Moroccan J. Pure and Appl. Anal.(MJPAA) Volume 1(1), 2015, Pages 38–50 ISSN: 2351-8227 **RESEARCH ARTICLE**

Partial Sums of Certain Classes of Meromorphic Functions Related to the Hurwitz-Lerch Zeta Function

H. M. SRIVASTAVA^{1,*}, S. GABOURY² AND F. GHANIM³

ABSTRACT. In the present paper, we give sufficient conditions for a function f to be in the subclasses $\Sigma S^*_{a,s}(A, B, \alpha, \beta)$ and $\Sigma \mathcal{K}_{a,s}(A, B, \alpha, \beta)$ of the class Σ of meromorphic functions which are analytic in the punctured unit disk \mathbb{U}^* . We further investigate the ratio of a function related to the Hurwitz-Lerch zeta function and its sequence of partial sums.

2010 Mathematics Subject Classification. 30C45, 11M35, 30C10.

Key words and phrases. Analytic functions; Partial sums; Meromorphic functions; Integral operators; Meromorphic starlike functions; Meromorphic convex functions; Meromorphic close-to-convex functions; Hurwitz-Lerch zeta function; Hadamard product.

1. Introduction and Preliminaries

Let Σ denote the class of meromorphic functions f(z) normalized by

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k,$$
(1)

which are analytic in the puntured unit disk

$$\mathbb{U}^* = \{ z : z \in \mathbb{C} \quad \text{and} \quad 0 < |z| < 1 \} = \mathbb{U} \setminus \{ 0 \},$$

Received April 15, 2015 - Accepted June 25, 2015.

*Corresponding Author

 $[\]textcircled{C}$ The Author(s) 2015. This article is published with open access by Sidi Mohamed Ben Abdallah University

¹Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada. E-Mail: harimsri@math.uvic.ca

²Department of Mathematics and Computer Science, University of Québec at Chicoutimi, Chicoutimi, Québec G7H 2B1, Canada. E-Mail: s1gabour@uqac.ca

³Department of Mathematics, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates. E-Mail: fgahmed@sharjah.ac.ae

 \mathbb{C} being (as usual) the set of complex numbers. We denote by $\Sigma \mathcal{S}^*(\beta)$ and $\Sigma \mathcal{K}(\beta)$ ($\beta \geq 0$) the subclasses of Σ consisting of all meromorphic functions which are, respectively, starlike of order β and convex of order β in \mathbb{U}^* (see also the recent works [19] and [20]).

For functions $f_j(z)$ (j = 1, 2) defined by

$$f_j(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_{k,j} z^k \qquad (j = 1, 2),$$
(2)

we denote the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_{k,1} a_{k,2} z^k.$$
(3)

Let us consider the function $\widetilde{\phi}(\alpha,\beta;z)$ defined by

$$\widetilde{\phi}(\alpha,\beta;z) = \frac{1}{z} + \sum_{k=0}^{\infty} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} a_k z^k$$

$$\left(\beta \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ \alpha \in \mathbb{C}\right),$$

$$(4)$$

where

$$\mathbb{Z}_0^- = \{0, -1, -2, \cdots\} = \mathbb{Z}^- \cup \{0\}.$$

Here, and in the remainder of this paper, $(\lambda)_{\kappa}$ denotes the general Pochhammer symbol defined, in terms of the Gamma function, by

$$(\lambda)_{\kappa} := \frac{\Gamma(\lambda+\kappa)}{\Gamma(\lambda)} = \begin{cases} \lambda(\lambda+1)\cdots(\lambda+n-1) & (\kappa=n\in\mathbb{N};\ \lambda\in\mathbb{C})\\ 1 & (\kappa=0;\ \lambda\in\mathbb{C}\setminus\{0\}), \end{cases}$$
(5)

it being understood *conventionally* that $(0)_0 := 1$ and assumed *tacitly* that the Γ quotient exists (see, for details, [18, p. 21 *et seq.*]), \mathbb{N} being the set of positive integers.

It is easy to see that, in the case when $a_k = 1$ $(k = 0, 1, 2, \dots)$, the following relationship holds true between the function $\tilde{\phi}(\alpha, \beta; z)$ and the Gaussian hypergeometric function [8]:

$$\widetilde{\phi}(\alpha,\beta;z) = \frac{1}{z} {}_2F_1(1,\alpha;\beta;z).$$
(6)

Very recently, Ghanim ([3]; see also [4]) made use of the Hadamard product for functions $f(z) \in \Sigma$ in order to introduce a new linear operator $L_a^s(\alpha, \beta)$ defined on Σ by

$$L_{a}^{s}(\alpha,\beta)(f)(z) = \widetilde{\phi}(\alpha,\beta;z) * G_{s,a}(z)$$
$$= \frac{1}{z} + \sum_{k=1}^{\infty} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s} a_{k} z^{k} \quad (z \in \mathbb{U}^{*}),$$
(7)

where

$$G_{s,a}(z) := (a+1)^{s} \left[\Phi(z,s,a) - a^{-s} + \frac{1}{z(a+1)^{s}} \right]$$
$$= \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{a+1}{a+k} \right)^{s} z^{k} \qquad (z \in \mathbb{U}^{*})$$
(8)

and the function $\Phi(z, s, a)$ is the well-known Hurwitz-Lerch zeta function defined by (see, for example, [13, p. 121 et seq.]; see also [11], [12], [15], [16], [17] and [14, p. 194 $et \ seq.$

$$\Phi(z, s, a) := \sum_{k=0}^{\infty} \frac{z^k}{(k+a)^s}$$

$$(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C} \text{ when } |z| < 1; \ \Re(s) > 1 \text{ when } |z| = 1).$$

Silverman [9] determined sharp lower bounds on the real part of the quotients between the normalized starlike or convex functions and their sequences of partial sums. Also, Cho and Owa [2], Latha and Shivarudrappa [7], Ghanim and Darus [5] and Ibrahim and Darus [6] have investigated the ratio of a function $f \in \Sigma$ to its sequence of partial sums given by

$$f_m(z) = \frac{1}{z} + \sum_{k=1}^m a_k z^k.$$

Let the following classes:

 $\Sigma \mathcal{S}_{a,s}^* \left(A, B, \alpha, \beta \right), \quad \Sigma \mathcal{K}_{a,s} \left(A, B, \alpha, \beta \right) \qquad \left(-1 \leq A < B \leq 1, \ \beta \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ \alpha \in \mathbb{C} \right)$

and

$$\Sigma_{a,s}^* \left(A, B, \alpha, \beta \right) \qquad \left(-1 \leq A < B \leq 1, \ \beta \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ \alpha \in \mathbb{C} \right)$$

be the subclasses of functions in Σ satisfying the conditions given by

$$-\left\{\frac{z\left(L_a^s(\alpha,\beta)f'(z)\right)}{L_a^s(\alpha,\beta)f(z)}\right\} \prec \frac{1+Az}{1+Bz}$$
(10)

$$(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; z \in \mathbb{U}^*; s \in \mathbb{C} \text{ when } |z| < 1; \Re(s) > 1 \text{ when } |z| = 1),$$

$$-\left\{\frac{z\left(L_a^s(\alpha,\beta)f''(z)\right)}{L_a^s(\alpha,\beta)f'(z)}\right\} \prec \frac{1+Az}{1+Bz}$$
(11)

$$(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; z \in \mathbb{U}^*; s \in \mathbb{C} \text{ when } |z| < 1; \Re(s) > 1 \text{ when } |z| = 1)$$

and

$$-z^2 \left(L_a^s(\alpha,\beta) f'(z) \right) \prec \frac{1+Az}{1+Bz},\tag{12}$$

$$(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; z \in \mathbb{U}^*; s \in \mathbb{C} \text{ when } |z| < 1; \Re(s) > 1 \text{ when } |z| = 1),$$

respectively.

The classes $\Sigma \mathcal{S}_{a,0}^*(2\beta - 1, 1, \alpha, \alpha)$ and $\Sigma \mathcal{K}_{a,0}(2\beta - 1, 1, \alpha, \alpha)$ are, respectively, the well-known subclasses of Σ consisting the meromorphic starlike functions of order β ,

the meromorphic convex functions of order β and meromorphic close-to-convex functions of order β denoted by $\Sigma S^*(\beta)$, $\Sigma \mathcal{K}(\beta)$ and $\Sigma^*(\beta)$, respectively.

In the present paper, we give sufficient conditions for a function f to be in the subclasses $\Sigma S_{a,s}^*(A, B, \alpha, \beta)$ and $\Sigma \mathcal{K}_{a,s}(A, B, \alpha, \beta)$. We further investigate the ratio of a function of the form (1) related to the Hurwitz-Lerch zeta function and its sequence of partial sums when the coefficients are sufficiently small to satisfy the following conditions:

$$\sum_{k=1}^{\infty} \left[k \left(1+B \right) + \left(1+A \right) \right] \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_n| \le B - A$$

and

$$\sum_{k=1}^{\infty} k \left[k \left(1+B \right) + (1+A) \right] \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_n| \le B - A.$$

Also, we will study sharp lower bounds for

$$\Re\left\{\frac{L_a^s(\alpha,\beta)f(z)}{L_a^s(\alpha,\beta)f_m(z)}\right\}, \quad \Re\left\{\frac{L_a^s(\alpha,\beta)f_m(z)}{L_a^s(\alpha,\beta)f(z)}\right\}, \quad \Re\left\{\frac{L_a^s(\alpha,\beta)f'(z)}{L_a^s(\alpha,\beta)f'_m(z)}\right\}$$

and

$$\Re\left\{\frac{L^s_a(\alpha,\beta)f'_m(z)}{L^s_a(\alpha,\beta)f'(z)}\right\}.$$

Moreover, we will demonstrate an interesting property for the partial sums of certain integral operators in connection with functions defined by the linear operator $L_a^s(\alpha,\beta)(f)(z)$ given in the form (7).

2. A Set of Basic Results

Theorem 1. A function $f \in \Sigma$ is said to be a member of the class $S_{a,s}^*(A, B, \alpha, \beta)$ if it satisfies the following inequality:

$$\sum_{k=1}^{\infty} \left[k \left(1+B \right) + \left(1+A \right) \right] \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| \left| a_n \right| \leq B - A$$

$$\left(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}; \ -1 \leq A < B \leq 1; \ z \in \mathbb{U}^* \right).$$

$$(13)$$

Proof. It suffices to show that

$$\left|\frac{\frac{z(L_a^s(\alpha,\beta)f'(z))}{L_a^s(\alpha,\beta)f(z)} + 1}{B\left(\frac{z(L_a^s(\alpha,\beta)f'(z))}{L_a^s(\alpha,\beta)f(z)}\right) + A}\right| < 1$$

or, equivalently,

$$\left|\frac{z\left(L_{a}^{s}(\alpha,\beta)f'(z)\right)+L_{a}^{s}(\alpha,\beta)f(z)}{Bz\left(L_{a}^{s}(\alpha,\beta)f'(z)\right)+AL_{a}^{s}(\alpha,\beta)f(z)}\right|<1.$$
(14)

Rewriting the left part of (14) explicitly with the help of (7) yields

$$\left| \frac{z \left(L_{a}^{s}(\alpha,\beta) f'(z) \right) + L_{a}^{s}(\alpha,\beta) f(z)}{Bz \left(L_{a}^{s}(\alpha,\beta) f'(z) \right) + AL_{a}^{s}(\alpha,\beta) f(z)} \right|$$

$$= \left| \frac{\sum_{k=1}^{\infty} \left(k+1 \right) \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} a_{k} z^{k}}{(B-A) - \sum_{k=1}^{\infty} \left(kB+A \right) \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} a_{k} z^{k}} \right|$$

$$\leq \frac{\sum_{k=1}^{\infty} \left(k+1 \right) \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| |a_{k}|}{(B-A) - \sum_{k=1}^{\infty} \left(kB+A \right) \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| |a_{k}|}.$$
(15)

The last expression in (15) is bounded by 1 if

$$\sum_{k=1}^{\infty} (k+1) \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k| \leq (B-A) - \sum_{k=1}^{\infty} (kB+A) \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k|,$$
which is equivalent to (13).

which is equivalent to (13).

In the same way, we can prove Theorem 2 given below.

Theorem 2. A function $f \in \Sigma$ is said to be a member of the class $\Sigma \mathcal{K}_{a,s}(A, B, \alpha, \beta)$ *if it satisfies the following inequality:*

$$\sum_{k=1}^{\infty} k \left(k \left(1+B \right) + \left(1+A \right) \right) \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k| \leq (B-A)$$

$$\left(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}; \ -1 \leq A < B \leq 1; \ z \in \mathbb{U}^* \right).$$

$$(16)$$

3. Main Results

Theorem 3. If f of the form (1) satisfies (13), then

$$\Re\left\{\frac{L_a^s(\alpha,\beta)f(z)}{L_a^s(\alpha,\beta)f_m(z)}\right\} \ge \frac{2(m+1+A)}{2m+2+A+B} \left|\frac{(\beta)_{m+1}}{(\alpha)_{m+1}} \left(\frac{a+m}{a+1}\right)^s\right|.$$
(17)

The result is sharp for every $m \in \mathbb{N}$, with extremal function given by

$$f(z) = \frac{1}{z} + \frac{(B-A)}{2m+2+A+B} \left| \frac{(\beta)_{m+1}}{(\alpha)_{m+1}} \left(\frac{a+m}{a+1} \right)^s \right| z^{m+1}$$

$$\left(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}; \ -1 \leq A < B \leq 1; \ z \in \mathbb{U}^* \right).$$

$$(18)$$

Proof. Consider

$$\frac{2m+2+A+B}{B-A} \left\{ \frac{L_a^s(\alpha,\beta)f(z)}{L_a^s(\alpha,\beta)f_m(z)} - \frac{2m+2+2A}{2m+2+A+B} \right\}$$
$$= \frac{1+\sum_{k=1}^m \frac{(\alpha)_{k+1}}{(\beta)_{k+1} \left(\frac{a+1}{a+k}\right)^s a_k z^{k+1} + \frac{2m+2+A+B}{B-A}}{1+\sum_{k=1}^m \frac{(\alpha)_{k+1}}{(\beta)_{k+1} \left(\frac{a+1}{a+k}\right)^s a_k z^{k+1}}}$$
$$= \frac{1+A(z)}{1+B(z)}.$$

 Set

$$\frac{1+A(z)}{1+B(z)} = \frac{1+w(z)}{1-w(z)},$$

so that

$$w(z) = \frac{A(z) - B(z)}{2 + A(z) + B(z)}.$$

Then

$$w(z) = \frac{\frac{2m+2+A+B}{B-A}\sum_{k=m+1}^{\infty} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^s a_k z^{k+1}}{2+2\sum_{k=1}^{m} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^s a_k z^{k+1} + \frac{2m+2+A+B}{B-A}\sum_{k=m+1}^{\infty} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^s a_k z^{k+1}}$$

and

$$|w(z)| \leq \frac{\frac{2m+2+A+B}{B-A} \sum_{k=m+1}^{\infty} \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k|}{2 - 2 \sum_{k=1}^m \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k| - \frac{2m+2+A+B}{B-A} \sum_{k=m+1}^\infty \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k|}.$$

Now, clearly, $|w(z)| \leq 1$ if and only if

$$2\left(\frac{2m+2+A+B}{B-A}\right)\sum_{k=m+1}^{\infty}\left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}\right||a_{k}|$$
$$\leq 2-2\sum_{k=1}^{m}\left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}\right||a_{k}|,$$

which is equivalent to

$$\sum_{k=1}^{m} \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| |a_{k}|$$
$$+ \left(\frac{2m+2+A+B}{B-A} \right) \sum_{k=m+1}^{\infty} \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| |a_{k}| \leq 1.$$
(19)

It suffices to show that the left-hand side of (19) above is bounded by

$$\sum_{k=1}^{\infty} \left[\frac{k\left(1+B\right)+\left(1+A\right)}{B-A} \right] \left| \frac{\left(\alpha\right)_{k+1}}{\left(\beta\right)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s} \right| \left|a_{k}\right|,$$

which is equivalent to

$$\sum_{k=1}^{m} \left[\frac{k(1+B) + 2A - B + 1}{B - A} \right] \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k| + \sum_{k=m+1}^{\infty} \left[\frac{(k-1)(1+B) - 2m}{B - A} \right] \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k| \ge 0.$$

To see that the function f given by (18) gives the sharp result, we observe, for

$$z = r \mathrm{e}^{\frac{i\pi}{(m+2)}},$$

that

$$\frac{L_a^s(\alpha,\beta)f(z)}{L_a^s(\alpha,\beta)f_m(z)} = 1 + \frac{(B-A)}{2m+2+A+B} \left| \frac{(\beta)_{m+1}}{(\alpha)_{m+1}} \left(\frac{a+m}{a+1} \right)^s \right| z^{m+2}
\rightarrow 1 - \frac{(B-A)}{2m+2+A+B} \left| \frac{(\beta)_{m+1}}{(\alpha)_{m+1}} \left(\frac{a+m}{a+1} \right)^s \right|
= \frac{2(m+1+A)}{(2m+2+A+B)} \left| \frac{(\beta)_{m+1}}{(\alpha)_{m+1}} \left(\frac{a+m}{a+1} \right)^s \right|$$
(20)

1. Hence, the proof of Theorem 3 is complete.

when $r \to 1$. Hence, the proof of Theorem 3 is complete.

Theorem 4. If f of the form (1) satisfies (16), then

$$\Re\left\{\frac{L_a^s(\alpha,\beta)f(z)}{L_a^s(\alpha,\beta)f_m(z)}\right\} \ge \frac{(2m+2)\left(m+1\right)+m\left(A+B\right)+2A}{(m+1)\left(2m+2+A+B\right)}\left|\frac{(\beta)_{m+1}}{(\alpha)_{m+1}}\left(\frac{a+m}{a+1}\right)^s\right|.$$
(21)

The result is sharp for every $m \in \mathbb{N}$, with the extremal function given by

$$f(z) = \frac{1}{z} + \frac{(B-A)}{2m+2+A+B} \left| \frac{(\beta)_{m+1}}{(\alpha)_{m+1}} \left(\frac{a+m}{a+1} \right)^s \right| z^{m+1}, \qquad (22)$$
$$\left(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}; \ -1 \leq A < B \leq 1; \ z \in \mathbb{U}^* \right).$$

Proof. We write

$$=\frac{\frac{(m+1)(2m+2+A+B)}{B-A}\left\{\frac{L_{a}^{s}(\alpha,\beta)f(z)}{L_{a}^{s}(\alpha,\beta)f_{m}(z)}-\frac{(2m+2)(m+1)+(m(A+B)+2A)}{(m+1)(2m+2+A+B)}\right\}}{1+\sum_{k=1}^{m}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}a_{k}z^{k+1}+\frac{(m+1)(2m+2+A+B)}{B-A}\sum_{k=m+1}^{\infty}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}a_{k}z^{k+1}}{1+\sum_{k=1}^{m}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}a_{k}z^{k+1}}$$

$$=\frac{1+A(z)}{1+B(z)}.$$

 Set

$$\frac{1+A(z)}{1+B(z)} = \frac{1+w(z)}{1-w(z)},$$

so that

$$w(z) = \frac{A(z) - B(z)}{2 + A(z) + B(z)}.$$

Then

$$w(z) \leq \frac{\frac{(m+1)(2m+2+A+B)}{B-A}\sum_{k=m+1}^{\infty}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^s a_k z^{k+1}}{2+2\sum_{k=1}^{m}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^s a_k z^{k+1} + \frac{(m+1)(2m+2+A+B)}{B-A}\sum_{k=m+1}^{\infty}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^s a_k z^{k+1}}.$$

Now

|w(z)|

$$\leq \frac{\frac{(m+1)(2m+2+A+B)}{B-A}\sum_{k=m+1}^{\infty} \left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s}\right| |a_{k}|}{2 - 2\sum_{k=1}^{m} \left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s}\right| |a_{k}| - \frac{(m+1)(2m+2+A+B)}{B-A}\sum_{k=m+1}^{\infty} \left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s}\right| |a_{k}|}$$

if

$$\sum_{k=1}^{m} \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| |a_{k}|$$

$$+\frac{(m+1)(2m+2+A+B)}{B-A}\sum_{k=m+1}^{\infty}\left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}\right||a_{k}| \le 1.$$
(23)

The left-hand side of (23) above is bounded by

$$\sum_{k=1}^{\infty} \left(\frac{2m+2+A+B}{B-A} \right) \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right| |a_k|,$$

if

$$\frac{1}{B-A} \left(\sum_{k=1}^{m} \left[k \left(k \left(1+B \right) + \left(1+A \right) \right) - \left(B-A \right) \right] \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| \left| a_{k} \right| + \sum_{k=m+1}^{\infty} \left[k \left(k \left(1+B \right) + \left(1+A \right) \right) - \left(m+1 \right) \left(2m+2+A+B \right) \right] \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| \left| a_{k} \right| \right)$$

 $\geqq 0.$

Theorem 5.

(I) If
$$f$$
 of the form (1) satisfies the condition (13), then

$$\Re\left\{\frac{L_a^s(\alpha,\beta)f_m(z)}{L_a^s(\alpha,\beta)f(z)}\right\} \ge \frac{(2m+2+A+B)}{2(m+1+B)} \left|\frac{(\alpha)_{m+1}}{(\beta)_{m+1}} \left(\frac{a+1}{a+m}\right)^s\right|;$$
(24)

(II) If f of the form (1) satisfies condition (16), then

$$\Re\left\{\frac{L_a^s(\alpha,\beta)f_m(z)}{L_a^s(\alpha,\beta)f(z)}\right\}$$

$$\geq \frac{(m+1)\left(2m+2+A+B\right)}{2(m+1)\left(m+1+B\right)-m\left(m+1+A\right)}\left|\frac{(\alpha)_{m+1}}{(\beta)_{m+1}}\left(\frac{a+1}{a+m}\right)^s\right| \qquad (25)$$

$$\left(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}; \ -1 \leq A < B \leq 1; \ z \in \mathbb{U}^*\right).$$

Equalities hold true in (I) and (II) for the functions given by (18) and (22), respectively.

Proof. The proof of (II) is similar to the proof of (I). Hence, we will only give the proof of (I). We have

$$=\frac{2\left(m+1+B\right)}{B-A}\left\{\frac{L_{a}^{s}(\alpha,\beta)f_{m}(z)}{L_{a}^{s}(\alpha,\beta)f(z)}-\frac{(2m+2+A+B)}{2\left(m+1+B\right)}\right\}$$
$$=\frac{1+\sum_{k=1}^{m}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}a_{k}z^{k+1}+\left(\frac{2m+2+A+B}{B-A}\right)\sum_{k=m+1}^{\infty}\left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}\right|a_{k}z^{k+1}}{1+\sum_{k=1}^{m}\frac{(\alpha)_{k+1}}{(\beta)_{k+1}}\left(\frac{a+1}{a+k}\right)^{s}a_{k}z^{k+1}}$$
$$=\frac{1+A(z)}{1+B(z)}.$$

 Set

$$\frac{1+A(z)}{1+B(z)} = \frac{1+w(z)}{1-w(z)},$$

so that

$$w(z) = \frac{A(z) - B(z)}{2 + A(z) + B(z)}.$$

Then

$$|w(z)| \leq \frac{\left(\frac{m+1+B}{B-A}\right)\sum_{k=m+1}^{\infty} \left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s}\right| |a_{k}|}{2 - 2\sum_{k=1}^{m} \left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s}\right| |a_{k}| - \left(\frac{m+1+A}{B-A}\right) \sum_{k=m+1}^{\infty} \left|\frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s}\right| |a_{k}|}.$$

This last inequality is equivalent to

$$\sum_{k=1}^{m} \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| |a_{k}| + \left(\frac{2m+2+A+B}{B-A} \right) \sum_{k=m+1}^{\infty} \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^{s} \right| |a_{k}| \leq 1.$$

$$(26)$$

Since the left-hand side of (26), above, is bounded by

$$\sum_{k=1}^{\infty} \left[\frac{k\left(1+B\right) + \left(1+A\right)}{B-A} \right] \left| \frac{\left(\alpha\right)_{k+1}}{\left(\beta\right)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s} \right| |a_{k}|,$$

the proof is thus completed.

Theorem 6. If f of the form (1) satisfies condition (13) with A = -B, then

(I)
$$\Re\left\{\frac{L_a^s(\alpha,\beta)f'(z)}{L_a^s(\alpha,\beta)f'_m(z)}\right\} \ge 0$$

and

(II)
$$\Re\left\{\frac{L_a^s(\alpha,\beta)f'_m(z)}{L_a^s(\alpha,\beta)f'(z)}\right\} \ge \frac{1}{2} \left|\frac{(\alpha)_{m+1}}{(\beta)_{m+1}} \left(\frac{a+1}{a+m}\right)^s\right|$$
$$\left(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ s \in \mathbb{C}; \ -1 \le A < B \le 1; \ z \in \mathbb{U}^*\right).$$

In both cases (I) and (II), the extremal function is given by (18) with A = -B.

Proof. Using the same technique as in the proof of Theorem 5 combined with Part (I) of Theorem 3, the proof of Theorem 6 follows easily. Hence, we will not go through the details. \Box

Theorem 7. If f of the form (1) satisfies condition (16), then

(I)
$$\Re\left\{\frac{L_a^s(\alpha,\beta)f'(z)}{L_a^s(\alpha,\beta)f'_m(z)}\right\} \ge \frac{2(m+1+A)}{(2m+2+A+B)} \left|\frac{(\alpha)_{m+1}}{(\beta)_{m+1}} \left(\frac{a+1}{a+m}\right)^s\right|$$

and

(II)
$$\Re\left\{\frac{L_a^s(\alpha,\beta)f_m'(z)}{L_a^s(\alpha,\beta)f'(z)}\right\} \ge \frac{(2m+2+A+B)}{2(m+1+B)} \left|\frac{(\alpha)_{m+1}}{(\beta)_{m+1}} \left(\frac{a+1}{a+m}\right)^s\right|,$$

$$(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; s \in \mathbb{C}; -1 \leq A < B \leq 1; z \in \mathbb{U}^*).$$

In both cases (I) and (II), the extremal function is given by (22).

Proof. It is well known that

$$f \in \Sigma \mathcal{K}_{a,s}\left(A, B, \alpha, \beta\right) \Leftrightarrow -zf' \in \Sigma \mathcal{S}_{a,s}^*\left(A, B, \alpha, \beta\right)$$

In particular, f(z) satisfies the condition (16) if and only if -zf'(z) satisfies condition (13). Thus (I) is an immediate consequence of Theorem 3 and (II) follows directly from (I) of Theorem 7.

4. A Family of Integral Operators

For a function $f \in L_a^s(\alpha, \beta) f(z)$, we define the integral operator F(z) as follows

$$F(z) = \frac{1}{z^2} \int_{0}^{z} tf(t)dt = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{(\alpha)_{k+1}}{(k+2)(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^s a_k z^k, \quad (z \in \mathbb{U}^*).$$

The *m*th partial sum $F_m(z)$ of the function F(z) is given by

$$F_m(z) = \frac{1}{z} + \sum_{k=1}^m \frac{(\alpha)_{k+1}}{(k+2)(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^s a_k z^k, \quad (z \in \mathbb{U}^*).$$

The following lemmas will be required for the proof of Theorem 8 given below.

Lemma 1. For $0 \leq \theta \leq \pi$,

$$\frac{1}{2} + \sum_{k=1}^{m} \frac{\cos\left(k\theta\right)}{k+1} \ge 0.$$

Lemma 2. Let P be analytic in U with P(0) = 1 and $\Re \{P(z)\} > \frac{1}{2}$ be in U. For any function Q which is analytic in U, the function P * Q takes values in the convex hull of the image on U under Q.

Lemma 1 is due to Rogosinski and Szego [21] and Lemma 2 is a well known result (c.f. [[1] and [10]]) that can be derived from the Herglotz representation for P.

After giving the above lemmas, we can proceed to the proof of our last result.

Theorem 8. If $f \in \Sigma \mathcal{K}_{a,s}(A, B, \alpha, \beta)$, then $F_m \in \Sigma \mathcal{K}_{a,s}(A, B, \alpha, \beta)$.

Proof. Let f be of the form (7) and belongs to the class $\Sigma \mathcal{K}_{a,s}(A, B, \alpha, \beta)$. Then we have

$$\Re\left(1 - \frac{1}{B - A}\sum_{k=1}^{\infty} k \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^s a_k z^{k+1}\right) > \frac{1}{2} \qquad (z \in \mathbb{U}^*).$$
(27)

Applying the convolution properties of power series to $F'_m(z)$, we may write

$$-z^{2}F_{m}'(z) = 1 - \sum_{k=1}^{m} \frac{k}{k+2} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s} a_{k} z^{k+1}$$

$$= \left(1 + \frac{1}{B-A} \sum_{k=1}^{\infty} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s} a_{k} z^{k+1}\right)$$

$$* \left(1 + (B-A) \sum_{k=1}^{m+1} \frac{1}{k+1} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k}\right)^{s} z^{k+1}\right).$$
(28)

Putting

$$z = r e^{i\theta}$$
 $(0 \le r < 1; \ 0 \le |\theta| \le \pi)$

and making use of the *Minimum Modulus Principle* for harmonic functions in conjunction with Lemma 1, we obtain

$$\Re \left(1 + (B - A) \sum_{k=1}^{m+1} \frac{1}{k+1} \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s z^{k+1} \right)$$

$$\geq 1 - (B - A) \sum_{k=1}^{m+1} \frac{r^k \cos(k\theta)}{k+1} \left| \frac{(\alpha)_{k+1}}{(\beta)_{k+1}} \left(\frac{a+1}{a+k} \right)^s \right|$$

$$> 1 - (B - A) \sum_{k=1}^{m+1} \frac{r^k \cos(k\theta)}{k+1}$$

$$\geq 1 - \left(\frac{B - A}{2} \right).$$
(29)

Finally, in view of (27), (28), (29) and Lemma 2, we deduce that

$$-\Re\left\{z^{2}f'(z)\right\} > 1 - \left(\frac{B-A}{2}\right) \quad (0 \le A + B < 2; \ z \in \mathbb{U}^{*}),$$

which completes the proof of Theorem 8.

5. Concluding Remarks and Observations

In the present investigation, we have derived sufficient conditions for a function f to be in the above-defined subclasses $\Sigma S_{a,s}^*(A, B, \alpha, \beta)$ and $\Sigma \mathcal{K}_{a,s}(A, B, \alpha, \beta)$ of the class Σ of merompric functions which are analytic in the puntured unit disk \mathbb{U}^* . We have further investigated the ratio of a function related to the Hurwitz-Lerch zeta function $\Phi(z, s, a)$ and its sequence of partial sums. The various results which we have presented here would extend and improve several earlier studies on the subject of this paper.

Open Access: This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

- A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Company, Tampa, Florida, 1983.
- [2] N. E. Cho and S. Owa, On partial sums of certain meromorphic functions, J. Inequal. Pure Appl. Math. 5 (2) (2004), Article 30, 1–7.
- [3] F. Ghanim, A study of a certain subclass of Hurwitz-Lerch zeta function related to a linear operator, Abstr. Appl. Anal. 2013 (2013), Article ID 763756, 1–7.
- [4] F. Ghanim and M. Darus, New result of analytic functions related to Hurwitz-Zeta function, The Sci. World J. 2013 (2013), Article ID 475643, 1–5.
- [5] F. Ghanim and M. Darus, Partial sums of certain new subclasses for meromorphic functions, Far East J. Math. Sci. 55 (2011), 181–195.

- [6] R. W. Ibrahim and M. Darus, Partial sums for certain classes of meromorphic functions, *Tamkang J. Math.* 41 (2010), 39–49.
- [7] S. Latha and L. Shivarudrappa, Partial sum of meromorphic functions, J. Inequal. Pure Appl. Math. 7 (4) (2006), Article 140, 1–8.
- [8] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
- [9] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221–227.
- [10] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), 145–152.
- [11] H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), 77–84.
- [12] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011), 390–444.
- [13] H. M. Srivastava and J. Choi, Series Associated with Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
- [14] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
- [15] H. M. Srivastava, S. Gaboury and F. Ghanim, Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the λ -generalized Hurwitz-Lerch zeta function, *Integral Transforms Spec. Funct.* **26** (2015), 258–272.
- [16] H. M. Srivastava, S. Gaboury and F. Ghanim, Some further properties of a linear operator associated with the λ -generalized Hurwitz-Lerch zeta function related to the class of meromorphically univalent functions, *Appl. Math. Comput.* **259** (2015), 1019–1029.
- [17] H. M. Srivastava, S. Gaboury and F. Ghanim, A study of meromorphically univalent functions defined by a linear operator associated with the λ -generalized Hurwitz-Lerch zeta function, Preprint (2015), 1–12.
- [18] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwoord Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
- [19] S.-M. Yuan, Z.-M. Liu and H. M. Srivastava, Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl. 337 (2008), 505–515.
- [20] Z.-G. Wang, H. M. Srivastava and S.-M. Yuan, Some basic properties of certain subclasses of meromorphically starlike functions, J. Inequal. Appl. 2014 (2014), Article ID 2014:29, 1–12.
- [21] W. Rogosinski and G. Szegö, Uber die abschimlte von potenzreihen die in ernein kreise be schranket bleiben, Math. Zeitschr. 28 (1928), 73–94.