometric nonlinearity, material nonlinearity, interaction between 
webs and flanges and because of the influence of numerous longitudinal stiffeners.  

2. Description of physical model 

The tested girder was made of OL37-4K steel and the shape and dimensions can be seenin figure 1. 
The test results are analyzed in paper [1]. 

The web of the girder is divided into seven panels, of which 6, those between the bearing 
sections and the sections of the application of external concentrated forces, are provided with 
longitudinal stiffeners. The web thickness is of 4mm, thereby a slenderness that falls in the large 
slenderness domain  is achieved. The central panel web thickness is of 10mm. 

Web panels have the sides ratio 0,75  , 1,00  , 1,25  . These ratios are frequently met in 
the design of steel bridges. In terms of side panel reports, the model has four identical panels 
with the same longitudinal stiffener sections and the same distribution of stiffeners on the 
vertical direction. In all web panels, the longitudinal stiffeners and the transverse ones (except 
the sections for the application of concentrated forces P) were provided as non-symmetrical, on 
the inner wall box, a solution commonly used in modern steel bridge structures. The intermediate 
transverse stiffeners were provided with the same section. This section was obtained by 
respecting both the condition of rigidity which ensures the formation of a nodal line and the 
condition of resistance for taking over the vertical component from the tensile force of the 
diagonal field of the web panels. 
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Fig. 1 – The physical model geometry  
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3. Description of finite element model 

For structural modeling the automatic calculation program Lusas has been used.Were used finite 
elements THICK SHELL, in this case finite element QTS8, 14.267 elements and finite element 
TTS6 340 items, with each node by 6 degrees of freedom (three translations and three rotations) 
defined in local coordinate system of each finite element joint. 

 QTS8 TTS6 

 
  

Fig. 2 – Lusas finite elements which have been used for structural FEA modeling 

 
Fig. 3 – Lusas finite element model discretisation 

Finite element QTS8 with 4 sides and 8 joints, takes an initially specific strain  for transverse 
shear strain interpolation. This assignment of a specific strains shall be adopted in the case of 
thin plate elements that neglects transverse shear deformation. Displacements and rotations are 
considered independent and the nodal degrees of freedom are: , , , ,U V W      for each node. 

3. Results of the analysis 

Two types of analyses were made: first, an analysis to establish the values and eigenvectors for 
buckling, as a result of which the critical buckling factor value was obtained for the first mode of 
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buckling and then a geometric and physical nonlinear analysis. For this type of analysis - the 
values and eigenvalues - the material is considered infinitely elastic, in this case having elastic 
modulus 6 221 10 /E tf m  , the Poisson's ratio 0.3   and the volume weight 37,85 /tf m  . 

The properties of the material are specified in the orthogonal system of axes. For the isotropic 
material the matrix D has the expression: 
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In the middle, the box girder is provided with four steel plates with the area 20,16A m . Each 
of the plates is loaded by a hydraulic press with the load 0,8P tf , obtaining a pressure on each, 

of 25p tf m . Nonlinear geometric analysis provided the load factor 58,8965  . The results 
is the critical load 0,8 58,896 47,117crP tf    

Deformed shape for the first buckling mode: 

 
Fig. 4 - Deformed shape for first buckling mode 

The calculated value of 0,8 58,896 47,117crP tf    does not include the weight of the box, 

whose value is 2, 4G tf . 

The analysis of values and buckling eigenvalues is important as it provides an approximate value 
of the critical buckling load that will be used in a nonlinear analysis. 

3. Geometrically nonlinear analysis of the structure [2] 

The principle of the used method (Method arc length) is based on the following equation for 
determining the loading increments: 

     1 21T j j
i ii i

u u S     
       (2) 
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where  1

i
u  şi   j

i
u  represents the incremental displacements for the first iteration and for 

iteration  j of the incremental step i and S  is the arc length of the corresponding tangent to the 
load displacement curve ( P u ) of the previous step i-1, wherein the solution has converged. 

, 1
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j
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
           (3) 

     ˆ
jj jj R

ii i i
u u u            (4) 

For each incremental step in the first iteration, j=1, there are no unbalanced forces, so 
 1

0R

i
u 

. It follows therefore, taking into account the relation (4): 

   1 11 ˆii i
u u  

         (5) 
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This relation is exactly the load factor to be applied at the beginning of the incremental step i. 
The "+" sign in the expression (6) relates to the stage of loading the structure and the "-" at the 
stage of unloading. For 2j  iterations are made so that there is no change of arc length S . 

Considering again the relation (4) and inserting it in (2) and taking into account that 0S   for 
2j  , the loading parameter j

i  result: 
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Fig. 5 - The arc-length method [2] 

3. The results of nonlinear analysis 

3.1. 0-1 panel 

The deformed shape of the 0-1 panel with the isocurved of Y axis displacements for the load 
factor 61,5236 which corresponds to a loads on each press equal with 

61.5236 5 0.16 49, 21P tf    . 
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Fig. 6 - The deformed shape of the 0-1 panel with the isocurved of Y axis displacements 

The experimental value of the ultimate strength of the web panel which was experimentally 
determined is 50tf. 

 

Fig. 7 - The P- curve for 0-1 panel  

3.1. 1-2 panel 

The deformed shape of the 1-2 panel with the isocurved of Y axis displacements for the load 
factor 65,0912  which corresponds to a loads on each press equal with 

65,10912 5 0.16 52.07P tf    . 

The experimental value of the ultimate strength of the web panel which was experimentally 
determined is 55tf. 
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Fig. 8 - The deformed shape of the 1-2 panel with the isocurved of Y axis displacements 

 

Fig. 9 - The P- curve for 0-1 panel  

4. Conslusions 

For the nonlinear analysis the Total Lagrange formulation was used as well as the arc length 
method reformulated by Crisfield. Moreover, the nonlinear behavior of the material was 
considered, which has yield strength 2230 /c N mm  . The analysis contains a total of 75 load 

increments, each increment containing 4 iterations. The first increment value is 0,8tf. For 
calculation convergence, the amount of load factor was adopted as variable. The total value of 
the load to which the analysis was performed is 60tf for each hydraulic press. Arc length method 
does not require iterations with constant load or constant displacement value and offer better 
opportunities to overflow the limit points. 
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