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Abstract
The variability and geographical patterns of population characteristics are key topics in Human Geography. 
There are many approaches to exploring and quantitatively measuring this issue. Besides standard aspatial 
statistical methods, there is no universal framework for incorporating regional and spatial aspects into the 
analysis of areal data. This is mainly because complications, such as the Modifiable Areal Unit Problem or 
the checkerboard problem, hinder analysis. In this paper, we use two approaches which uniquely combine 
regional and spatial perspectives of the analysis of variability. This combination brings new insights into the 
exploration of the variability and geographical patterns of population characteristics. The relationship between 
regional and spatial approaches is studied with models in a regular grid, using variability decomposition 
(Theil index) as an example of the regional approach, and spatial autocorrelation (Moran’s I) as an example 
of the spatial approach. When applied to empirical data based on the Czech censuses between 1980 and 2011, 
the combination of these two approaches enables us to categorise the studied phenomena according to the 
regional and spatial nature of their variability. This is a useful advance, especially for assessing evolution 
over time or comparisons between different phenomena.
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1. Introduction
Many scientific disciplines study the socio-economic 

characteristics of administrative regions or other spatial 
units and the differences between them. Although 
these disciplines often study the same phenomenon, the 
terminology is inconsistent and the applied methods 
differ. The reasons are manifold: the researchers’ different 
professional backgrounds and routines in the field, varying 
research goals, issues concerning the availability of 
suitable data, etc. The result is that while some authors 
refer to variability, others use terms such as inequality, 
geographical concentration, spatial concentration, 
agglomeration, and polarisation. More importantly, while 
researchers with economic or regional science backgrounds 
usually prefer ‘pure’ quantification of regional differences 
by calculating some variability measures on a macro-scale 
level (such as NUTS 2 or NUTS 3 levels in the case of the 
EU1), geographers often try to look beyond the predefined 

regions as a unit of analysis and focus on the micro-scale 
level (for example, municipalities). In this article, we aim 
to overcome the methodological divide between different 
approaches to measuring variability and geographical 
patterns by examining their relationship and joint use in 
empirical research.

The simplest way to measure the geographical variability 
of areal data is to apply standard statistical measures of 
variability to geographical data. These methods can be 
considered aspatial, however, as they do not work with the 
spatial information inherent in the data (Fotheringham 
et al., 2000). Therefore, they tend to not reveal much about 
the geographical organisation of phenomena in space and 
relationships to higher regional structures. Moreover, when 
studying geographical patterns, there are two main concerns 
associated with aspatial methods when applied to areal 
data – the Modifiable Areal Units Problem (MAUP) and 
the checkerboard problem. The MAUP deals with the fact 
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that areal data are sensitive to the definition of boundaries 
used for the construction of the units, which may not be 
meaningful for the analysed problem (Openshaw,  1984; 
Wong, 2009; Klapka et al., 2016). The checkerboard problem 
stems from the fact that the geographic positions of regions 
(and potential neighbourhood effects) is ignored even though 
they are based on spatial data (Guimaraes et al., 2011).

It is clear that aspatial methods are far from sufficient 
when assessing geographical patterns and variability, and 
this has been recognised by many authors (Arbia, 1989, 2001; 
Rey and Montouri,  1999). There are two fundamental 
approaches to addressing the MAUP and checkerboard 
problem and bringing spatial or regional perspectives into 
the analysis of variability. We call the approach to bringing 
spatial clustering into the analysis the “spatial approach”, 
and the approach to analysing variability at several regional 
levels and quantifying the importance of respective regional 
levels the “regional approach”. In this paper, the spatial 
approach is represented by spatial autocorrelation measures, 
which can quantify the level of spatial clustering in the 
whole study area and uncover local clusters, thus bypassing 
the checkerboard problem. We employ the example of 
Moran’s I as the most commonly used index of global spatial 
autocorrelation. The regional approach is represented by 
variability decomposition, which quantifies the importance 
of respective regional levels, thus addressing the MAUP 
problem. In this latter case, we use the example of the 
decomposition of the Theil index, a typical decomposable 
index used in inequality studies.

Sometimes aspatial methods are combined with spatial 
(Arbia,  2001; Lafourcade and Mion,  2007) or regional 
(Brülhart and Traeger,  2005; Rey,  2004) approaches. It 
could be argued that differences of methodology account 
for the reason regional and spatial approaches are typically 
used separately and, as a consequence, have not previously 
been combined with aspatial methods by authors. This 
paper also responds partly to the challenges posed by Rey 
and Janikas  (2005), with the goal of demonstrating the 
importance of studying the interrelationship of (regional) 
variability and spatial autocorrelation.

The main goal of this paper is to demonstrate how the 
conjoint use of regional and spatial approaches helps to 
uncover and understand the variability and geographical 
patterns of population characteristics that are unclear when 
only aspatial methods are used. We argue that using both 
approaches conjointly can offer more comprehensive and 
innovative results, as documented in some empirical studies 
(Blažek and Netrdová,  2012; Nosek and Netrdová,  2010). 
In order to fulfil this goal and to interpret results correctly, 
we need to understand the relationship between these two 
approaches, explore it on simulated data, and test it on 
empirical data. Moreover, we can categorise empirical data on 
the basis of their spatial and regional perspective of variability, 
which is useful especially when assessing evolution over time 
or comparisons across different characteristics.

The paper is organised as follows. In section 2, we describe 
and discuss the theoretical-methodological aspects of the 
approaches and highlight their potential complementarity. In 
section 3, we specify the methods and data used, where we also 
stress the importance of testing statistical significance and 
distinguishing between stochastic and spatially contingent 
components of measured values. The relationships between 
the methods are fully analysed in section  4. In section  5, 
we present empirical examples from the Czech Republic. 
Section 6 summarises and concludes the paper.

2. Theoretical and methodological background
The variability of geographical phenomena is often 

studied with only aspatial methods, which are invariant 
to permutations across units and do not incorporate 
information about the absolute or relative position of 
the respective unit in the calculation (Fotheringham 
et al., 2000). Basic variability measures such as the variance 
and standard deviation are useful for quantifying absolute 
levels of variability, but they do not meet the independence 
of scale requirement and it is therefore difficult to use 
them for regional analyses. This can be solved by using 
the coefficient of variation. The drawback of the coefficient 
of variation is that it is calculated from the distribution’s 
mean, which is not resistant to the extreme values typical 
for asymmetrically distributed geographical phenomena 
(Imre et al., 2012; Korčák, 1938). A good way to assess the 
uneven distribution of phenomena in space is to construct a 
Lorenz curve, a graphical representation of the distribution 
of a studied variable (such as wealth) in a society or space. 
One statistic with a straightforward interpretation that 
can be easily derived from the Lorenz curve is the Gini 
coefficient, which, due to its relative independence of the 
mean is very popular, and probably the most widely used 
variability measure in the social sciences.

Each of these measures, including the Gini coefficient, 
satisfies the condition of anonymity, a property of being 
insensitive to any spatial permutation (Sen,  1972). This 
condition, however, is not always a desirable property of 
a variability measure and is more a pitfall (Arbia,  2001), 
especially from a geographical point of view. The total 
insensitivity to the geographical position of units under 
analysis leads to the same results when units with 
high concentration values are adjacent as when units 
are located in the opposite part of the study area. The 
problem of ignoring neighbourhood effects is known as the 
checkerboard problem (Guimaraes et al.,  2011). Another 
well-known problem associated with the analysis of areal 
data is the Modifiable Areal Units Problem (Openshaw, 1984; 
Wong,  2009). This problem refers to the sensitivity of 
variability or other statistical measures to the exact 
delimitation of areal units. There are two components of 
this sensitivity: the zoning effect (the dependence of results 
on the changing zonal boundaries); and the scale effect (the 
dependence of results on the level of aggregation, e.g. from 
municipalities to a regional level of analysis) (Arbia, 1989). 
Marcon and Puech  (2003) address this issue. They state 
that variability is measured at a single level (typically at 
a chosen administrative level). Since observations may 
differ at different geographical levels, however, it may be 
useful to measure concentration at different geographical 
levels simultaneously. When a less fragmented (i.e. more 
aggregated) regional structure is used, some local specifics 
may remain hidden in the regional means, and some 
interpretations may be biased.

Problems associated with aspatial methods can be partly 
overcome by analysing spatial variability through the 
concept of spatial autocorrelation. This approach enables 
us to incorporate the neighbourhood effects into measuring 
variability and to identify whether there is a significant 
spatial pattern. In this way, spatial autocorrelation 
addresses the issue connected with the checkerboard 
problem. There are many ways to measure spatial 
autocorrelation depending on the nature and properties of 
the data (Anselin,  1988; Cliff and Ord,  1973). In general, 
two forms of measuring spatial autocorrelation can be 
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identified – global and local. The indicators of global spatial 
autocorrelation measure the extent of spatial clustering of 
“similar” values. In local form, they identify exact spatial 
clusters and reveal their character. Examples of global 
spatial autocorrelation statistics include Geary’s c, Getis 
and Ord’s G, and Ripley’s K; local indicators include Getis 
and Ord’s Gi, and Ord and Getis’ O (Getis, 2007). In recent 
studies, the most frequently used indicator of global spatial 
autocorrelation is Moran’s I, which is based on covariance 
and has many similarities with Pearson’s product-moment 
correlation coefficient. Anselin  (1995) introduced local 
Moran’s I, the local indicator of spatial association (LISA) 
statistics. LISA cluster maps show statistically significant 
units in four types of spatial association.

The relationship between the aspatial concept of 
variability and the spatial approach to variability (quantified 
by spatial autocorrelation measures) has been studied by 
many authors (Arbia, 2001; Rey, 2004). Although one may 
expect an empirical relationship, as supported by empirical 
data (Rey, 2004), no theoretical or mathematical relationship 
exists. Consider the example of when all values in a studied 
area are modified in the same way. For instance, when 
values are increased or multiplied by a positive constant, 
the measure of spatial autocorrelation remains unchanged 
but the measure of aspatial variability changes quite 
markedly. This also applies conversely when we fix the 
values of variability and make random shuffles or specific 
arrangements of data in spatial units. As shown, there is 
no theoretical relationship between the overall variability 
and spatial variability. Therefore, observed spatial patterns 
of variability are only of an empirical nature. Rey’s  (2004) 
finding of a strong positive relationship between measures 
of variability in state incomes and the degree of spatial 
autocorrelation in the US over the  1929–2000 period has 
no methodological justification and is therefore purely 
empirical. As shown, there is no theoretical relationship 
between the overall variability and spatial variability. 
Therefore, observed spatial patterns of variability are only 
of an empirical nature.

The utilisation of spatial approaches in assessing 
geographical variability helps to control the checkerboard 
problem, but invariably the MAUP effects remain. 
The reason is that both aspatial methods and spatial 
autocorrelation methods, representing a spatial approach, 
only work on one level of analysis. There are, however, 
typically more geographical levels that can be considered 
(for instance, a municipal level as a micro-scale and 
administrative regions, say NUTS3, as a macro-scale). 
Moreover, it is desirable not only to quantify variability at 
various, yet still single, geographical levels, but also to be 
able to quantify the relative importance of geographical 
levels compared with others. The regional approach in 
this way enables us to assess geographical variability at 
different scales and with distinct delimitation of regions, 
thus controlling the MAUP. First, in this approach, it is 
important to distinguish between overall variability, as 
measured between units at the most detailed sub-regional 
level, and regional variability, as measured between regional 
means. Second, there are two types of regional variability. 
Simple regional variability quantifies the differences 
between regional means, while relative regional variability 
quantifies the ratio between simple regional variability and 
overall variability. The latter enables us to quantify the 
importance of regional levels in overall variability and thus 
to assess the relative importance of a specific geographical 
level on the differentiation of particular phenomena.

For the regional approach, the aspatial methods are 
not sufficient. Unfortunately, the most commonly used 
coefficient to measure variability, the Gini coefficient, 
cannot be decomposed without a residuum into between-
group and within-group components (for Gini coefficient 
decomposition, see Lambert and Aronson (1993); Mussard 
et al.  (2003) necessary for quantifying relative regional 
variability, unless a spatial weight matrix is brought into 
the equation (see Rey and Smith, 2013). Gini decomposition 
without residual was proposed by Okamoto (2009), although 
the between-region variability of the Gini decomposition 
is null only if the distribution within each sub-region is 
identical to all the others. Decomposition enables us to 
quantify the share of a selected regional level and “scale 
down” the variability. This reveals the most important 
regional/local levels, and has many practical implications. 
For these purposes, it is possible to use indices from 
the generalised entropy class, which are decomposable 
without residuum. Of these the Theil index is the most 
widely used measure of regional variability (Cowell and 
Flachaire, 2007). The convenience of the various variability 
measures is illustrated by Shorrocks and Wan  (2005) or 
Subramanian  (2004), and Litchfield  (1999) describes the 
axiomatic approach to properties of variability measures.

The relationship between an aspatial concept of variability 
and a regional approach to variability (represented by 
simple regional variability) is similar to the spatial concept 
and is only of an empirical nature. As an example, consider 
when regional means remain the same, but the values 
within these regions change. Thus the same values for 
simple regional variability show different values for overall 
variability depending on the exact modifications of the 
data. This also applies conversely when we fix the values 
of overall variability and make random shuffle or specific 
arrangements of data in regions influencing the values of 
simple regional variability.

Methods of quantifying simple regional variability 
(aspatial) and relative regional variability (regional 
approach) use a predefined regional structure, and methods 
of measuring spatial autocorrelation (spatial approach) 
also require some predefinition. To determine spatial lag 
and measure spatial autocorrelation, one must define a 
spatial weight matrix that operationalises the concept of 
“near” spatial units that can influence each other (Cliff and 
Ord, 1973). By changing the regional structure, for example 
on different hierarchical levels, we can calculate the 
regional variability to assess the relevance of the specific 
regional delimitation and hierarchical level to a given 
spatial process. By changing the spatial weights matrix, 
for example by extending the distance of influence, we can 
assess the distance over which the spatial process operates. 
This idea, hidden in both approaches, highlights their 
similarity. The only difference is that one approach takes 
a discrete view of spatial processes embedded in regions 
when measuring regional variability, while the other takes 
a continuous view on spatial processes with distance-decay 
influence when measuring spatial autocorrelation. It 
can be argued that the method of repeating measures of 
regional variability for many regional systems “floating” 
in a given area and the method of using a discrete spatial 
weights matrix based on regions are interchangeable. But 
this contradicts the foundation of these approaches and we 
expect that combining the two (discrete and continuous) 
can help to better understand the regional and spatial 
consequences of a given process.
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The difference as well as complementarity of regional and 
spatial approaches is summarised in Figure  1. There are 
four types of results when regional and spatial approaches 
are combined. If both relative regional variability and 
spatial autocorrelation are high, the characteristic under 
analysis may be considered spatially dependent and 
bounded in regions. The characteristic is concentrated, and 
within predefined regions. Sometimes the characteristic 

concentrates across regional borders, meaning it is spatially 
dependent but with no relation to regions. If the characteristic 
does not form spatial concentrations nor concentrate in 
regions, it is both spatially and regionally independent. It is 
theoretically possible that the characteristic does not form 
any spatial concentrations yet it concentrates on a regional 
level. This characteristic would be spatially independent yet 
bounded in regions.

Fig. 1: Typology of areal data based on regional and spatial perspectives
Source: authors’ conceptulasation

3. Methods
The ways of measuring spatial autocorrelation and 

relative regional variability as tools for quantifying the 
spatial and regional approaches to geographical variability 
are manifold. In this paper, spatial (spatial autocorrelation) 
and regional (relative regional variability) approaches are 
represented by two specific measures: Moran’s  I and the 
Theil index  (T) and its decomposition. The relationship 
between spatial and regional approaches is demonstrated in 
the examples of these two most widely-used methods and 
without loss of generality, some conclusions based on these 
two methods can be drawn.

The formulas for Moran’s I (Equation 1) and Theil index T 
(Equation 2) can be written as:

(1)					     ;

(2)						      ;

where:

for I (Moran’s I), n = number of units, i = index for 
individual units,  j = index for regions, k = number 
of regions, y = mean of the variable under analysis, 
wij = spatial weight matrix;

and for T (overall Theil index), TB = between-region 
component of Theil index, TW = within-region component 
of Theil index (see Anselin,  1988; Anselin,  1995; Elbers 
et al., 2008; Shorrocks and Wan, 2005).

While TB is a measure of simple regional variability, 
the share of simple regional variability in overall 
variability: TB / T measures relative regional variability. 
All computations regarding the Theil index and its 
decomposition were performed in MS Excel and EasyStat 1.0 
(Novotný et  al.,  2014), and all computations regarding 
Moran’s I were performed in GeoDa  1.4.0 (Anselin,  2003; 
Anselin et al., 2004).

As the formulas show, to measure spatial autocorrelation 
requires a spatial weight matrix (wij) that operationalises the 
position and proximity of geographical units (Anselin, 1988; 
Cliff and Ord,  1973; Getis and Aldstadt,  2004). The 
selection of a particular spatial weight matrix is often 
considered crucial, and is said to have a significant effect 
on the resulting spatial autocorrelation values (Anselin 
and Rey, 1991). The selection of a spatial weight matrix is 
especially important when only one variable is studied and 
the results may vary significantly, or when systems with 
different regional structures are compared (Nosek and 
Netrdová,  2014). For studying general patterns and for 
interpretation (zero, high, or low Moran’s I), however, the 
choice of a spatial weight matrix is not that important and 
the simplest spatial weights matrix, first-order contiguity, 
suffices (Stakhovych and Bijmolt, 2009). We have confirmed 
this by testing  18  different spatial weight matrices (this 
exercise is not included in this text). All analyses in this 
paper therefore use the 1st order queen spatial weights.

When using spatial autocorrelation, inference is commonly 
used and integrated in the software developed for this type of 
analysis. The inference is generally based on the comparison 
of random and empirical distributions of data in the studied 
area. To assess the significance of Moran’s I against a null 
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hypothesis of no spatial autocorrelation, a permutation 
procedure is used, specifically the conditional permutation 
procedure embedded in GeoDa  1.4.0. A total of  9,999 
permutations are used, which is sufficient to obtain stable 
results in most cases (Anselin, 2003). Due to a randomisation 
process, the results can differ slightly when replicated, 
and so it is better to speak of a pseudo-significance value 
(Anselin,  2003; Ord and Getis,  2012). There are ways to 
assess the sensitivity or ‘stability’ of the results, however, 
by increasing the number of permutations, repeating the 
permutation procedure several times, and changing the 
significance cut-off value (Anselin, Syabri, and Kho, 2004).

When studying and measuring regional variability, the 
importance of statistical inference is often underestimated. 
In this case, one has to use non-parametric methods based 
on re-sampling – the confidence interval (or other desired 
characteristic) is constructed from the simulated values 
of the tested characteristics, which are calculated from 
data repeatedly generated from the original data set. 
Though not new (in a similar context see, for example, 
Longford et al.,  2012), these methods are still underused 
in regional inequality research (Mills and Zandvakili, 1997; 
Stine, 1989). 

In general, it is desirable to test whether the measured 
regional variability differs significantly from a situation 
where the data are randomly distributed in space (the 
null model). It is obvious that even in the null model some 
regional variability will be found. Therefore, regional 
variability can be understood as the sum of two components 
(for further explanation, see Novotný and Nosek, 2012): the 
stochastic component (regional variability of the null model) 
and the spatially contingent component (regional variability 
exceeding the null model, i.e. the measured regional 
variability minus the regional variability of the null model, 
referred to below as the adjusted relative regional variability). 
Isolating the spatially contingent component of regional 
variability helps when different systems are compared since 
each system has different stochastic variability embedded in 
the results (Novotný and Nosek, 2012).

4. Regional and spatial approaches and their 
relationship

In order to utilise regional and spatial approaches conjointly 
and interpret the results properly, one must understand how 
their theoretical and methodological aspects are related. We 
model values of Theil index decomposition as a representation 
of a regional approach and Moran’s  I as a representation 
of a spatial approach in a regular grid by running series of 
simulations. Besides modelling the values we can study the 
relationship between these two approaches. The relationship 
between variability and spatial autocorrelation has not been 
studied in detail, with a few exceptions (Arbia, 2000, 2001; 
Rey,  2004; Rey and Janikas,  2005). Each of these authors, 
however, considered only a variability on a single level and 
did not take decomposition and relative regional variability 
into account.

The model consists of  10,000  log-normally distributed 
pseudo-random data. The log-normal distribution is often 
considered to represent socio-geographical data with the 
most accuracy (Novotný and Nosek,  2009). These data 
were distributed randomly and in several specific ways in a 
regular square tessellation with 100 rows and 100 columns. 
In the 100 by 100 grid, 100 ‘regional’ units (10 by 10) are 
specified. In addition to overall variability measured by T (the 

differences between 10,000 units), simple regional variability 
measured by TB (the differences between  100  regional 
means) and relative regional variability measured by 
TB / T (the share of simple regional variability in overall 
variability) can be calculated. The set of pseudo-random 
numbers helps to minimise the effect of differences in 
variability and the regular tessellations minimise the effects 
of regional delimitation. Different regular tessellations 
(triangles, squares, and hexagons) were compared in Boots 
and Tiefelsdorf  (2000). Using different types of regular 
tessellations is far beyond the scope of this paper and not 
important for achieving its goals.

The relationship between relative regional variability 
(TB / T) and spatial autocorrelation (Moran’s I) is expected 
to be rather complex. A strong positive relationship between 
the interregional inequality share and spatial clustering was 
found by Rey  (2004), who pointed out the ease of change 
of this result through re-shuffling. Theoretically, when 
high spatial autocorrelation is observed, both high and 
low relative regional variability can be present. One might 
also assume that with very low spatial autocorrelation it 
is theoretically and mathematically impossible to have 
high relative regional variability. Figure  1 shows the 
theoretical possibilities which may occur. The main purpose 
of the simulation with the model data is to examine this 
relationship and to document the fact that certain values 
of spatial autocorrelation result in very different values of 
relative regional variability, and vice versa.

To simulate TB/T, the value in each unit in the  100 
by 100 regular square tessellation remains the same but the 
regional borders of 100 regions shift (assuming the grouping 
in regions is exhaustive, mutually exclusive and that there 
are neither enclaves nor exclaves). In this exercise, TB / T can 
vary from 0 to 1 depending on the delimitation of regional 
borders and their correspondence with spatial clusters. 
The values in the regular square tessellation, which are 
generated to have fixed values of TB / T (10% through 90%, 
with a maximum close to 100%), are rearranged within this 
tessellation with the aim of customising the levels of spatial 
autocorrelation. Several random shuffles and specific 
arrangements (ranging from arrangements with assumed 
maximal upper levels of positive spatial autocorrelation, such 
as by a concentration of high values in the same half of the 
tessellation, to chessboard arrangements with a supposed 
maximal negative spatial autocorrelation), were applied to 
test whether different relative regional variability can show 
different spatial concentrations when spatially distributed 
in specific ways. Another goal was to test the hypothesis of a 
statistically insignificant spatial autocorrelation when data 
with different levels of variability are randomly distributed. 
This relationship is depicted in Figure 2.

For fixed TB / T, significant values of Moran’s I are observed 
even when the data are randomly shuffled. This confirms 
the assumption that with some non-zero relative regional 
variability (even when TB / T is only  10%), insignificant 
spatial autocorrelation cannot be observed. In fact, quite 
a clear pattern can be determined. With increasing TB / T, 
Moran’s I increases with roughly similar values. This 
relationship may therefore be considered purely stochastic 
in nature. The situation is slightly different when specific 
arrangements for calculating spatial autocorrelation are used 
(simulating a limited number of empirical relationships). 
The relationship for low values of TB / T is rather loose (for 
TB / T = 10% it varies from + 0.5 to − 0.2). With increasing 
relative regional variability, the range of possible Moran’s I 
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values narrows. With extreme values of relative regional 
variability, Moran’s I is close to its possible maximum. From 
a stochastic perspective, there is a clear positive correlation. 
From the simulations, it is evident that only three basic 
combinations are possible: high TB / T – high Moran’s I, low 
TB / T – high Moran’s I, and low TB / T – low Moran’s I.

These findings may help with the interpretation of 
empirical results in several ways. For example, the low values 
of relative regional variability do not necessarily mean that 
the studied phenomenon has a weak spatial pattern or none 
at all. This can be caused by the regional delimitation which 
may not be appropriate for the particular phenomenon, in 
which case, spatial autocorrelation statistics would provide 
significant added value.

5. Empirical evidence
In this section the theoretical assumptions and modelled 

data are tested empirically using the case of the Czech 
Republic. The data set contains empirical data from four 

Fig.  2: The relationship between relative regional 
variability was measured by TB / T and global spatial 
autocorrelation was measured by Moran’s I (model 
data). Note: For the calculation of Moran’s I, spatial 
weights based on queen contiguity (first order of 
contiguity) were used
Source: authors’ simulation results

Fig. 3: Empirical results of regional and spatial approaches in the Czech Republic between 1980 and 2011
Note: For the Moran’s I calculation, spatial weights based on queen contiguity (first order of contiguity) were used. 
The Theil index was weighted by population
Source: Czech Statistical Office (population census 1980, 1991, 2001, 2011); authors’ calculations

population censuses (1980,  1991,  2001, and  2011). All 
data were recomputed to the most current structure at a 
municipal level in 2011 and are thus directly comparable. We 
chose the Czech Republic as an empirical example because 
comparable data were available at a very detailed level in 
a very fragmented regional structure (6,251 municipalities). 
Besides the municipal level, the data were studied at the 
Czech regional structure – 13 NUTS 3 units (administrative 
macro-regions). At this regional level, the Prague region has 
been merged with its surrounding region (Central-Bohemian 
Region) in order to represent geographical processes more 
accurately (see Hampl,  1999). Due to their consistent 
statistical nature, characteristics with a minimum structural 
variable of 0 and a maximum structural variable of 1 were 
chosen for the study. Further, the characteristics were chosen 
based on their supposed behaviour in the geographical context 
of regional variability and spatial autocorrelation (following 
the results documented in Netrdová and Nosek, 2009). Based 
on these two requirements, the following characteristics 
were chosen:

•	 Unemployment (economic) – the unemployed population, 
normalised by the economically active population;

•	 Agriculture (economic) – the population employed in 
agriculture, normalised by the economically active 
population;

•	 Education (social) – the university-educated 
population, normalised by the population over the age 
of 15 years; and

•	 Age (demographic) – the population 65 years and older, 
normalised by the overall population.

Figure  3 captures the empirical results: the spatial 
approach to geographical variability (Moran’s  I) on the 
vertical axis; and the regional (Theil index decomposition) 
on the horizontal. The setup is based on the theoretical 
assumptions presented in Figure  1. There are three 
combinations (types) represented in this empirical case. 
The unemployment rate (red) proved to be both spatially 
dependent and bounded in regions. This result was expected 
due to the fact that regional delimitation matches quite 
well the labour market delimitation (based on work flows). 
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The only exception is the year 1991, when the regional and 
spatial patterns were not yet developed. The employment in 
agriculture (green) is a typical representative of a spatially 
dependent characteristic with a weak relation to regions. In 
this case, the administrative regions do not fit with relatively 
highly agricultural areas determined to a large extent by 
physical geography. The share of university educated (blue) 
has always been regionally less dependent with clusters 
around larger cities. The clustering (concentration) has been 
steadily increasing since 1980. Demographic characteristics, 
such as the share of the  65  years and older population, 
are typical representatives of both spatially and regionally 
independent characteristics. The slightly higher values of 
both Moran’s  I and TB / T in  1980 is caused mainly by a 
different age structure in Sudetenland.

For a proper interpretation and understanding of the 
empirical results, it is critical to also consider the local 
level. Although both aforementioned methods (regional and 
spatial) are suitable for studying the geographical variability 
of the studied phenomena, several important questions 
remain unanswered:

•	 What role does “the spatial” play in the distribution?;

•	 What is the nature of spatial clustering – can we identify 
development axes or nodes, areas of peripheries, and so 
on?; and

•	 In what localities does statistically significant clustering 
occur?

Answering these questions is common in most geographical 
research (see for example, Sun and Jones, 2013) and crucial 
for a geographical contextual understanding of the studied 
processes, which is naturally more important than mere 
quantifications of the differences.

Local statistics of spatial autocorrelation present the 
most suitable way to support simple graphical visualisation 
by identifying and testing spatial clusters. Local statistics 
have many advantages over simple visualisation, as well as 
when compared with global statistics showing the average 
for the entire studied area. They eliminate the problems 
of analysing spatial aggregated data, help to discover 
deviations from global statistics and thus help to better 
map spatial processes (Fotheringham,  1997; Unwin and 
Unwin,  1998). The advantages of LISA cluster maps are 
documented using empirical examples with Czech data.

In the category of variables “spatially dependent 
and bounded in regions” (see Fig.  1), one cannot assess 
the character of clustering and its relation to regional 
organisation. There may be differences, however, in the 
type of clustering. Areal clusters, axes, centres, or other 
specific patterns may form. From the studied characteristics, 
unemployment proved to have the highest relative regional 
variability, as well as global spatial autocorrelation. As 
shown in Figure  4, the unemployment rate forms spatial 
clusters with low-low types of clusters organised in axes 
connecting Prague with other regional centres in Bohemia 

Fig. 4: LISA cluster maps for empirical Czech data, weighting scheme queen contiguity 1st order
Note: The High-Low type of spatial association indicates that a municipality with a value above the mean is 
surrounded by municipalities with values below the mean, and so on. The significance cut-off value of 0.05 is used 
(after carrying out 9,999 permutations). The permutation procedure was performed using GeoDa 1.4.0.
Source: authors’ calculations based on Czech Statistical Office (population census 2011)
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(Plzeň, Liberec, České Budějovice). The high-high types 
of unemployment rate clusters are located in structurally 
affected regions that were formerly oriented on heavy 
industry (northern Bohemia, the Ostrava region) and 
peripheral regions (such as southern parts of Moravia). 
The regional distribution of clusters corresponds with the 
evidence of high regional variability in the unemployment 
rate – in the majority of NUTS 3 regions, low-low or high-
high clusters dominate.

The question of the different character of spatial 
clusters is also relevant when variables belong to the 
second category “spatially dependent with weak relation to 
regions” (Fig. 1). We can only assume that spatial clusters 
are formed across regional borders, i.e. they do not comply 
with the regional structure. Different spatial patterns are 
documented by employment in agriculture and the share 
of the population that is university-educated. Employment 
in agriculture is regionally more bounded than expected; 
however, the TB / T is lower at the higher geographical level 
(NUTS 3), indicating the possibility that the concentrations 
run across these regions. This characteristic can, to a large 
extent, be determined by physical-geographic attributes 
(visible in Fig. 4). Spatial clusters of the low-low type are 
located especially in border regions (regions with higher 
altitude) and in metropolitan areas (around Prague, Brno, 
Ostrava, and so on) that are organised in “areal clusters”. 
The share of the university-educated population shows 
a slightly different pattern. TB / T is relatively low, but 
Moran’s  I is rather high because the university-educated 
population is concentrated in bigger cities around which 
high-high clusters can also be found (especially university 
cities such as Prague, Brno, Ostrava, Olomouc, Hradec 
Králové, and so on). There are not many low-low types of 
clusters for this variable.

Local analysis is also important for the category of 
“both spatially and regionally independent variables” (see 
Fig.  1). For these variables, no statistically significant 
spatial autocorrelation was observed. As these results 
were obtained for the whole area under study (in our 
case 6,251 municipalities in the Czech Republic) as average 
values, we cannot be sure whether the variable does not 
cluster in the whole area or whether there are some local 
clusters. Although the share of the population 65 and over 
did not appear to have levels of spatial autocorrelation 
as high as other variables, the LISA cluster map in 
Figure 4 shows significant spatial clusters similar to that 
of the agriculturally-employed population and the share 
of the university-educated population. The identification 
of spatial clusters of the low-low type is determined 
historically and is related to the displacement of ethnic 
Germans from the Sudetenland after World War  II. 
To summarise, the typology suggested in Figure  1 was 
supported by empirical findings.

6. Conclusions
Two approaches for assessing the variability and 

geographical patterns of population characteristics were 
introduced and their relationships to to aspatial measures 
were discussed on (simulation) model and empirical 
examples. We use spatial autocorrelation measures for the 
spatial approach, and relative regional variability for the 
regional approach.

These two approaches are widely used in geography and 
regional science, but only one method is normally used, 
depending on the researchers’ methodological backgrounds, 

preferred research field, or main research goals. By assessing 
the relationship between Moran’s  I and the Theil index 
decomposition, we documented a complex relationship 
between spatial autocorrelation and relative regional 
variability. This relationship was studied both theoretically 
(on simulated data) and empirically (with the example of 
empirical data for the Czech regional structure).

Using theoretical simulations with modelled data, we 
demonstrated that relative regional variability highly 
correlates with values of spatial autocorrelation. This 
correlation is predominantly caused by methodological 
similarities of both statistics, while the correlation of regional 
variability and spatial autocorrelation is purely empirical. 
With three possible types, however, the relationship between 
relative regional variability and spatial autocorrelation is 
slightly more complex. This typology helps in assessing 
how the spatial concentration of the respective variables 
corresponds with regional delimitations.

In summary, the regional variability and spatial 
autocorrelation approaches are strongest when used 
conjointly rather than separately (Rey, 2004). They produce 
important complementary findings about spatial aspects 
of variability. In the relative regional variability approach, 
differences are attributed to geographical levels, while global 
spatial autocorrelation and its local form help to uncover 
local specifics that are unrelated to regional structure.

It is also important to mention the restrictions on how 
the methods proposed in this paper should be used. First, 
very detailed data are required for measuring spatial 
autocorrelation. This is often a problem in the social 
sciences. Analyses are therefore often limited to a few 
variables and frequently to data from population censuses. 
Second, the dependence of spatial autocorrelation statistics 
on the subjective choice of a spatial weighting scheme may 
be considered important. Our tests, however, suggest that 
the choice of spatial weight matrix does not influence the 
final interpretation. Finally, although the combination of 
both methods helps mitigate the checkerboard problem and 
MAUP, they should still be taken into account. For example, 
the results of the regional variability analyses depend on 
the chosen regional structure and thus can directly face 
MAUP. On the other hand, comparing simple and relative 
regional variability for different regional structures can 
uncover the effects of that structure on interpretations of 
the final results.

The combination of spatial and regional viewpoints can 
have interesting implications for public policy as well. It is 
clear that attributing processes to different regional levels 
(and thanks to local analyses, also to specific localities) 
can have strong practical implications. In the geographical 
context of the European Union, it is highly relevant 
to study the role of international borders and/or other 
regional borders (such as NUTS 2, the basic regional units 
for the EU’s convergence policy). The study of geographical 
patterns and variability should be extended in research 
that deals with local or micro-regional data and when 
comparing the regional structure of socio-demographic and 
socio-economic indicators (such as in Kladivo et al., 2012). 
Not only can this help to study cross-border cooperation (or 
segregation), but it can also help to understand the EU’s 
integration process better.

Despite the interesting findings of this study, there are 
still many avenues for future research. The generalisations 
presented here should be tested repeatedly with other 
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variability and spatial autocorrelation statistics. Importantly, 
these methods should be employed in empirical research. 
By capitalising on the advantages and complementarity 
of both approaches, interesting and innovative outcomes 
can be uncovered to reach a better understanding of both 
regional differences and dependencies, as well as the spatial 
effects of variability.

Acknowledgement
This work was supported by the Czech Science Foundation 

(GACR) under Grant No.  15-10493S – “Evolutionary 
dynamics of spatial differentiation of socioeconomic 
phenomena and the role of regions in Czechia spatial and 
multilevel approach“.

References:
ANSELIN, L.  (1988): Spatial Econometrics: Methods and 

Models. Dordrecht, Kluwer.

ANSELIN, L. (1995): Local Indicators of Spatial Association – 
LISA. Geographical Analysis, 27(2): 93–115.

ANSELIN, L.  (2003): An introduction to spatial 
autocorrelation analysis with Geoda. Spatial Analysis 
Laboratory, Department of Agricultural and Consumer 
Economics, University of Illinois, Urbana-Champaign, 
USA. [online]. [cit. 05.04.2013]. Available at: http://www.
utdallas.edu/~briggs/poec6382/geoda_spauto.pdf

ANSELIN, L., REY, S. J. (1991): Properties of tests for spatial 
dependence in linear-regression models. Geographical 
Analysis, 23(2): 112–131.

ANSELIN, L., SYABRI, I. KHO, Y.  (2004): GeoDa: An 
introduction to spatial data analysis. Spatial Analysis 
Laboratory, Department of Agricultural and Consumer 
Economics, University of Illinois, Urbana-Champaign, 
USA. [online]. [cit. 05.04.2013]. Available at: http://www.
csiss.org/events/workshops/geodaGA.pdf 

ARBIA, G. (1989): Spatial Data Configuration in Statistical 
Analysis of Regional Economic and Related Problems. 
Boston, Kluwer.

ARBIA, G.  (2000): Some critique to statistical measures of 
spatial concentration and convergence. International 
Advances in Economic Research, 6(3): 590.

ARBIA, G.  (2001): The role of spatial effects in the 
empirical analysis of regional concentration. Journal of 
Geographical Systems, 3(3): 271–281. 

BLAŽEK, J., NETRDOVÁ, P.  (2012): Aktuální tendence 
lokální diferenciace vybraných socioekonomických jevů v 
Česku: směřuje vývoj k větší mozaikovitosti prostorového 
uspořádání? Geografie, 117(3): 266–288.

BOOTS, B., TIEFELSDORF, M.  (2000): Global and local 
spatial autocorrelation in bounded regular tessellations. 
Journal of Geographical Systems, 2(4): 319–348.

BRÜLHART, M., TRAEGER, R.  (2005): An account of 
geographic concentration patterns in Europe. Regional 
Science and Urban Economics, 35(6): 597–624.

CLIFF, A. D., ORD J. K.  (1973): Spatial Autocorrelation. 
London, Pion.

COWELL, F. A., FLACHAIRE, E. (2007): Income distribution 
and inequality measurement: The problem of extreme 
values. Journal of Econometrics, 141(2): 1044–1072.

Czech Statistical Office  (2014): Results of population 
censes 1980, 1991, 2001, and 2011 for municipalities in 
a regional structure in 2011. Prague, Czech Statistical 
Office.

ELBERS, C., LAJOUW, P. F., MISTIAEN, J. A., ÖZLER, B. 
(2008): Reinterpreting between-group inequality. The 
Journal of Economic Inequality, 6(3): 231–245.

FOTHERINGHAM, A. S.  (1997): Trends in quantitative 
methods  I: stressing the local. Progress in Human 
Geography, 21(1): 88–96.

FOTHERINGHAM, A. S., BRUNSDON, C., CHARLTON, M. 
(2000): Quantitative geography – Perspectives on spatial 
data analysis. London, SAGE.

GETIS, A.  (2007): Reflections on spatial autocorrelation. 
Regional Science and Urban Economics, 37(4): 491–496.

GETIS, A., ALDSTADT, J. (2004): Constructing the spatial 
weights matrix using a local statistic. Geographical 
Analysis, 36(2): 90–104.

GUIMARAES, P., FIGUEIREDO, O., WOODWARD, D. 
(2011): Accounting for neighboring effects in measures 
of spatial concentration. Journal of Regional Science, 
51(4): 678–693.

HAMPL, M.  [eds.]  (1999): Geography of Societal 
Transformation in the Czech Republic. Prague, 
Department of Social Geography and Regional 
Development, Faculty of Science, Charles University in 
Prague.

IMRE, A.  R., NOVOTNÝ, J., ROCCHINI, D.  (2012): The 
Korcak-exponent: a non-fractal descriptor for landscape 
patchiness. Ecological Complexity, 12: 70–74.

KLADIVO, P., PTÁČEK, P., ROUBÍNEK, P., ZIENER,  K. 
(2012): The Czech-Polish and Austrian-Slovenian 
borderlands – similarities and differences in the 
development and typology of regions. Moravian 
Geographical Reports, 20(3): 22–37.

KLAPKA, P., HALÁS, M., NETRDOVÁ, P., NOSEK,  V. 
(2016): The efficiency of areal units in spatial 
analysis: Assessing the performance of functional and 
administrative regions. Moravian Geographical Reports, 
24(2): 47–59.

KORČÁK, J. (1938): Deux types fondamentaux de distribution 
statistique. Bulletin de l'Institute International de 
Statistique, 30: 295–299.

LAFOURCADE, M., MION, G.  (2007): Concentration, 
agglomeration and the size of plants. Regional Science 
and Urban Economics, 37(1): 46–68.

LAMBERT, P. J., ARONSON, J. R.  (1993): Inequality 
decomposition analysis and the Gini coefficient revisited. 
The Economic Journal, 103(420): 1221–1227. 

LITCHFIELD, J. A. (1999): Inequality: Methods and Tools. 
World´s Bank Web Site on Inequality, Poverty, and 
Socio-economic Performance. [online]. [cit. 30.05.2013]. 
Available at: http://siteresources.worldbank.org/
INTPGI/Resources/Inequality/litchfie.pdf 

LONGFORD, N. T., PITTAU, M. G., ZELLI, R., MASSARI, R. 
(2012): Poverty and inequality in European regions. 
Journal of Applied Statistics, 39(7): 1557–1576.

MARCON, E., PUECH, F. (2003): Evaluating the geographic 
concentration of industries using distance-based 
methods. Journal of Economic Geography 3: 409–428.



MORAVIAN GEOGRAPHICAL REPORTS	 2017, 25(2)

94

MORAVIAN GEOGRAPHICAL REPORTS	 2017, 25(2): 85–94

94

MILLS, J. A., ZANDVAKILI, S. (1997): Statistical inference 
via bootstrapping for measures of inequality. Journal of 
Applied Econometrics, 12(2): 133–150.

MUSSARD, S., SEYTE, F., TERRAZA, M.  (2003): 
Decomposition of Gini and the generalized entropy 
inequality measures. Economics Bulletin, 4(7): 1–6.

NETRDOVÁ, P., NOSEK, V. (2009): Approaches to measuring 
the significance of geographical dimension of societal 
inequality. Geografie, 114(1): 52–65.

NOSEK, V., NETRDOVÁ, P.  (2010): Regional and spatial 
concentration of socio-economic phenomena: empirical 
evidence from the Czech Republic. Ekonomický časopis/
Journal of Economics, 58(4): 344–359.

NOSEK, V., NETRDOVÁ, P.  (2014): Measuring 
Spatial Aspects of Variability. Comparing Spatial 
Autocorrelation with Regional Decomposition in 
International Unemployment Research. Historical 
Social Research, 39(2): 292–314.

NOVOTNÝ, J., NOSEK, V.  (2009): Nomothetic geography 
revisited: statistical distributions, basic generative 
mechanisms, and inequality measures. Geografie, 
114(4): 282–297.

NOVOTNÝ, J., NOSEK, V.  (2012): Comparison of regional 
inequality in unemployment among four Central 
European countries: an inferential approach. Letters in 
Spatial and Resource Sciences, 5(2): 95–101.

NOVOTNÝ, J., NOSEK, V., JELÍNEK, K.  (2014): 
EasyStat  1.0. Prague, Faculty of Science, Charles 
University. [cit. 19.05.2015]. Available at: https://web.
natur.cuni.cz/~pepino/EasyStat.zip

OKAMOTO, M.  (2009): Decomposition of gini and 
multivariate gini indices. The Journal of Economic 
Inequality, 7(2): 153–177.

OPENSHAW, S. (1984): Concepts and Techniques in Modern 
Geography. Volume  37: The Modifiable Areal Unit 
Problem. Norwich, Geo Books.

ORD, J. K., GETIS, A. (2012): Local spatial heteroscedasticity 
(LOSH). The Annals of Regional Science, 48(2): 529–539.

REY, S. J. (2004): Spatial analysis of regional income 
inequality. In: Goodchild, M., Janelle, D. [eds.]: Spatially 
Integrated Social Science: Examples in Best Practice 1 
(pp. 280–299). Oxford, Oxford University Press.

REY, S. J., JANIKAS, M. V.  (2005): Regional convergence, 
inequality, and space. Journal of Economic Geography, 
5(2): 155–176.

REY, S. J., MONTOURI, B. D. (1999): US regional income 
convergence: a spatial econometric perspective. Regional 
Studies, 33(2): 143–156. 

REY, S. J., SMITH, R. J.  (2013): A spatial decomposition 
of the Gini coefficient. Letters in Spatial and Resource 
Sciences, 6(2): 55–70.

SEN, A. (1972): On economic inequality. Oxford, Claredon Press.

SHORROCKS, A., WAN, G. (2005): Spatial decomposition of 
inequality. Journal of Economic Geography, 5(1): 59–81.

STINE, R.  (1989): An introduction to bootstrap methods: 
examples and ideas. Sociological Methods Research, 
18(2–3): 243–291.

STAKHOVYCH, S., BIJMOLT, T. H. A. (2009): Specification 
of spatial models: A simulation study on weights 
matrices. Papers in Regional Science, 88(2): 389–408.

SUBRAMANIAN, S.  (2004): Indicators of inequality and 
poverty. Research Paper No.  2004/25, World Institute 
for Development Economics Research. [online]. 
[cit.  30.05.2013]. Available at: https://www.wider.unu.
edu/sites/default/files/rp2004-025.pdf

SUN, W., JONES, B.  (2013): Using multi-scale spatial and 
statistical analysis to assess the effects of brownfield 
redevelopment on surrounding residential property 
values in Milwaukee County, USA. Moravian 
Geographical Reports, 21(2): 56–64.

UNWIN, A., UNWIN, D.  (1998): Exploratory spatial data 
analysis with local statistics. Journal of the Royal Statistical 
Society: Series D (The Statistician), 47(3): 415–421.

WONG, D.  (2009): The Modifiable Areal Unit Problem 
(MAUP). In: Fotheringham, A. S., Rogerson, P. A. [eds.]: 
The SAGE Handbook of Spatial Analysis (pp. 105–125). 
London, SAGE.

Please cite this article as:

NETRDOVÁ, P., NOSEK, V. (2017): Exploring the variability and geographical patterns of population characteristics: Regional and spatial 
perspectives. Moravian Geographical Reports, 25(2): 85–94. Doi: 10.1515/mgr-2017-0008.


