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Abstract:  The analysis and management of Hydrology time series is used for the development of 
models that allow predictions on future evolutions. After identifying the trends and the seasonal 
components, a residual analysis can be done to correlate them and make a prediction based on a 
statistical model. Programming language R contains multiple packages for time series analysis: 
‘hydroTSM’ package is adapted to the time series used in Hydrology, package ‘TSA’ is used for 
general interpolation and statistical analysis, while the ‘forecast’ package includes exponential 
smoothing, all having outstanding capabilities in the graphical representation of time series. The 
purpose of this paper is to present some applications in which we use time series of precipitation 
and temperature from Fagaras in the time period 1966-1982.  The data was analyzed and modeled 
by using the R language.  
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1. Introduction 

The analysis of temperature and precipitation is very important when we study climate changes. 
Due to the increasing concentrations of greenhouse gases in the atmosphere, the global 
temperature rise has been accompanied by changes in weather and climate. Climate change 
studies show an increase of precipitation of 0.5 - 1% per decade in most of the Northern 
Hemisphere mid and high latitudes [1] and an average global surface temperature increase of 
about 0.30C and 0.60C between the late 19th century and 1994.[2] 

As for Romania, [3] from data over the period 1961-2007 in 94 meteorological stations, we have 

an increase of about of the average temperature during summer, winter and spring, and a 
slight trend of decrease of the average temperature in autumn. The amount of precipitation shows 
a trend of decrease of the average in summer and winter, and a trend of increase of the amount of 
precipitation in autumn.  

Fagaras Depression is situated in the Southern part of the Transylvanian Basin that is separated from 
the Romanian Plain in the south by the Southern Carpathians. The climate in the Fagaras area is 
influenced by the presence of the mountains, which prevent the passage of cold air masses through 
the South and stop the hot air entering from the South. In Fagaras the annual average temperature is 
8.20C and the recorded rainfall has annual average values between 600 - 800mm. [4] 

The data studied in this article is the daily precipitation and temperature series collected in the 
period 1966-1982 in the Fagaras area. We consider the problem of modeling the time series of 
precipitation and temperature using R language.  

A seasonal time series consists of a trend component, a seasonal component and an irregular 
component [11]. The aim of the paper is to analyze time series of precipitations and temperatures 
from the Fagaras area. After we find the components: the trend component, the seasonal 
component and the irregular component we make predictions using exponential smoothing with 
the Holt-Winters method. 
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2. The R environment 

R is a free software environment for statistical computing and graphics, having some advantages 
in front of other classical statistic programs like SPSS, SAS, STATISTICA, etc. [5]. A few of 
these advantages are: R is a programming language, an Open Source that can work on Multi-
platforms (Windows, Linux, MacOS), and an extendable language that contains over 5300 
packages. R Development Core Team updates R and provides support for a large community of 
R users that share their knowledge. 

The R programming environment is freely available through CRAN and can be used for solving 
practical problems. The R programming environment has many statistical methods and 
techniques available either built-in or through packages. 

In order to use it for the analysis of hydrological time series of the precipitations and the 
temperatures from the Fagaras area, we use the packages:  

- HydroTSM developed for modeling of hydrological time series. We used version 0.4-2-1 
(2014) for the management, analysis and plot of hydrological time series;  

- TSA version 1.01 (2013) is used for time series decomposition and forecast; 

- Forecast version 5.3 (2014) contains the exponential smoothing Holt–Winters method 
for the analysis and forecast of time series. 

Regarding the graphical part, R has good capabilities for representing the time series plots, 
boxplots and histograms. The boxplot shows the median, first and third quartiles, the data 
extremes and outliers with the horizontal width of the box proportional to the square root of the 
size of the group. The histogram is a graphical representation of the data distribution. 

3. Methods 

In the following, we shortly present the procedures to find components of the time series and, by 
using the exponential method, to make a forecast for a time series.  

3.1. Time series analysis 

A stochastic process is a sequence of random variables  that serve as a model 

for an observed time series. [6] 

For a stochastic process  we define: 

 the mean function  

        (1) 

 the autocovariance function 

 (2) 

 the autocorrelation function 

  (3) 
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3.2. Decomposition of the time series 

When the series have constant variability relative to their lengths, we can use an additive model 
for series decomposition: 

          (4) 

where  is a deterministic function and is a white noise process with . [6] 

Many authors use the classical decomposition model: 

         (5) 
where  is the trend,  is the seasonal effect, and is the residual series. [7] 

Many authors use the word trend only for a slowly changing mean function, and use the terms 
seasonal component for a mean function that varies cyclically. We did not make such 
distinctions here. Deterministic models describe the components: linear, seasonal means and 
cosine trends. [6] 

The trend is the result of long-term factors and the time trend equations can be fit to the data by 
using the method of least squares. 

The linear trend is expressed as 

         (6) 
where the slope and intercept,  are unknown parameters.  

In order to find a seasonal trend we take the mean function periodic with period 12: 

       (7) 
The model for the cosine trend has the form: 

     (8) 
where is the frequency,  the amplitude,  the phase of curve and 

. 

3.2. The Holt-Winters exponential smoothing 

Another way to find the trend and seasonality is to use the Holt-Winters exponential smoothing. 
Three parameters control the smoothing: alpha is a smoothing constant for the level, beta for the 
estimate of the slope of the trend and gamma is a smoothing constant for seasonality estimate. 
[5], [7]  

The level estimate: 

      (9) 
The trend estimate: 

       (10) 
The seasonality estimate 

       (11) 
where  and is the length period of time series.  

We can use the Holt-Winters exponential smoothing to make short-term forecasts: 

      (12) 
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where  is the period to be forecast. 

To see if the Holt-Winters model is correctly specified we have to see if the residuals are 
independently distributed by using the Ljung–Box test. [8] 

Shortly, the Ljung–Box test can be described as follows. 

The null hypothesis of the Ljung–Box test is: 

0H : The data are independently distributed. 

The test statistic is 

        (13)  

where: 

-  is the sample size,  

-  is the sample autocorrelation at lag k,  

-   is the number of lags tested.  

The significance level is and the hypothesis of randomness is rejected if 

         (14) 

where is the  p-quantile of the chi-squared distribution with  degrees of freedom. 

4. Results and discussion 

4.1. Main capabilities of the hydroTSM package  

In order to make a basic analysis of the monthly values of the precipitation and temperature at 
the Fagaras station, from 01/Jan/1966 up to 31/Dec/1982, we convert the daily data to monthly 
data and obtain the data from table 1. [5] 

Table 1 

The summary statistics of the time series of monthly precipitation and temperature 
from Fagaras with data from 01/Jan/1966 up to 31/Dec/1982 

Index Precipitation  Temperature Observation 

Min 0.10 -9.53 Minimum 

1st Qu. 26.98 0.60 First quartile 

 Median       45.95 7.81 Median 

Mean 61.61 7.64 Mean value 

3rd Qu. 88.75 15.32 Third quartile 

Max. 230.60 19.24 Maximum 

IQR 61.77 14.72 Interquartile Range= 3rdQu-1stQu 

sd 47.22 7.99 Standard deviation  

cv 0.77 1.04 Coefficient of variation 

 Skewness     1.29 -0.26  Skewness 

Kurtosis 1.71 -1.20 Kurtosis 

n 204 204 Total number of elements 
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To highlight the characteristics of the monthly time series of precipitation and temperature from 
Fagaras, we made different graphs:  time series plots, boxplots and histograms. 

 

 

Fig.1-a) Precipitation time series with day, month and year frequency;  
b) Temperature time series with day, month and year frequency 

The monthly boxplots from figures 1a and 1b describe the seasonal distributions of precipitation 
and temperature. We can see an increasing trend from December to July and after, a progressive 
decrease until December. 

According to Table 1 and Figure 1a, the precipitation has a positive skewness, so we have an 
asymmetrical distribution with a long tail to the right and the positive kurtosis shows a 
distribution more peaked than the Gaussian distribution while in Figure 1b the temperature series 
has left a longer tail and a flatter distribution. 

For identifying the dry/wet months from the monthly precipitation and the hot/cold months from 
the time series of monthly temperature, we plotted a matrix of the monthly values for each year.  

 



 
Fig. 2-a) Matrix plot of the monthly precipitations at Fagaras;  

b) Matrix plot of monthly temperatures at Fagaras 

The package hydroTSM contains many functions that can make the conversion between daily, 
monthly, annual and seasonal data.  
Regarding the seasonal data, we obtained the following values:  

Table 2 

Seasonal analysis for precipitation and temperature 

Season 
Average seasonal values of 

precipitation 
Average seasonal 

values of temperature 

DJF  87.8 -2.97 

MAM   190.4 8.48 

JJA 309.5 17.10 

SON  151.6 7.94 

Analyzing table1, table 2 and figures 1a and 2a, the monthly precipitation repartition reveals 
that: for the smaller quantities registered in the winter period, from December to February, an 
average seasonal value of precipitation of 87.8 mm resulted with a minimum of 0.1 mm on 
February 1976, while in the summer period the average seasonal value of precipitation was 
309mm, with a maximum of 230 mm in July 1975. 

Analyzing table1, table 2 and figures 1b and 2b the monthly temperature repartition reveals that: 
smaller temperatures are registered in the winter period, from December to February when we 
obtain an average seasonal value of temperature -2.970C with a minimum of -9.530C in January 
1969, while in the summer period the average seasonal temperature was 17.10C with a maximum 
of 19.240C in July 1967. The seasonal values of precipitation and temperature show four 
generally recognized calendar-based seasons. 

4.2 Estimate trends using TSA 

In order to find the pattern of the time series we make graphical decomposition to see the 
component for the precipitation time series: trend, seasonal and irregular part. [5] 
Regarding the linear model for the monthly precipitation and temperature time series given by 

equation (6), the coefficient of determination  is almost 0, so that a fitting line to these data is 
not appropriate. 
In order to see the seasonal variation given by equation (7) we create a vector which contains the 
twelve parameters  of the expected average monthly temperature and precipitation. 
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Table 3 
Seasonal Trends 

Month Estimate   
temperature 

Estimate 
precipitation 

January -5.2869 29.912 
February -1.6348 27.571 
March 3.3480 31.259 
April 8.3927 60.676 
May 13.6636 98.494 
June 16.3559 100.541 
July 17.7641 128.318 
August 17.1630 80.641 
September 13.3702 59.800 
October 7.9176 52.053 
November 2.5594 39.729 
December -1.8854 30.376 

The calculated R-squared for the average monthly temperature is 0.9765 so we have a very good 
fitting of data points with this statistical model and one can explain this by the inclination change 
toward the sun of the Northern Hemisphere. The calculated R-squared for the average monthly 
precipitation is 0.8019, approximately 80 % of the variation of the precipitation series explained 
by the seasonal component. 
The seasonal component [6] does not take into account the differences or similarities between 
two close periods so we try to model the cyclical component with cosine curves given by 
equation (8) that incorporates the smooth change expected from one period to the next, while the 
seasonality is still preserved. 

Table 4 

Cosine Trend Model 

 

Multiple R-squared for the average monthly temperature is 0.9448 and for the average monthly 
precipitation is 0.3993. This can be seen in the graphics of the fitting of data. 

 

 
Fig.3- Cosine trends for the temperature and precipitation  

The best model for precipitation and temperature is the model with the seasonal component. 

Coefficients Temperature Precipitation

0.1866 7.224

7.644 61.614

-10.9485 -41.464
0

1

2



4.3. Forecasts Using Holt-Winters Exponential Smoothing 

For our forecasting experiments we used the first 15 years (1966-1980) of data values as history 
by using monthly values of precipitation. [11] 
The estimated values of the parameters with the Holt-Winters method are: 

Table 5 
Holt-Winters exponential smoothing constants 

Smoothing 
parameters 

  

 alpha 0.0124 

beta 0.0456 

gamma 0.1700 

 
 
 
 
 
 
 
 
 
 

Coefficients   
a 61.5734 
b 0.1589 
s1 -25.0646 
s2 -28.4599 
s3 -22.8383 
s4 18.7979 
s5 39.4857 
s6 48.9741 
s7 77.9200 
s8 38.2382 
s9 9.0780 

s10 -5.0105 
s11 -17.6685 
s12 -26.7912 

Estimated parameters alpha and beta are very close to zero, so the forecast for the level and the 
trend are based on further observations in the past. Gamma is relatively low, so this indicates that 
the estimate of the seasonality at the current point in time is based upon both recent observations 
and some observations in a more distant past. If the values of parameters are high (close to 1) the 
estimate of the components are based upon very recent observations. 

The forecast were made for the two remaining years (1981-1982) and then the resulting values are 
compared with those observed for the same period [12]. We obtain 0.77 as a correlation coefficient 
for the generated and measured data. Since we obtain a strong uphill linear relationship, we can make 
a prediction for the next 2 years (1983-1984), which is not included in the original time series.  

Table 6 
The forecast values and prediction interval for the precipitation time series, which corresponds to the 

January 1981-December 1982 period 

Month Observed Forecast Lo80 Hi80 Lo95 Hi95 
Jan-81 31.0 36.7 -13.8 87.2 -40.5 113.9 
Feb-81 20.9 33.4 -17.1 83.9 -43.8 110.6 
Mar-81 31.8 39.2 -11.3 89.7 -38.0 116.4 
Apr-81 52.7 81.0 30.5 131.5 3.8 158.2 
May-81 124.0 101.9 51.3 152.4 24.6 179.1 
Jun-81 66.3 111.5 61.0 162.0 34.3 188.7 
Jul-81 200.4 140.6 90.1 191.1 63.3 217.9 

Aug-81 40.2 101.1 50.6 151.6 23.8 178.4 
Sep-81 120.1 72.1 21.6 122.6 -5.2 149.4 
Oct-81 44.0 58.2 7.6 108.7 -19.1 135.4 
Nov-81 51.3 45.7 -4.9 96.2 -31.7 123.0 
Dec-81 38.0 36.7 -13.9 87.2 -40.6 114.0 
Jan-82 39.9 38.6 -12.9 90.0 -40.1 117.2 
Feb-82 27.1 35.3 -16.1 86.8 -43.3 114.0 
Mar-82 23.4 41.1 -10.3 92.6 -37.6 119.8 
Apr-82 68.3 82.9 31.5 134.4 4.2 161.6 
May-82 32.9 103.8 52.3 155.2 25.0 182.5 
Jun-82 119.8 113.4 61.9 164.9 34.7 192.1 
Jul-82 141.1 142.5 91.0 194.0 63.8 221.3 

Aug-82 81.3 103.0 51.5 154.5 24.2 181.8 
Sep-82 23.0 74.0 22.5 125.5 -4.8 152.8 
Oct-82 16.9 60.1 8.5 111.6 -18.8 138.9 
Nov-82 24.4 47.6 -4.0 99.1 -31.3 126.4 
Dec-82 22.7 38.6 -13.0 90.2 -40.3 117.5 

 



 
Fig.4 - The graphics of the monthly precipitation time series from January 1966 up to December 1980 (black); Holt-

Winters exponential smoothing (red) for the precipitation time series from January 1966 up to December 1980; 
Holt-Winters exponential smoothing (green) for the precipitation time series from January 1981 up to December 

1982; Holt-Winters exponential smoothing (blue) for the precipitation time series from January 1983 up to 
December 1984; Shaded areas show 80% (dark grey) and 95% (light grey) prediction intervals. 

 

In order to see if the Holt-Winters exponential smoothing provides an adequate predictive model 
for the precipitation time series, we make a correlogram in order to check if the residuals show 
non-zero autocorrelations at lags 1-20. Autocorrelation function indicates how a time series is 
related to itself over time. [11] 

 

 
Fig. 4 - The autocorrelation function for the residuals of precipitation time series 

 

The correlogram shows that the autocorrelations for the in-sample forecast errors do not 
exceed the significance bounds for lags 1-20. From the Ljung-Box test we obtain a p-value of 

for the so it is above , which indicates non-significance of 
autocorrelation values. 

To see if our forecast is good enough for our purposes and that it cannot be improved, we check 
if the forecast errors are normally distributed using a histogram. [11] 

 0.9686  20=lag 0.05



 
Fig. 5- The normal distribution of the forecast errors of the precipitation time series 

Holt-Winters exponential smoothing method provides an adequate predictive model for the 
precipitation time series from Fagaras, because the distribution of the forecast errors seems to be 
normally distributed with mean and zero constant variance over time and the Ljung-Box test 
showed that there is little evidence of non-zero autocorrelations. 

5. Conclusion 

The purpose of this article is to present some results related to the modeling of the hydrologic 
time series of precipitation and temperature from Fagaras meteorological station in the period 
1966-1982 by using the R language.  
The paper presents the main capabilities of the three R packages: hydroTSM, TSA and forecast 
with applications. We used the hydroTSM package for the management, analysis and the plots 
that capture the information about the central tendency, distribution and frequency. In order to 
describe some deterministic components: linear, seasonal, means and the cosine trends 
components, we estimate parameters and investigate the efficiency of these regression methods 
by using the TSA package. By using the forecast package, we make predictions of future events 
related to precipitation in the Fagaras area based on the Holt-Winters method. We conclude that 
this method provides an adequate predictive model, which probably cannot be improved more. In 
a future study, we will try to make a better predictive model by trying other different methods: 
ARIMA, Markov, or by using artificial intelligence methods. 
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