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Partial Sums of Certain Classes of Meromorphic
Functions Related to the Hurwitz-Lerch Zeta
Function

H. M. Srivastava1,∗, S. Gaboury2 and F. Ghanim3

Abstract. In the present paper, we give sufficient conditions for a function f to be in the
subclasses ΣS∗a,s (A,B, α, β) and ΣKa,s (A,B, α, β) of the class Σ of meromorphic functions which
are analytic in the punctured unit disk U∗. We further investigate the ratio of a function related
to the Hurwitz-Lerch zeta function and its sequence of partial sums.
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1. Introduction and Preliminaries

Let Σ denote the class of meromorphic functions f(z) normalized by

f(z) =
1

z
+
∞∑
k=1

akz
k, (1)

which are analytic in the puntured unit disk

U∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0},
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C being (as usual) the set of complex numbers. We denote by ΣS∗(β) and ΣK(β) (β =
0) the subclasses of Σ consisting of all meromorphic functions which are, respectively,
starlike of order β and convex of order β in U∗ (see also the recent works [19] and [20]).

For functions fj(z) (j = 1, 2) defined by

fj(z) =
1

z
+
∞∑
k=1

ak,jz
k (j = 1, 2), (2)

we denote the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) =
1

z
+
∞∑
k=1

ak,1ak,2z
k. (3)

Let us consider the function φ̃(α, β; z) defined by

φ̃(α, β; z) =
1

z
+
∞∑
k=0

(α)k+1

(β)k+1

akz
k (4)

(
β ∈ C \ Z−0 ; α ∈ C

)
,

where

Z−0 = {0,−1,−2, · · · } = Z− ∪ {0}.
Here, and in the remainder of this paper, (λ)κ denotes the general Pochhammer symbol
defined, in terms of the Gamma function, by

(λ)κ :=
Γ(λ+ κ)

Γ(λ)
=

{
λ(λ+ 1) · · · (λ+ n− 1) (κ = n ∈ N; λ ∈ C)

1 (κ = 0; λ ∈ C \ {0}),
(5)

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-
quotient exists (see, for details, [18, p. 21 et seq.]), N being the set of positive integers.

It is easy to see that, in the case when ak = 1 (k = 0, 1, 2, · · · ), the following rela-

tionship holds true between the function φ̃(α, β; z) and the Gaussian hypergeometric
function [8]:

φ̃(α, β; z) =
1

z
2F1(1, α; β; z). (6)

Very recently, Ghanim ([3]; see also [4]) made use of the Hadamard product for
functions f(z) ∈ Σ in order to introduce a new linear operator Lsa(α, β) defined on Σ
by

Lsa(α, β)(f)(z) = φ̃(α, β; z) ∗Gs,a(z)

=
1

z
+
∞∑
k=1

(α)k+1

(β)k+1

(
a+ 1

a+ k

)s
akz

k
(
z ∈ U∗

)
, (7)
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where

Gs,a(z) := (a+ 1)s
[
Φ(z, s, a)− a−s +

1

z(a+ 1)s

]
=

1

z
+
∞∑
k=1

(
a+ 1

a+ k

)s
zk

(
z ∈ U∗

)
(8)

and the function Φ(z, s, a) is the well-known Hurwitz-Lerch zeta function defined by
(see, for example, [13, p. 121 et seq.]; see also [11], [12], [15], [16], [17] and [14, p. 194
et seq.])

Φ(z, s, a) :=
∞∑
k=0

zk

(k + a)s
(9)

(
a ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1

)
.

Silverman [9] determined sharp lower bounds on the real part of the quotients be-
tween the normalized starlike or convex functions and their sequences of partial sums.
Also, Cho and Owa [2], Latha and Shivarudrappa [7], Ghanim and Darus [5] and
Ibrahim and Darus [6] have investigated the ratio of a function f ∈ Σ to its sequence
of partial sums given by

fm(z) =
1

z
+

m∑
k=1

akz
k.

Let the following classes:

ΣS∗a,s (A,B, α, β) , ΣKa,s (A,B, α, β) (−1 5 A < B 5 1, β ∈ C \ Z−0 ; α ∈ C)

and
Σ∗a,s (A,B, α, β) (−1 5 A < B 5 1, β ∈ C \ Z−0 ; α ∈ C)

be the subclasses of functions in Σ satisfying the conditions given by

−
{
z (Lsa(α, β)f ′(z))

Lsa(α, β)f(z)

}
≺ 1 + Az

1 +Bz
(10)(

a ∈ C \ Z−0 ; z ∈ U∗; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1
)
,

−
{
z (Lsa(α, β)f ′′(z))

Lsa(α, β)f ′(z)

}
≺ 1 + Az

1 +Bz
(11)(

a ∈ C \ Z−0 ; z ∈ U∗; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1
)

and

−z2 (Lsa(α, β)f ′(z)) ≺ 1 + Az

1 +Bz
, (12)(

a ∈ C \ Z−0 ; z ∈ U∗; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1
)
,

respectively.
The classes ΣS∗a,0 (2β − 1, 1, α, α) and ΣKa,0 (2β − 1, 1, α, α) are, respectively, the

well-known subclasses of Σ consisting the meromorphic starlike functions of order β,
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the meromorphic convex functions of order β and meromorphic close-to-convex func-
tions of order β denoted by ΣS∗(β), ΣK(β) and Σ∗ (β), respectively.

In the present paper, we give sufficient conditions for a function f to be in the sub-
classes ΣS∗a,s (A,B, α, β) and ΣKa,s (A,B, α, β). We further investigate the ratio of a
function of the form (1) related to the Hurwitz-Lerch zeta function and its sequence of
partial sums when the coefficients are sufficiently small to satisfy the following condi-
tions:

∞∑
k=1

[k (1 +B) + (1 + A)]

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |an| 5 B − A

and
∞∑
k=1

k [k (1 +B) + (1 + A)]

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |an| 5 B − A.

Also, we will study sharp lower bounds for

<
{
Lsa(α, β)f(z)

Lsa(α, β)fm(z)

}
, <

{
Lsa(α, β)fm(z)

Lsa(α, β)f(z)

}
, <

{
Lsa(α, β)f ′(z)

Lsa(α, β)f ′m(z)

}
and

<
{
Lsa(α, β)f ′m(z)

Lsa(α, β)f ′(z)

}
.

Moreover, we will demonstrate an interesting property for the partial sums of cer-
tain integral operators in connection with functions defined by the linear operator
Lsa(α, β)(f)(z) given in the form (7).

2. A Set of Basic Results

Theorem 1. A function f ∈ Σ is said to be a member of the class S∗a,s (A,B, α, β) if
it satisfies the following inequality:

∞∑
k=1

[k (1 +B) + (1 + A)]

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |an| 5 B − A (13)

(
a ∈ C \ Z−0 ; s ∈ C; −1 5 A < B 5 1; z ∈ U∗

)
.

Proof. It suffices to show that∣∣∣∣∣∣
z(Lsa(α,β)f

′(z))
Lsa(α,β)f(z)

+ 1

B
(
z(Lsa(α,β)f

′(z))
Lsa(α,β)f(z)

)
+ A

∣∣∣∣∣∣ < 1

or, equivalently, ∣∣∣∣ z (Lsa(α, β)f ′(z)) + Lsa(α, β)f(z)

Bz (Lsa(α, β)f ′(z)) + ALsa(α, β)f(z)

∣∣∣∣ < 1. (14)
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Rewriting the left part of (14) explicitly with the help of (7) yields∣∣∣∣ z (Lsa(α, β)f ′(z)) + Lsa(α, β)f(z)

Bz (Lsa(α, β)f ′(z)) + ALsa(α, β)f(z)

∣∣∣∣

=

∣∣∣∣∣∣∣∣
∞∑
k=1

(k + 1)
(α)k+1

(β)k+1

(
a+1
a+k

)s
akz

k

(B − A)−
∞∑
k=1

(kB + A)
(α)k+1

(β)k+1

(
a+1
a+k

)s
akzk

∣∣∣∣∣∣∣∣

5

∞∑
k=1

(k + 1)
∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak|
(B − A)−

∞∑
k=1

(kB + A)
∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak| . (15)

The last expression in (15) is bounded by 1 if

∞∑
k=1

(k + 1)

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| 5 (B − A)−
∞∑
k=1

(kB + A)

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|,
which is equivalent to (13). �

In the same way, we can prove Theorem 2 given below.

Theorem 2. A function f ∈ Σ is said to be a member of the class ΣKa,s (A,B, α, β)
if it satisfies the following inequality:

∞∑
k=1

k (k (1 +B) + (1 + A))

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| 5 (B − A) (16)

(
a ∈ C \ Z−0 ; s ∈ C; −1 5 A < B 5 1; z ∈ U∗

)
.

3. Main Results

Theorem 3. If f of the form (1) satisfies (13), then

<
{
Lsa(α, β)f(z)

Lsa(α, β)fm(z)

}
=

2(m+ 1 + A)

2m+ 2 + A+B

∣∣∣∣(β)m+1

(α)m+1

(
a+m

a+ 1

)s∣∣∣∣ . (17)

The result is sharp for every m ∈ N, with extremal function given by

f (z) =
1

z
+

(B − A)

2m+ 2 + A+B

∣∣∣∣(β)m+1

(α)m+1

(
a+m

a+ 1

)s∣∣∣∣ zm+1 (18)

(
a ∈ C \ Z−0 ; s ∈ C; −1 5 A < B 5 1; z ∈ U∗

)
.
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Proof. Consider

2m+ 2 + A+B

B − A

{
Lsa(α, β)f(z)

Lsa(α, β)fm(z)
− 2m+ 2 + 2A

2m+ 2 + A+B

}

=
1+

m∑
k=1

(α)k+1
(β)k+1

( a+1
a+k)

s
akz

k+1+ 2m+2+A+B
B−A

∞∑
k=m+1

(α)k+1
(β)k+1

( a+1
a+k)

s
akz

k+1

1+
m∑
k=1

(α)k+1
(β)k+1

( a+1
a+k)

s
akzk+1

=
1 + A(z)

1 +B(z)
.

Set
1 + A(z)

1 +B(z)
=

1 + w(z)

1− w(z)
,

so that

w(z) =
A(z)−B(z)

2 + A(z) +B(z)
.

Then

w(z) =

2m+2+A+B
B−A

∞∑
k=m+1

(α)k+1
(β)k+1

( a+1
a+k)

s
akz

k+1

2+2
m∑
k=1

(α)k+1
(β)k+1

( a+1
a+k)

s
akzk+1+ 2m+2+A+B

B−A

∞∑
k=m+1

(α)k+1
(β)k+1

( a+1
a+k)

s
akzk+1

and

|w(z)| ≤

2m+2+A+B
B−A

∞∑
k=m+1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak|
2− 2

m∑
k=1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak| − 2m+2+A+B
B−A

∞∑
k=m+1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak| .
Now, clearly, |w(z)| 5 1 if and only if

2

(
2m+ 2 + A+B

B − A

) ∞∑
k=m+1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|
5 2− 2

m∑
k=1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|,
which is equivalent to

m∑
k=1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|
+

(
2m+ 2 + A+B

B − A

) ∞∑
k=m+1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| 5 1. (19)
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It suffices to show that the left-hand side of (19) above is bounded by
∞∑
k=1

[
k (1 +B) + (1 + A)

B − A

] ∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| ,
which is equivalent to

m∑
k=1

[
k (1 +B) + 2A−B + 1

B − A

] ∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|
+

∞∑
k=m+1

[
(k − 1) (1 +B)− 2m

B − A

] ∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| = 0.

To see that the function f given by (18) gives the sharp result, we observe, for

z = re
iπ

(m+2) ,

that

Lsa(α, β)f(z)

Lsa(α, β)fm(z)
= 1 +

(B − A)

2m+ 2 + A+B

∣∣∣∣(β)m+1

(α)m+1

(
a+m

a+ 1

)s∣∣∣∣ zm+2

→ 1− (B − A)

2m+ 2 + A+B

∣∣∣∣(β)m+1

(α)m+1

(
a+m

a+ 1

)s∣∣∣∣
=

2(m+ 1 + A)

(2m+ 2 + A+B)

∣∣∣∣(β)m+1

(α)m+1

(
a+m

a+ 1

)s∣∣∣∣ (20)

when r → 1. Hence, the proof of Theorem 3 is complete. �

Theorem 4. If f of the form (1) satisfies (16), then

<
{
Lsa(α, β)f(z)

Lsa(α, β)fm(z)

}
=

(2m+ 2) (m+ 1) +m (A+B) + 2A

(m+ 1) (2m+ 2 + A+B)

∣∣∣∣(β)m+1

(α)m+1

(
a+m

a+ 1

)s∣∣∣∣ . (21)

The result is sharp for every m ∈ N, with the extremal function given by

f (z) =
1

z
+

(B − A)

2m+ 2 + A+B

∣∣∣∣(β)m+1

(α)m+1

(
a+m

a+ 1

)s∣∣∣∣ zm+1, (22)(
a ∈ C \ Z−0 ; s ∈ C; −1 5 A < B 5 1; z ∈ U∗

)
.

Proof. We write

(m+1)(2m+2+A+B)
B−A

{
Lsa(α,β)f(z)
Lsa(α,β)fm(z)

− (2m+2)(m+1)+(m(A+B)+2A)
(m+1)(2m+2+A+B)

}

=
1+

m∑
k=1

(α)k+1
(β)k+1

( a+1
a+k)

s
akz

k+1+
(m+1)(2m+2+A+B)

B−A

∞∑
k=m+1

(α)k+1
(β)k+1

( a+1
a+k)

s
akz

k+1

1+
m∑
k=1

(α)k+1
(β)k+1

( a+1
a+k)

s
akzk+1
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=
1 + A(z)

1 +B(z)
.

Set
1 + A(z)

1 +B(z)
=

1 + w(z)

1− w(z)
,

so that

w(z) =
A(z)−B(z)

2 + A(z) +B(z)
.

Then

w(z) 5

(m+1)(2m+2+A+B)
B−A

∞∑
k=m+1

(α)k+1
(β)k+1

( a+1
a+k)

s
akz

k+1

2+2
m∑
k=1

(α)k+1
(β)k+1

( a+1
a+k)

s
akzk+1+

(m+1)(2m+2+A+B)
B−A

∞∑
k=m+1

(α)k+1
(β)k+1

( a+1
a+k)

s
akzk+1

.

Now

|w(z)|

5

(m+1)(2m+2+A+B)
B−A

∞∑
k=m+1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak|
2− 2

m∑
k=1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak| − (m+1)(2m+2+A+B)
B−A

∞∑
k=m+1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak|
if

m∑
k=1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|
+

(m+ 1) (2m+ 2 + A+B)

B − A

∞∑
k=m+1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| ≤ 1. (23)

The left-hand side of (23) above is bounded by
∞∑
k=1

(
2m+ 2 + A+B

B − A

) ∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| ,
if

1

B − A

(
m∑
k=1

[k (k (1 +B) + (1 + A))− (B − A)]

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| +
∞∑

k=m+1

[k (k (1 +B) + (1 + A))− (m+ 1) (2m+ 2 + A+B)]

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|
)

= 0.

�



46 H. M. SRIVASTAVA, S. GABOURY AND F. GHANIM

Theorem 5.

(I) If f of the form (1) satisfies the condition (13), then

<
{
Lsa(α, β)fm(z)

Lsa(α, β)f(z)

}
=

(2m+ 2 + A+B)

2 (m+ 1 +B)

∣∣∣∣(α)m+1

(β)m+1

(
a+ 1

a+m

)s∣∣∣∣ ; (24)

(II) If f of the form (1) satisfies condition (16), then

<
{
Lsa(α, β)fm(z)

Lsa(α, β)f(z)

}

=
(m+ 1) (2m+ 2 + A+B)

2(m+ 1) (m+ 1 +B)−m (m+ 1 + A)

∣∣∣∣(α)m+1

(β)m+1

(
a+ 1

a+m

)s∣∣∣∣ (25)

(
a ∈ C \ Z−0 ; s ∈ C; −1 5 A < B 5 1; z ∈ U∗

)
.

Equalities hold true in (I) and (II) for the functions given by (18) and (22), respec-
tively.

Proof. The proof of (II) is similar to the proof of (I). Hence, we will only give the proof
of (I). We have

2 (m+ 1 +B)

B − A

{
Lsa(α, β)fm(z)

Lsa(α, β)f(z)
− (2m+ 2 + A+B)

2 (m+ 1 +B)

}

=

1 +
m∑
k=1

(α)k+1

(β)k+1

(
a+1
a+k

)s
akz

k+1 +
(
2m+2+A+B

B−A

) ∞∑
k=m+1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣akzk+1

1 +
m∑
k=1

(α)k+1

(β)k+1

(
a+1
a+k

)s
akzk+1

=
1 + A(z)

1 +B(z)
.

Set
1 + A(z)

1 +B(z)
=

1 + w(z)

1− w(z)
,

so that

w(z) =
A(z)−B(z)

2 + A(z) +B(z)
.

Then

|w(z)| 5

(
m+1+B
B−A

) ∞∑
k=m+1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak|
2− 2

m∑
k=1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak| − (m+1+A
B−A

) ∞∑
k=m+1

∣∣∣ (α)k+1

(β)k+1

(
a+1
a+k

)s∣∣∣ |ak| .



PARTIAL SUMS OF CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS 47

This last inequality is equivalent to
m∑
k=1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|
+

(
2m+ 2 + A+B

B − A

) ∞∑
k=m+1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak| 5 1. (26)

Since the left-hand side of (26), above, is bounded by
∞∑
k=1

[
k (1 +B) + (1 + A)

B − A

] ∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣ |ak|,
the proof is thus completed. �

Theorem 6. If f of the form (1) satisfies condition (13) with A = −B, then

(I) <
{
Lsa(α, β)f ′(z)

Lsa(α, β)f ′m(z)

}
= 0

and

(II) <
{
Lsa(α, β)f ′m(z)

Lsa(α, β)f ′(z)

}
=

1

2

∣∣∣∣(α)m+1

(β)m+1

(
a+ 1

a+m

)s∣∣∣∣(
a ∈ C \ Z−0 ; s ∈ C; −1 5 A < B 5 1; z ∈ U∗

)
.

In both cases (I) and (II), the extremal function is given by (18) with A = −B.

Proof. Using the same technique as in the proof of Theorem 5 combined with Part (I)
of Theorem 3, the proof of Theorem 6 follows easily. Hence, we will not go through
the details. �

Theorem 7. If f of the form (1) satisfies condition (16), then

(I) <
{
Lsa(α, β)f ′(z)

Lsa(α, β)f ′m(z)

}
=

2 (m+ 1 + A)

(2m+ 2 + A+B)

∣∣∣∣(α)m+1

(β)m+1

(
a+ 1

a+m

)s∣∣∣∣
and

(II) <
{
Lsa(α, β)f ′m(z)

Lsa(α, β)f ′(z)

}
=

(2m+ 2 + A+B)

2 (m+ 1 +B)

∣∣∣∣(α)m+1

(β)m+1

(
a+ 1

a+m

)s∣∣∣∣ ,
(
a ∈ C \ Z−0 ; s ∈ C; −1 5 A < B 5 1; z ∈ U∗

)
.

In both cases (I) and (II), the extremal function is given by (22).

Proof. It is well known that

f ∈ ΣKa,s (A,B, α, β)⇔ −zf ′ ∈ ΣS∗a,s (A,B, α, β) .

In particular, f(z) satisfies the condition (16) if and only if −zf ′(z) satisfies condition
(13). Thus (I) is an immediate consequence of Theorem 3 and (II) follows directly from
(I) of Theorem 7. �
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4. A Family of Integral Operators

For a function f ∈ Lsa (α, β) f (z), we define the integral operator F (z) as follows

F (z) =
1

z2

z∫
0

tf (t)dt =
1

z
+
∞∑
k=1

(α)k+1

(k + 2) (β)k+1

(
a+ 1

a+ k

)s
akz

k, (z ∈ U∗).

The mth partial sum Fm(z) of the function F (z) is given by

Fm (z) =
1

z
+

m∑
k=1

(α)k+1

(k + 2) (β)k+1

(
a+ 1

a+ k

)s
akz

k, (z ∈ U∗).

The following lemmas will be required for the proof of Theorem 8 given below.

Lemma 1. For 0 5 θ 5 π,

1

2
+

m∑
k=1

cos (kθ)

k + 1
= 0.

Lemma 2. Let P be analytic in U with P (0) = 1 and <{P (z)} > 1
2

be in U . For any
function Q which is analytic in U, the function P ∗ Q takes values in the convex hull
of the image on U under Q.

Lemma 1 is due to Rogosinski and Szego [21] and Lemma 2 is a well known result
(c.f. [[1] and [10]]) that can be derived from the Herglotz representation for P .

After giving the above lemmas, we can proceed to the proof of our last result.

Theorem 8. If f ∈ ΣKa,s (A,B, α, β), then Fm ∈ ΣKa,s (A,B, α, β).

Proof. Let f be of the form (7) and belongs to the class ΣKa,s (A,B, α, β). Then we
have

<

(
1− 1

B − A

∞∑
k=1

k
(α)k+1

(β)k+1

(
a+ 1

a+ k

)s
akz

k+1

)
>

1

2
(z ∈ U∗). (27)

Applying the convolution properties of power series to F ′m(z), we may write

−z2F ′m(z) = 1−
m∑
k=1

k

k + 2

(α)k+1

(β)k+1

(
a+ 1

a+ k

)s
akz

k+1

=

(
1 +

1

B − A

∞∑
k=1

(α)k+1

(β)k+1

(
a+ 1

a+ k

)s
akz

k+1

)

∗

(
1 + (B − A)

m+1∑
k=1

1

k + 1

(α)k+1

(β)k+1

(
a+ 1

a+ k

)s
zk+1

)
. (28)

Putting
z = reiθ (0 5 r < 1; 0 5 |θ| 5 π)
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and making use of the Minimum Modulus Principle for harmonic functions in conjunc-
tion with Lemma 1, we obtain

<

(
1 + (B − A)

m+1∑
k=1

1

k + 1

(α)k+1

(β)k+1

(
a+ 1

a+ k

)s
zk+1

)

= 1− (B − A)
m+1∑
k=1

rk cos(kθ)

k + 1

∣∣∣∣(α)k+1

(β)k+1

(
a+ 1

a+ k

)s∣∣∣∣
> 1− (B − A)

m+1∑
k=1

rk cos (kθ)

k + 1

= 1−
(
B − A

2

)
. (29)

Finally, in view of (27), (28), (29) and Lemma 2, we deduce that

−<
{
z2f ′(z)

}
> 1−

(
B − A

2

)
(0 5 A+B < 2; z ∈ U∗),

which completes the proof of Theorem 8. �

5. Concluding Remarks and Observations

In the present investigation, we have derived sufficient conditions for a function f to
be in the above-defined subclasses ΣS∗a,s (A,B, α, β) and ΣKa,s (A,B, α, β) of the class
Σ of meromprphic functions which are analytic in the puntured unit disk U∗. We have
further investigated the ratio of a function related to the Hurwitz-Lerch zeta function
Φ(z, s, a) and its sequence of partial sums. The various results which we have presented
here would extend and improve several earlier studies on the subject of this paper.

Open Access: This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction
in any medium, provided the original author(s) and the source are credited.
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