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Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality 
monitoring. Qualitair Corse, the organization responsible for monitoring air quality in Corsica 
(France), needs to develop a short-term prediction model to lead its mission of information towards 
the public. Various deterministic models exist for local forecasting, but need important computing 
resources, a good knowledge of atmospheric processes and can be inaccurate because of local 
climatical or geographical particularities, as observed in Corsica, a mountainous island located in 
the Mediterranean Sea. As a result, we focus in this study on statistical models, and particularly 
Artificial Neural Networks (ANNs) that have shown good results in the prediction of ozone 
concentration one hour ahead with data measured locally. The purpose of this study is to build a 
predictor realizing predictions of ozone 24 hours ahead in Corsica in order to be able to anticipate 
pollution peaks formation and to take appropriate preventive measures. Specific meteorological 
conditions are known to lead to particular pollution event in Corsica (e.g. Saharan dust events). 
Therefore, an ANN model will be used with pollutant and meteorological data for operational 
forecasting. Index of agreement of this model was calculated with a one year test dataset and 
reached 0.88. 

Keywords: Air quality forecasting; Artificial Neural Network; Multilayer Perceptron; Ozone 
concentration. 

1. Introduction 

Tropospheric ozone is a major air pollution problem, both for public health and for environment. 
Ozone is not directly emitted by human activities. In troposphere, it is a secondary pollutant 
which formation depends on a complex cycle [1,2]. Ozone is produced by atmospheric 
photochemical reactions that need solar radiation. Its production is lead by volatile organic 
compounds and nitrogen oxides concentrations, both emitted by anthropogenic activities. Ozone 
concentration trend is increasing due to the growth of emissions of its precursors, and many 
countries are now equipped with an air quality monitoring network which follows the ozone 
concentration at the ground-levels. 

In France, this monitoring is performed by regional Air Quality Monitoring Agreed Associations 
(AQMAA), thereby allowing the state to take appropriate measures to ensure a good air quality. 
Air quality forecasting is an important tool that allows authorities to properly react in view to 
limit anthropogenic pollutants emissions when a pollution peak is predicted. AQMAAs use 
different forecasting models, according to the characteristics of their regions. Air quality 
forecasting models have been reviewed recently [3,4]. In this review deterministic models are 



distinguished from statistical models. The principle of deterministic models is to solve 
differential equations that describe atmospheric state. Those models are used in more general 
conditions than statistical models but are more complex and demand important computational 
resources as well as a good knowledge of atmospheric processes and pollutant sources. 
Statistical models need local data of variables in relationship with the predicted variable. They 
are difficult to interpret but can outperform determinist models. Such models can be a good 
solution to develop a forecasting tool if pollution observed data are available. 

This work presents a data-based forecasting model for the French island of Corsica. This island 
is seated in Mediterranean Sea, in the south of France and west of Italy (Fig. 1). Corsica has an 
alpine geography, with its highest mountain culminating at 2706m, and its average altitude of 
568m. The island has a Mediterranean climate and is exposed to winds such as Sirocco or 
Mistral, which confer on the island a complex meteorology and can bring pollution plums from 
Italy, France or Africa. This particular situation adds difficulties to determinist air quality 
forecasting. Qualitair Corse is the AQMAA in charge of air quality monitoring in Corsica Island. 

 

 

Fig. 1 - Position of the Corsica island in the occidental Mediterranean sea and Corsica map 
showing the mountainous part of the island 

In this study we use pollutant data recorded by Qualitair Corse and solar radiation data from 
Météo France, the French national weather service. We built a new predicting model based on 
Artificial Neural Networks (ANNs) trained with those data (see next section for details), for 
hourly ozone concentration predictions 24 hours ahead. 

ANNs are statistical models of artificial intelligence family, able to learn complex relationships 
between inputs and outputs. An ANN has a parallel-distributed structure and consists of a set of 
processing elements called neurons or nodes and gathered in layers. 

Applications of ANNs in atmospheric sciences were reviewed in the late 90s [5]. They show 
good results as time series forecasting models [6]. There are various types of ANN architectures 
which fit for different modeling patterns. According to the chosen architecture, all or a part of 
the neurons in a layer are connected with all or a part of the neurons of the previous and next 
layer. The number of layers and of neurons in each layer depends on the specific model, 
convergence speed, generalization capability, physical processes and training data that the 
network will simulate [7]. 

Among possible architectures, we used the Multilayer Perceptron (MLP) in this study, for its 
universal approximator capabilities [8] and its applications in ozone concentration forecasting 
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[7,9–12]. Preliminary work with ANN in Corsica already led to a model for 1 hour ahead ozone 
concentration prediction [13]. 

We will first introduce our data in section 2 before presenting the model in section 3. The results 
of our experiments are discussed in section 4. The 5th section presents the conclusions of this 
study and some future perspectives. 

2. Experimentation and data recording 

The air pollution data used in this study was measured and collected by Qualitair Corse. The 
association has nine fixed automatic monitoring stations which are distributed over the island 
(Table 1 and Fig. 2). Corsica is a mountainous island and most of the population concentrates on 
the coasts. Ajaccio and Bastia are the two biggest cities, and the two main population basins. For 
public health purposes, air quality monitoring focuses on those two regions that gather both the 
majority of the population and the main emission sources of the island. 

 

Fig. 2 - Monitoring stations in Corsica (Base map provided by IGN) 

The stations are classified into five categories: traffic, urban, suburban, industrial and rural 
measuring several atmospheric pollutants (NO2, Ozone, SO2, small (PM2.5) and large (PM10) 
particles. We have one station of the four first types in Ajaccio and Bastia and a rural one in 
Venaco (centre of Corsica) in a mountainous area.  

Table 1 
Measuring stations in Corsica 

Area Stations Category Altitude (m) Measured pollutants 

Bastia 

Giraud Urban 60 NO2 O3 PM10 SO2 
Montesoro Suburban 47 NO2 O3 PM2.5 
St Nicolas Traffic 5 NO2 PM10 
La Marana Industrial 15 NO2 O3 PM10 SO2 

Venaco Venaco Rural 653 NO2 O3 PM10 PM2.5 

Ajaccio 

Canetto Urban 39 NO2 O3 PM10 SO2 
Sposata Suburban 60 NO2 O3 

Piataniccia Industrial 30 NO2 O3 PM10 SO2 
Diamant Traffic 12 NO2 PM10 

In this paper, we only used pollutant data recorded at the two urban and the two suburban 
stations: Canetto and Sposata in Ajaccio and Giraud and Montesoro in Bastia. Those stations are 
representative of population exposure to air pollutants in the two cities. Five years of data were 
available for this study, between the beginning of 2008 and the end of 2012. Global solar 
radiation data were provided by Météo France. Other meteorological variables were recorded at 
Sposata and Montesoro stations. 

All data were hourly averages (measures are done every 10 seconds, automatic stations send 
averaged data every 15 minutes and then hourly averages are calculated). Endogenous and 
exogenous data were used as inputs of the network. Exogenous data were pollution and weather 



data. Because of its important role in the ozone production cycle [1], nitrogen dioxide 
concentration (NO2) measured by the station was used. Meteorological variables (wind force, 
wind direction, global solar radiation, temperature and precipitation) are known to influence 
ozone concentration [2] and were included into the exogenous dataset. 

When data are inputted into the network in view to make an hourly prediction at h+24, several 
values of each observed predictor at different time lags are passed to the hidden layer. Those lags 
were chosen using Average Mutual Information (AMI, see Eq. 1). Mutual information (measured 
in bits) is a quantitative measure of statistical dependence between two dataset. 
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with x and y two time series, 

n and m the numbers of class to compute time series distributions, 

i and j indexes of classes, 

P(xi) the probability to have x value within class i, 

P(yj) the probability to have y value within class j, 

P(xi,yj) the probability to have x value within class i and y value within class j. 

We calculated AMI between O3 hourly concentration time series shifted of 24 time steps (O3 
concentration 24 hours in advance, the target of the model) and input data time series for every 
lag between 0 and 72 hours in order to find with which lag the predictor time series shared the 
most information with O3 concentration at h+24. Fig 3 shows AMI of O3 concentration and wind 
direction. Periodical peaks show the non-stationarity of time series. Although MLP is a 
stationary estimator, it is suited for non-stationary cases on short horizon. 

 

Fig 3 - AMI of wind direction and ozone concentration at h+24, 
with the tree lags retained to be passed as inputs 

The weekdays bring information related to human activities that impact the air quality (working 
or non-working days). As such temporal variables have been shown to improve air quality 
forecasting with ANNs [14], we chose to use weekday number (1 for Monday to 7 for Sunday) 
in this work. As proposed in several studies [5,11], we also used periodical variables 
representing the cycle of passing hours: sin(2πh/24) et cos(2πh/24). 

Both endogenous and exogenous data may present several missing values due to measure 
interruptions. Those missing values are problematic; they cannot be processed by the model, 
which mathematical operations are defined for real values. All missing were replaced by the 



mean value of the variable at the same day of the year and same hour. Other methods for dealing 
with missing values have been reviewed [15], and will be investigated in further work. 

Before computation, all inputs were normalized between -1 and 1. This measure avoids 
overrepresentation of one predictor in the prediction because of its values range. 

3. Modeling 

We built an ANN model based on the MLP, using endogenous and exogenous data. MLP is a 
feed-forward neural network constitued by several layers of neurons, each one receiving inputs 
from the previous layer and communicating their outputs to the next layer (see Fig. 4). The input 
layer consists of the input data, it is connected to an internal layer of neurons called hidden layer. 
There may be a variable number of these interconected hidden layers. The last layer of neurons is 
called output layer and produces the outputs of the network. It is important to note that the input 
layer is not composed by neurons but by input data. 

 

Fig. 4 - Shematic view of a MLP with 3 inputs, 4 hidden nodes and 1 output 

A neuron transforms the input variables it receives in an output variable. Each input xi of a 
neuron is multiplicated by a specific weight wi. A bias b is added to the sum of all products xi wi 
and the result becomes the argument of the neuron’s activation function f which gives the output 
variable. The mathematical equivalent of a neuron with N inputs is a function of the type: 
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There are various parameters to settle when creating a MLP, the number of layers, the number of 
neurons of each layer, the activation function of neurons. With one single hidden layer, a MLP is 
able to model non-linear relationships between inputs and outputs. We used a one hidden layer 
MLP, since we observed that adding a second hidden layer did not increased performance. We 
used various numbers of neurons in the hidden layer and retained the configuration with the best 
results: 12 hidden neurons. The output layer was composed of one single neuron for one single 
output. Activation function is a hyperbolic tangent function for the hidden layer and a linear 
function for the neuron of the output layer. 

The value of weigths and biases of a MLP is determined during a supervised learning phase. 
Purpose of this learning phase is to minimise the mean squared error between the output of the 
MLP and a target dataset by addapting network’s weigths and biases. The forecasting nature of 
the model lies in the choice of input and target dataset for the training phase. Those datasets form 
time series. The input set is formed by endogenous and exogenous time series. The target set is 
created by shifting forward in time the forecasted time series (O3 concentration) of 24 hours. The 
training algorithm searches the best weights/biases configuration to capture the underlying 
relationship between input data and O3 concentration 24 hours ahead. 



Levenberg-Marquardt algorithm was used to train the network. Before the learning phase, input 
and target datasets are divided into three different subsets : the training set, the validation set and 
the test set. Three years of data composed the training set. Validation set and test sets were each 
composed of one different year of data. During the learning step, the algorithm uses the training 
dataset to train the network.  

It is important to avoid over-fitting the training data, to ensure the network generalisation 
capacity. For that reason, we used the early-stopping method: at each iteration of the training 
phase, performances of the model are tested on the validation set, which is not used for the 
training. When this performance stops increasing during 6 iterations in a row, the learning phase 
is interrupted although training performance score keeps growing.  

Mathematical equivalent of a trained MLP is a simple non-linear regression of inputs, shown in 
Eq. 3 for a network with one hidden layer. 
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with i the index of inputs, and j the index of neurons in the hidden layer, 

Ni the number of inputs and Nh the number of neurons in the hidden layer, 

xi the inputs and y the output, 

f and g respectively the activation functions of hidden neurons and of output neuron, 

wij the weight between the input i and the hidden neuron j and bj the bias in hidden neuron j, 

wjo the weight between hidden neuron j and the output neuron and bo the bias in the output 
neuron. 

After the learning step, trained MLP is evaluated using the last dataset, the test set, in order to 
quantify prediction error with data that have not been used during the training. Different error 
estimators are given, to help comparison with other studies. We calculated Root Mean Squared 
Error (RMSE), normalised Root Mean Squared Error (nRMSE), Mean Absolute Error (MAE) 
and Index of Agreement (IA) which are reported below (Eqs. 4 to 5). IA was introduced as an 
error indices suitable for forecasting model evaluation [16]. It ranges between 0 (worst) and 1 
(best) and represents the degree to which prediction is error-free. 
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with N the number of samples and i their index, 

oi and pi observed and predicted concentrations, 

ō the global average of observed concentrations. 

To evaluate the performances of this model, we built a simple persistence model, whose 
principle is to retain the actual value x of a time series as a forecasted value x (see Eq. 6). 

)()24( txtx           (6) 

It takes sense since we are making predictions 24 hours ahead and the ozone concentration time 
series has a periodical component of 24 hours. All computations were executed using Matlab ©. 



4. Results 

We investigated four different input data configurations for data recorded in Canetto, Sposata, 
Montesoro and Giraud station, using lags determined with AMI (see Eq. 1 in section 2). Results 
of persistence and MLP models with different inputs are shown in Table 2. Figure 5 shows 
measured and predicted values during 6 days.  

 
Fig 5 – Measured (plain blue) and predicted (doted red) ozone concentration from 21 to 26 August 2009 

Each experiment with MLP (network training + test) was run seven times and we gave the 
average values of error indices, to study the relationship between predictors and performances. 
Those results are globally close to other works on O3 concentration forecasting 24 hours in 
advance with ANNs [11]. We can see that performances of the model are enhanced by the 
addition of NO2, meteorological variables and time indices as input. However, this improvement 
remains quite small (about 1% for nRMSE for all stations). 

Table 2 
Error indices 

Station 
Model 

(with input datasets) 
RMSE 

(µg.m-3) 
nRMSE 

(%) 
MAE 

(µg.m-3) 
IA 1 

 Persistence 21.26 36.58 16.26 0.85 
 MLP (O3) 17.94 30.44 14.30 0.86 
 MLP (O3+NO2) 17.81 30.21 14.23 0.87 

Canetto MLP (O3+NO2+MET) 17.41 29.54 13.85 0.87 
 MLP (O3+NO2+TI) 17.31 29.37 13.66 0.88 
 MLP (O3+NO2+MET+TI) 17.32 29.39 13.74 0.88 
 Persistence 20.44 34.03 15.63 0.85 
 MLP (O3) 17.50 28.35 13.88 0.85 
 MLP (O3+NO2) 17.44 28.24 13.80 0.85 

Sposata MLP (O3+NO2+MET) 16.99 27.52 13.40 0.86 
 MLP (O3+NO2+TI) 17.19 27.84 13.57 0.86 
 MLP (O3+NO2+MET+TI) 16.90 27.38 13.31 0.87 
 Persistence 19.46 25.60 14.73 0.81 
 MLP (O3) 17.19 22.69 13.39 0.79 
 MLP (O3+NO2) 16.89 22.22 13.12 0.80 

Giraud MLP (O3+NO2+MET) 16.78 22.14 13.01 0.80 
 MLP (O3+NO2+TI) 16.61 21.92 12.92 0.81 
 MLP (O3+NO2+MET+TI) 16.53 21.81 12.82 0.81 
 Persistence 18.51 24.23 14.04 0.84 
 MLP (O3) 16.30 21.20 12.61 0.83 
 MLP (O3+NO2) 16.30 20.92 12.41 0.84 

Montesoro MLP (O3+NO2+MET) 16.06 20.90 12.39 0.84 
 MLP (O3+NO2+TI) 15.96 20.77 12.32 0.84 
 MLP (O3+NO2+MET+TI) 15.90 20.69 12.30 0.84 

1 IA is dimensionless. Best results written in bold. Abbreviations: O3 – ozone concentration, NO2 – nitrogen dioxide 
concentration, MET – meteorological data (wind force, wind direction, global solar radiation, temperature and 
precipitation), TI – time indices (weekday number, sin(2πh/24) and cos(2πh/24)) 



RMSE improvement due to addition of meteorological data in input dataset is slightly better for 
suburban stations (0.24 µg.m-3 for Montesoro and 0.45 µg.m-3 for Sposata) than for the 
corresponding urban station (0.10 µg.m-3 for Giraud and 0.40 µg.m-3 for Canetto). The reason 
can be that those data are recorded in the suburban stations. Suburban area may also be less 
influenced by pollutant sources than urban station, and thus relatively more dependants to 
meteorology. 

In term of nRMSE, the mean gain between the persistence model and the best MLP is upper than 
5%. MLP models as persistence model perform better with stations from Bastia than from 
Ajaccio, regardless of the setting. IA follows an opposite scheme. This phenomenon could be the 
consequence of two different ozone concentration dynamics. Ajaccio and Bastia are two coastal 
cities and are exposed to sea and land breezes. At night, ozone concentration in Bastia stay high 
while it drops in Ajaccio as expected in normal conditions. This could be the consequence of two 
different configurations vis-à-vis nocturnal ozone income from rural areas due to the land breeze. 
Ozone concentration range is therefore larger in Ajaccio, which could explain a bigger RMSE 
for all models while the better IA seems to show that the models are more precise than in Bastia 
where ozone dynamics seems to be more complex. 

For Giraud station, the persistence model has even reached the same IA than the MLP, though 
RMSE of the neural network stays better. Other meteorological variables that could help the 
network to learn the nocturnal ozone behavior, as atmospheric boundary-layer thickness or other 
wind data in the region (i.e. output of weather forecasting models) could be helpful to improve 
the predictions. 

5. Conclusion 

A MLP model was built to forecast O3 concentration 24 hours ahead at two urban sites in 
Corsica. The neural network was trained with pollution and meteorological data, in addition to 
temporal variables. It showed good results, its performances were better than those of the 
persistence model used as reference. 

This first work on air quality forecasting at horizon h+24 with Corsican data helped to prepare 
the building of an operational forecasting model able to detect pollution event. In further work, 
we will try to improve our predictions by several ways: we will focus on the data pretreatment: 
alternative way to treat missing data will be investigated, we will work on predictions with time 
series made stationary and we will consider input data selection with several methods as genetic 
algorithms or AMI. 

After those results, it seems interesting to use new meteorological variables that could represent 
specific dynamics of pollution concentration in the two cities. Finally, other pollutant forecasting 
models, for NO2 or fine particles concentration, will also be investigated. 
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