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In the modern world, many cities make use of state-of-the-art technologies for a diversity 
of applications. A field with very specific needs is the electric power system that deals with 
both large entities that govern themselves (grid operators) and the citizens. For both and all 
actors in between, there is an increased need for information. Steps to provide these data are 
always taken and several initiatives are ongoing across the world to equip residential users 
with last generation smart meters. However, a full deployment is still not possible. Considering 
this aspect, the authors propose KPIs for the specific situation when some information is avail-
able from the meters and other sources, but some is not. The study case is based on a residential 
area occupied mainly by university students and after an extensive measurement campaign the 
results have been studied and analysis methods proposed. 
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1. INTRODUCTION

People living in cities nowadays pro-
gressively take advantage of more commu-
nication technologies and multiple oppor-
tunities based on solution implementation 
across various sectors (e.g., transportation, 
services, infrastructures etc.), thus trans-
forming their environment in a smarter one. 

These advanced cities are called smart cit-
ies, which can be defined in multiple ways 
[1]. The collected definitions slightly differ 
but share overarching features – advanced 
connectivity using ICT, improved service 
system, low impact on the environment 
and prosperity of citizens. Although the 
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concept of a smart city is fairly similar 
between definitions as well as implementa-
tion, the individual smart city solutions are 
unique for the individual city. This means 
that a solution carried out for one city can-
not be adopted without any adjustment for 
another, because solutions are usually spe-
cifically designed and developed to address 
the local situation regarding its inhabitants, 
environment, infrastructure etc. [2].

The large number of the developed 
smart city solutions has created a need for 
solution evaluation and comparison. It is 
a challenge to provide entirely equal solu-
tion comparison. The author in [3] has pro-
vided an examination of solution evaluation 
through modelling approaches. One of the 
approaches is based on Key Performance 
Indicator (KPI) methodology, which is one 
of today’s frequently used performance 
evaluation methods. The KPI method pro-
vides the ability to observe, adapt and 
improve process development through 
selected parameter monitoring while intro-
ducing changes. The change in key parame-
ters is evaluated for a certain selected period 
to determine growth or decline in the target 
process. Furthermore, a hasty or inaccurate 
parameter selection can create a misleading 
KPI and develop dysfunctional behaviours 
and/or conclusions. To help mitigate unfa-
vourable KPI creation, authors in [4]–[6] 
have detailed the process of successful KPI 
creation and selection.

After KPIs are defined, data are col-
lected and comparison is made between 
the previously and currently collected data 
to determine the change over time. Fur-

thermore, if multiple KPIs after examina-
tion can be categorised based on common 
features, the KPIs in question are collected 
under a specific category, formed as the 
assembly of different KPIs with similar 
characteristics. This provides the evalua-
tion method with a large diversity and the 
KPI method, in general, serves as a power-
ful tool, which is branching into many areas 
of human activities.

In this paper, the KPI evaluation 
method is used to assess the electric energy 
consumption and related behaviour of stu-
dent dorms located on the UPB campus in 
Bucharest, Romania [7]. The dorms repre-
sent a part of the city through the role of 
dorm inhabitants and their effects towards 
energy consumption based on individual 
user awareness [8]. The data of dorm KPI 
evaluation are taken from the smart meter 
deployment, where each dorm has a smart 
meter, monitoring consumption per floor. 
Details about this deployment can be found 
in [9]. 

To perform the KPI evaluation, the cor-
rect and altered dorm consumption situation 
must be compared, but considering user pri-
vacy, the exact consumption pattern cannot 
be used. To tackle this situation, building 
consumption modelling is performed using 
multiple information sources – user con-
sumption surveys, yearly smart meter mea-
surements and additional information (in 
Section 2.3). The created model calibrated 
to represent the real situation is used to 
test alternative scenarios impacted by user 
awareness and examine the feasibility of 
renewable energy solutions.

2. DATA COLLECTION

2.1. Student Dorm

The UPB campus contains multiple stu- 
dent dorms. Four of which have been impro-

ved, while working under ITCity project, 
through smart meter system deployment, 
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providing three-phase electric consumption 
monitoring of each floor individually.

Table 1 provides general information 
on the involved dorms. This information 
includes the number of floors per build-
ing, approximate number of inhabitants per 
floor and room, estimated size of inhabitant 
living space per floor and room, degree of 

renewable energy consumption share (esti-
mated from national information [10]), the 
available roof space area and yearly energy 
consumption. The yearly energy consump-
tion has been obtained aggregating the 
smart meter data, while other information is 
based on statistics.

Table 1. Dorm General Overview

No. 
floors

Users Living space
RES, %

Available 
roof area, 

m2

Yearly energy 
consumption, 

kWh
Floor, no. Room, no. Floor, m2 Room, m2

Dorm 1 5 60 5 360 30 42.7 430 109440
Dorm 2 5 80 2 480 12 42.7 600 253635
Dorm 3 5 80 2 480 12 42.7 600 246097
Dorm 4 5 80 2 480 12 42.7 600 321194

Across the involved dorms, situation 
of approximately 1500 dorm inhabitants is 
reflected through the data in Table 1. This 

information is used to derive the consump-
tion model and is used as a guideline for the 
analysis presented in Section 3.

2.2. Consumer Habits

The inhabitants of student dorms shape 
the building energy consumption, thereby 
their individual habits, daily activities and 
preferences are necessary for a proper 
consumption assessment. The necessary 
information is deducted using a statistical 
approach to information from Electrical 
Engineering Faculty webpage [11], con-
taining 48 study group schedule, and the 
results of user consumption surveys filled 
by students.

University study group schedule pro-
vides the essential information of dorm 
inhabitant work day occupation that is used 
in the present study as a baseline. This 
occupation depicts the moment when the 
inhabitants should be at the university and 
not contribute to the actual building energy 
consumption. The study schedules provide 
a large occupation period variety for the 
inhabitants, depicting in an accurate way 
the diversity of the occupancy patterns in 

the monitored building.
A consumption survey has been carried 

out to address the individual user consump-
tion in an environment with no smart meter 
information. The survey results provide an 
insight into the individual user appliance 
list as well as their unique use preferences 
and habits. In Fig.  1, the snapshot of the 
conducted survey table is presented. The 
survey table can be divided into two main 
axes, the top horizontal axis representing 
the time divided into increments of 15 min-
utes, adding up to a 24-hour range, and the 
vertical axis provides a comprehensive list 
of appliances and their average rated power 
(in watts). This survey is filled out using val-
ues from 1 to N, while the value addresses 
certain appliance use in a particular time 
period. If a value larger than 1 is used, it can 
indicate that the appliance power is larger 
than the one given in the list or that multiple 
similar appliances work simultaneously.
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Fig. 1. Consumption survey snapshot.

The filled out surveys depict the self-
assumed user consumption, thereby the 
user’s actual consumption can differ. This 
information does not include detailed day-
to-day habit changes, but provides essential 
information on the user appliances, user 
habits and preferences. Even more, it does 
not completely consider appliances that are 
used for shorter time periods than 15 min. 
(e.g., coffee machine, microware used not 
for cooking but warming up food, hairdry-
ers etc.) or appliances that have a very spe-
cific consumption patterns with an average 
consumption far from the rated power (e.g., 

fridge, boilers, most of small electronics). 
However, the consumption survey can be 
used as a baseline for the analysis, provid-
ing a maximal load curve that can be con-
sidered for comparison purposes. 

Around 100 consumption surveys have 
been collected and individually analysed, 
assessing user indicated habits for day-to-
day consumption changes. There changes 
based on user habits provide a variety in 
daily consumption and this information is 
used as the guideline for appliance model 
operation in Section 3.1.

2.3. Additional Information

To properly analyse the consumption 
model of the target group, a more general 
approach is needed to describe the micro-
environment. Consequently, several other 
information sources have been identified. 

One of these sources is the local 
weather forecast for the UPB dorm loca-
tion in Bucharest. The workgroup develop-
ing the consumption model has determined 
two local situation information necessities 
required for the dorm evaluation:
•	 Local natural lighting – in order to sim-

ulate a natural lighting situation. Infor-
mation on the natural lighting in Bucha-
rest has been taken from an online 
source [12]. The information on this 
weather website divides the intensity of 
natural lighting into five shares – night, 
astronomical twilight, nautical twilight, 
civil twilight and daylight. For the pur-
poses of sufficient natural lighting, the 
“daylight” data have been taken as the 
sufficient natural lighting moment. This 
provides the information of the natural 
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lighting potential for a whole year and 
is important when modelling the light-
ning part of the load profile. 

•	 Solar generation – the examined student 
dorms do not (yet) possess a PV panel 
solution, but in theory are capable to 
withstand PV panel deployment. This 
assumption is made based on the fact 
that faculty buildings built as part of the 
same architectural project already have 

this capability [13]. The solar genera-
tion information serves as the guideline 
of the potential PV panel generation, 
based on the local situation. The infor-
mation on solar generation is collected 
from archived measurements using a 
15-minute resolution and the data are 
available for locations near Romania 
[14].

3. MODEL DEVELOPMENT 

3.1. Auxiliary Models

Auxiliary models use basic information 
and convert it into specific data, which then 
can be utilised as the key information for 
user consumption modelling. 

User Behaviour Model

The user behaviour model gener-
ates the necessary reference of user daily 
activity. This information contains data on 
sleep periods, outdoor and home activity 
moment. Activity labelled “outside” refers 
to any activity the user engages in outside 
of his living space (including time spent 
at work or lectures), while label “home” 
indicates user availability at home, thereby 
potential contribution in overall building 
consumption.

The generation of individual user 
behaviour is based on their activities out-
side of their living space and combined with 
their sleep period, other moment is assumed 
as home activities and contribute to energy 
consumption. First, workday daily occupa-
tion is derived as the previously mentioned 
from the faculty schedule. Second, week-
end occupation is generated by a random-
ized algorithm, selecting a random activ-
ity starting time and length. Through these 

solutions basic user daily activities are cre-
ated. Additionally, it is assumed that every 
activity requires up to 1 hour additional 
time before and after every activity, (hour 
spent in transit or doing something else 
(e.g., grocery shopping, eating outside etc.). 
This additional activity is generated through 
a randomized algorithm. Last, a user sleep 
schedule is created and added. The daily 
sleep schedule is generated by an algorithm 
randomly selecting length between 6–9 
hours and the selected period is analysed if 
it does not meet other daily activity posed 
limitations. Other time periods are marked 
as home activities and are used to model 
user consumption.

Table 2 shows an example of user 
behaviour. Top row represents the hours of 
a day, while the bottom row represents the 
activity’s code. In the model, this informa-
tion is generated by increments of 15 min-
utes, but for the example shown on a smaller 
resolution. The generated numerical values 
represent the actual data produced by the 
model and each value represents a different 
activity. Value “0” represents the sleep peri-
ods, “1” represents the home activity and 
“2” refers to the outside activity moments, 
color-coded blue, red and grey, respectively.
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Table 2. Hourly Activity Sample

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

0 1 2 2 2 2 2 2 2 1 1 1 1 0

Daylight Model

Daylight model organises the provided 
weather data regarding local natural light-
ing. The information gathered from online 
weather source is primarily divided into 
natural lighting degrees by their intensity. 
The portion that is used in the daylight 
model operation is the “daylight” portion, 
which occupies most of every day and is a 
sufficient lighting source. The result of this 
model is used to examine the energy sav-
ings provided by natural lighting prioritiza-
tion over artificial lighting as a user aware-

ness change.
The daylight model generates a data 

array with two values for each day of 
the year. These values depict the starting 
moment and the final moment the daylight 
period can be utilised as a lighting solution. 
In Table 3, an example of a single week and 
corresponding daylight period times are col-
lected. The top values, in red, represent the 
starting time and the bottom ones, in blue, 
depict the ending time. These values have 
been converted into 24-hour form with hour 
and minute division, but in the model itself, 
these values are represented in minute form.

Table 3. Daylight Period Sample

Mon. Tue. Wen. Thu. Fri. Sat. Sun.

8:15 8:14 8:13 8:12 8:11 8:10 8:09
16:30 16:32 16:34 16:36 16:38 16:40 16:42

Appliance Model

The appliance model is the most impor-
tant user consumption part, which creates 
the user energy consumption individuality. 
The individuality is created by alteration 
in electrical appliance use, specified by the 
analysed users. Based on the conducted 
survey data, 24 appliance models have been 
developed. These models have been made 
using similar operation and control bases 
due to the survey data limitations, thereby 
models operate in 15-minute time steps.

The appliance model operates in two 
time periods – morning and evening, 
depicted in Fig. 2. These periods represent 
the time periods between sleep time and 
outside activities, and are divided into two 
in order to modify appliance operation hab-
its. The periods are considered concrete for 

appliances that require direct user interac-
tion – TV, PC etc., but can also be flexible for 
appliances that do require user interaction 
but can operate beyond any restrictions – 
washing machine, phone charger etc. Fur-
thermore, appliances operating in 24/7 
schedule are not limited.

Fig. 2. Day period division.

	 Every appliance model uses a simi-
lar control setup and by control utilisation 
individual user appliance use habits can 
be depicted on a greater degree. There are 
11 parameters for every appliance model, 
except 24/7 operation appliances using 
reduced power throughout the day:
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1.	 Appliance consumption – separated set-
ting for morning/evening period. Sets 
appliance nominal operation power.

2.	 Minimum operation time – separated 
setting for morning/evening period with 
15-minute step. Setting is used to set the 
minimal length the appliance is used.

3.	 Maximum operation time – separated 
setting for morning/evening period with 
15-minute step. Setting is used to set the 
maximum length the appliance is used.

4.	 Appliance use chance – separated for 
morning/evening period. Sets appliance 
use frequency in the exact period.

5.	 Window of operation – separated set-
tings for morning/evening period. Sets 
appliance operation limitation, due to a 
lack of available time.

6.	 Use period preference – combined 
morning/evening setting. Sets user 
preference in which period appliance is 
more likely to be used.

3.2. Conclusive Models

The conclusive models use generated 
information from all auxiliary models, pro-
viding the result of different information 
interaction. The developed models model 
individual user consumption, user aware-
ness impact on consumption reduction and 
simulate renewable energy setup feasibility.

User Consumption Model

The user consumption model designs 
the individual user energy consumption by 
generating the energy consumption pattern. 
The pattern is generated taking into consid-
eration user behaviour model information 
and appliance model information, which 
uses the individual user appliance use pref-
erences.

The model operation combines multiple 
information sources, creating 48 unique 
user consumption patterns by using single 
consumption survey data combined with 
48 university study schedules. This pro-
vides multiple users with similar appliance 
use preferences, but greatly different daily 
occupation times and in general impacts the 
overall user consumption. Furthermore, the 
modelled user consumption generated from 
similar preferences is not the same because 
of the changes in individual activities and 
different appliance daily use (operation 
window, utilisation start/end moments and 

chance of using the appliance). The defi-
nition of unique outcomes from a single 
data source is done with randomized val-
ues. In the appliance settings, first, each 
appliance has a chance of being used; this 
chance impacts each user individually pro-
ducing different outcomes. Second, each 
appliance has minimum and maximum 
operation time, which is selected randomly 
each time appliance is used; this is unique 
for every single time an appliance is used 
unless maximum and minimum values are 
the same. Last, each appliance has a ran-
domly selected moment when a user starts 
to use it. This moment is made unique by 
two things: user availability, i.e., unique for 
each individual schedule and the random 
selected time, making the appliance opera-
tion times diverse between even the same 
settings.

Through a user consumption model, 
over 3000 unique user consumption pat-
terns have been simulated. The simulated 
patterns are exclusive, since each gener-
ated pattern uses one combination of user 
behaviour and appliance preferences. This 
results in a large array of total consumption 
fluctuations among the user patterns with 
the smallest total consumption contributing 
to a six time smaller consumption than the 
largest total consumption contributor. This 
diversity is necessary to provide a greater 
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variety of consumption, which will be used 
to represent an actual consumer group.

Following the user simulations, a ran-
domized selection algorithm is used to 
choose a certain number of users matching 
a certain dorm inhabitant number (see Table 
1). The users are randomly reselected until 
the simulated total user consumption prac-
tically matches the real student dorm con-
sumption provided in Table 1. The final user 
selection closely reflects the actual inhabit-
ants and is used in the test cases and the real 
consumer depiction.

Appliance Consumption 
Reduction Model

The appliance consumption reduction 
model tackles the task of exploring user 
awareness charge through simulation of 
energy use awareness increase in the form 
of consumption reduction of selected appli-
ances. The consumption reduction algo-
rithm can be divided into three distinct 
operation models that can address many 
appliances. 

The first algorithm operation model for 
consumption reduction is for appliances 
that are used 24/7 but should not be used in 
such an extended period of time. It means 
that it is necessary to use sleep mode or shut 
down appliances when they are not in use. 
The use mode is considered the one when 
the user is at the student dorm and is not 
sleeping, and periods of sleep and outside 
activity are the moments when the sleep 
mode or appliance shutdown is simulated.

The second algorithm operation model 
assumes that, by increased user awareness, 
the user will try to use certain appliances 
less, but without any reduction with regard 
to the comfort level, but the sleep mode or 
shutdown of an appliance is used when, 
for instance, two entertainment appliances 
are active or an appliance is not used for 

extended periods by taking breaks from 
time to time.

This last part of the algorithm is nor-
mally only used for lighting solutions, but 
is not limited to only this solution. This 
algorithm combines the daylight model and 
artificial lighting use with a goal to simulate 
user awareness change impacting users to 
use natural lighting over an artificial light-
ing solution when possible.

All algorithms work based on the same 
user awareness principles and explore user 
awareness impact on energy use by a grad-
ual increase in awareness from 0 to 100 % 
of the user involved. The gradual awareness 
increase is examined with a 5 % step, giv-
ing the opportunity to see how each % of 
population impacted would provide benefit 
because a 5 % increase in awareness does 
not directly mean a 5 % consumption reduc-
tion because of user activities, i.e., in one 
situation awareness might give a greater 
reduction than in another.

PV Panel and Storage Unit 
Selection Model

In order to achieve higher energy effi-
ciency by consumption and carbon emission 
reduction, a feasibility study is performed 
by simulating the impact of the potential PV 
panel and energy storage (ES) solutions on 
an individual dorm situation.

The model of PV panel and storage unit 
selection carries out its calculations taking 
into account three boundaries. First, energy 
storage units are charged only by the PV 
panel over-generation. Second, the injec-
tion of excess PV panel generation towards 
the main grid is restricted. Last boundary is 
a physical limitation of area limited by the 
available roof space of individual dorm that 
is used for PV panel deployment.

The model simulates the added PV 
panel and energy storage achieved benefit 
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by taking the consumption of a whole dorm, 
a sum of individual user consumption pat-
terns, and reduced by the PV panel genera-
tion and storage unit, calculated based on 
solar generation reference. The consump-
tion pattern and solar generation both use a 
15-minute time step and the PV panel power 
generation overall efficiency is assumed to 
be 15 %, based on local PV panel genera-
tion reference. The goal of using PV panels 
and energy storage is to reduce the overall 
consumption; in the model, this is done 
through simulation of increasing PV panel 
generation and energy storage capacity. The 
model increases the PV panel generation 
by increased coverage, which is increased 
by 1 square meter per test and the increase 
in storage system is done by increasing the 

maximum capacity by 1 kWh per test. The 
model tests every possible variation of PV 
panel size and storage capacity, with the 
main limitation being the available dorm 
roof area. Without additional boundaries 
the model will try to maximise the reduc-
tion of consumption by occupying all of 
the available roof space, which provides 
the result, but not efficiency. To achieve an 
appropriate result, one of the elements – 
PV panel or storage – is bound to a value 
beforehand, thereby the model is required 
to only simulate the other non-specified ele-
ment, limiting the non-realistic results. In 
the dorm testing, a dorm peak consumption 
value is used as the predetermined value 
for the bound element, providing a singular 
best result.

4. NUMERICAL RESULTS

4.1. Power Energy Analysis

The renewable energy solution feasibil-
ity of the student dorm building has been 
tested through the developed model. The 
solutions include the examination of opti-
mal PV panel and ES system deployment 
based on peak energy consumption data, 
and they are aimed at increasing renewable 
energy share and reducing the building car-
bon emissions.

The feasibility of renewable energy 
setup is addressed for each dorm individu-
ally (see Table 4). In the process, the main 
three limitations are taken into account as 
well as the individual dorm peak consump-
tion, which represents the size of the pri-
marily chosen element in the two examined 
setup types:
•	 Type A – prioritization of PV panel peak 

generation. This type primarily selects 
PV panel peak generation and after-
wards, through the model, selects the 

most appropriate ES capacity matching 
this generation.

•	 Type B – prioritization of ES capacity 
size. This type primarily selects the ES 
capacity and afterwards, through the 
model, selects the most appropriate PV 
panel size to match this storage capac-
ity.

The modelled outcomes in Table 4 
are depicted in percentage from original 
yearly consumption metered by the smart 
meter system. In the modelling process, 
two setup types have been examined and 
it has been concluded that Type B setup 
utilisation would provide the most optimal 
benefit, achieving around 58  % consump-
tion reduction with a margin of ~1 %. All 
results show that a significant part of the PV 
panel generation is stored in the ES system, 
highlighting the necessity of this system. 
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In the following KPI evaluation regarding 
the tested renewable setup feasibility, setup 

Type B is used as the compared solution in 
Section 4.3.

Table 4. Renewable Energy Setup

Dorm 1
(Peak 15.65 kW)

Type A 
PV 16 kW & ES 20 kWh

Type B 
PV 15.45 kW & ES 16 kWh

Reduced: 60.278 %
26.645 % (Direct PV*)

33.633 % (Storage)

Reduced: 59.129 %
26.264 % (Direct PV*)

32.865 % (Storage)

Dorm 2
(Peak 27,29 kW)

Type A 
PV 27 kW & ES 13 kWh

Type B 
PV 3.25 kW & ES 27 kWh

Reduced: 48.5628 %
24.444 % (Direct PV*)

24.118 % (Storage)

Reduced: 58.005 %
26.096 % (Direct PV*)

31.909 % (Storage)

Dorm 3
(Peak 26.52 kW)

Type A 
PV 27 kW & ES 14 kWh

Type B 
PV 31.20 kW & ES 27 kWh

Reduced: 50.124 %
25.069 % (Direct PV*)

25.055 % (Storage)

Reduced: 57.921 %
26.363 % (Direct PV*)

31.558 % (Storage)

Dorm 4
(Peak 32.70 kW)

Type A 
PV 33 kW & ES 15 kWh

Type B 
PV 40.5 kW & ES 33 kWh

Reduced: 46.772 %
24.178 % (Direct PV*)

22.594 % (Storage)

Reduced: 57.402 %
26.074 % (Direct PV*)

31.328 % (Storage)

*Direct PV – generation from PV panels used when generated.

4.2. User Awareness Analysis

Regarding user awareness, the appli-
ances examined by the developed model 
have been selected based on the potential 
to be impacted by user awareness changes. 
These selected appliances and cases can be 
seen in Table 5, depicting the situation of 
Dorm 4. The values, after user awareness 
column, represent the test case consump-
tion share of the dorm total consumption 
taken from Table 1.

Test cases addressing user awareness are 
carried out for each dorm on an increasing 
5  % user awareness increments. This step 
size clearly depicts non-linear consumption 

impact due to high diversity in user appli-
ance use habits. In Table 5, the main three 
degrees of user awareness are presented – 
0 %; 50 %; 100 %. The 0 % degree repre-
sents the original consumption share with-
out user awareness impact, while 100  % 
degree represents the over-exaggerated 
awareness, depicting the potential maxi-
mum consumption reduction in a certain 
case. The 50 % degree of user awareness is 
assumed as the achievable average aware-
ness degree and the results at this degree are 
used in the evaluation (see Section 4.3).
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Table 5. Appliance Cases – Dorm 4

Equipment Fluo.* 25W 
(Natural lighting)

LED 10W 
(Natural 
lighting)

Fluo.* to 
LED

PC sleep 
mode

PC red. 
20 %

TV red. 
20 %

Kettle 
red. 

30 %User Awareness, %
0 % 11.9 % 4.8 % 11.9 % 33.4 % 33.4 % 15.1 % 3.7 %
50 % 8.5 % 3.4 % 8.3 % 30.4 % 30.3 % 13.5 % 3.1 %
100 % 5.1 % 2.0 % 4.8 % 26.5 % 26.7 % 12.1 % 2.6 %

*Fluo. – Fluorescent light bulb.
Across all dorms, some similarities can 

be addressed. Some interchangeable results 
are “Natural lighting over Fluorescent” and 
“Fluorescent to LED conversion”; these are 
the results of any table in the 1st and 3rd 
column. The interesting result that can be 
highlighted is the conversion to LED light-
ing that provides a slightly larger consump-
tion reduction than user’s more efficient 
use of natural lighting. It provides valu-
able information that a user can provide 
sufficient saving only by using more effi-
cient lighting without thinking of behav-
iour changes themselves. Furthermore, 
achieving a plausible 50  % user aware-
ness provides a theoretical 100 % achieve-
ment, which can be made by the reduction 
created by some users converting to LED 
solution and other user behaviour changes 
to use natural lighting more efficiently. The 
end result of the combined different efforts 
provides around the same as 100 % of the 
users switching to natural lighting use or 
100 % of the users converting to LED solu-
tion. Another major assessment is the ineffi-
ciency of optimised kettle use; although the 
appliance has a large consumption while 
operating, the total consumption over time 
is quite small and across all dorms the total 
consumption reduction of optimised use 
provides only half a percentage. This result 
indicates that in the tested cases the opti-
mised kettle use does not provide large con-
sumption savings and the solution will not 
be included in the final assessment. Column 
No. 2 “Natural lighting over LED” will also 
not be addressed in the final assessment 

because these results serve a means to the 
lighting solution efficiency comparison and 
highlight the best practice outcome.

Examination of appliance efficiency 
impact at 50 % user awareness, 5 of the 7 
simulated cases are listed by their overall 
consumption impact severity:
•	 Lighting solutions – lighting solu-

tion across all test cases provides most 
reduction in consumption. The largest 
reduction can be achieved (3.6–7.9 %) 
by converting to more efficient LED 
solutions, followed by the second 
largest reduction (3.4–7.6  %) through 
increased utilisation of natural lighting.

•	 PC solutions – PCs nowadays are 
widely used and this is especially true 
for university students. From the two 
tested cases, the most efficient reduc-
tion in PC consumption is the third best 
overall reduction (1.9–3.3 %) – reduced 
PC overall use by up to 20 %. Slightly 
less consumption reduction (0–3 %) is 
provided by the PC sleep mode use, but 
this solution in the overall reduction 
rates fourth. Sleep mode in Dorm 1 pro-
vides a 0 % change due to the lack of 
excessive unattended PC usage by the 
model users.

•	 TV solution – many of the conducted 
surveys have indicated users having not 
only PCs as a frequently used appliance, 
but also TVs. The reduced consumption 
for this appliance ranks last – fifth, in 
the overall consumption reduction, but 
provides an optimal reduction of around 
1.5 %.
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4.3. Dorm Cross-Examination 

In the final examination, all four dorms 
are compared side by side. The comparison 
is observed through the selected KPIs, col-
lected in Table 6. These selected KPIs rep-
resent the results with the largest impact on 
total consumption as well as give a general 
view. Table includes the KPI name, defini-
tion, calculation formula and represented 

units.
KPI resulting values are presented in 

Figs. 3 and 4. First five KPIs are based on 
the assumed achievable 50 % degree of user 
awareness and the 7th KPI related to renew-
able energy assumes the best practice from 
the two available setup types.

Table 6. Compared KPIs

No. KPI Definition Metrics

1.
Daylight Fluo-
rescent

User’s maximum utilisation of natural lighting to substitute Fluores-
cent electrical lighting solutions. Action impacted by User Awareness 
increases the efficient energy use.

%

2.
Fluorescent to 
LED conver-
sion

Improvement of efficiency through the use of a more efficient electri-
cal lighting solution. Action impacted by User Awareness increases 
the efficient energy use.

%

3. PC sleep mode

Continuous unoccupied operation of PC creates a large increase in 
consumption, when user does not use the PC directly. Increase in 
User Awareness motivates user to switch to automatic sleep mode 
when PC is unoccupied.

%

4.
PC use reduc-
tion

PC load can contribute to a large part of user’s total consumption. 
Increase in User Awareness regarding energy use may lead to reduc-
tion of appliance use by prioritization of other activities or sleep 
mode utilisation while PC is not directly used.

%

5.
TV use reduc-
tion

TV load can contribute to a large part of user’s total consumption. 
Increase in User Awareness regarding energy use may lead to reduc-
tion of appliance use by prioritization of other activities or appliance 
shutdown while TV is not directly used.

%

6.
Energy con-
sumption [15]

This indicator corresponds to the amount of energy consumed by the 
end user. This consumption is calculated for a period of a single year 
and used to assess end user energy efficiency.

%

7.
Increase of 
RES share [16]

This indicator represents the degree at which household self-supplies 
energy by renewable energy sources. Parameter provides the ratio of 
self-supplied energy and total consumed, highlighting the degree of 
independence.

%

8.*
Carbon dioxide 
emissions [17]

This indicator represents the CO2 emission share of Greenhouse Gas 
emissions. Parameter reflects the amount of pollution.

%

* Value is assumed similar to the 7th KPI
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	 In Fig. 3 – Dorm 1, there is a unique 
singled out outcome of the four involved 
dorms. By achieving a degree of 50 % user 
awareness, the overall dorm consump-
tion from only changes in lighting solution 
reduces the total consumption by 15.5 %. It 
is a greater impact in comparison with the 
same solution savings of other dorms. More 
than half of these savings are achieved by 
converting current lighting solution with 
more efficient LED solutions (7.9  %); the 
other half is represented by user utilisation 
of natural lighting when possible (7.6 %). 
Additionally, unlike other dorm results, 
enabling PC sleep mode does not provide 
any consumption reduction; this does not 
limit the potential benefit, but in this case it 
is assumed that users are efficient, thereby 
PC sleep mode is enabled prior and no 
further changes can be applied. Although 
lighting solutions in Dorm 1 have a large 
potential of reducing the overall dorm con-
sumption, the PC and TV solutions show a 
very low impact based on (from PC solu-

tion there is a 1.9  % reduction contribu-
tion and from TV up to 1.7 %)  the dorm 
total yearly consumption. The percentage 
is large enough to provide a small impact, 
but in real consumption values Dorm 1 (in 
comparison with other three dorms) has 
from two to four times less consumption 
in a specific solution consumption reduc-
tion. The total dorm consumption reduction 
made by an increase in user awareness to 
50  % is equal to 19  %; this is the largest 
reduction share, but in actual consumption 
values the overall reduction of Dorm  1 is 
two – three times smaller than the results of 
other dorms. Dorm 1 is also the only dorm 
with the highest share of increased renew-
able energy share (34.5 %), where the low-
est result is only 1.6 % less for Dorm 4. This 
result (like the previous mentioned) is the 
largest one in share, but the smallest one in 
actual power, with other renewable share 
size being two – three times larger. Similar 
change in carbon emissions can be expected 
as the increase in renewable energy share.

Fig. 3. KPI spider-web representation of Dorm 1 & 2.

In Figs. 3 and 4, Dorm 2 and Dorm 3 
respectively represent a very similar situa-
tion. Similarities can be seen easily by the 
shape of the diagram itself; the two dorms 
share the same outline with a very small 

margin in values. By looking at yearly 
energy consumption (Table 1), more simi-
larities can be seen with a ~3 % difference 
in dorm total consumption. The two situa-
tions label the middle results with no spe-
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cific unique outcomes. Comparing Dorm 2 
and Dorm 3, the ~3 % difference can also 
be seen in values 1–5, where Dorm 3 has 
a slightly higher percentage, but the over-
all yearly consumption is slightly lower as 
well. In the end, Dorm 2 achieves an indi-
vidual consumption reduction of 15.5  % 
and Dorm 3 achieves 16.5  %. Although 
Dorm 3 achieves a 1 % larger consumption 
reduction, this 1 % share is equal to ~3 % 
in comparison with Dorm 2 in actual con-
sumption. Thus, we can deduce that both 

dorms are very similar and all results have 
a difference of around ~3 % in actual power 
values. The only value that is greater for 
Dorm 2 is renewable energy share increase. 
Both dorms have the same 33.2 % increase 
in renewable energy share; however, Dorm 
2 has slightly greater consumption that is 
why this share in actual values is slightly 
greater. The expected change in the reduced 
carbon emissions is around 33.2 % for each 
dorm.

Fig. 4. KPI spider-web representation of Dorm 3 & 4.

In Fig. 4, Dorm 4 presents another 
unique outcome due to its large overall 
consumption. Dorm 4 is unique by provid-
ing some of the lowest values in categories 
where Dorm 1 thrives. Examining Dorm 4 
lighting solutions, the largest benefit simi-
lar to other solutions is by efficient lighting 
solution utilisation – LED, with a 3.6  % 
dorm consumption reduction; this is the 
lowest value in share, but per user it is simi-
lar to other dorms. For prioritization of nat-
ural lighting, the dorm can achieve a con-
sumption reduction of 3.4 %, which as prior 
is also the lowest of any shares, but in actual 
value per person the result is fairly similar. 
Most impressive savings in Dorm 4 are pro-

vided by utilisation of PC sleep mode with 
the largest share of any dorm (3 %) in dorm 
total consumption reduction. This value 
in dorm share is only 3 %, but taking into 
account actual consumption, where Dorm 
4 consumption is three times larger than 
Dorm 1 or 50 % larger than Dorm 2 or Dorm 
3, the value achieved provides large saving 
in overall consumption. The total reduc-
tion in the solutions used provides a 14.7 % 
overall consumption reduction, which in 
share values is the lowest one, but in actual 
power values it is the greatest value of all 
four dorms. Additionally, in renewable 
share increase, Dorm 4 has scored 32.9 %, 
which similarly to other share results is the 
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lowest one among the dorms, but it is 0.5–3 
times larger in actual power values. It indi-
cates that the performed savings generated 
by user awareness increase and renewable 
energy solution provides a very large reduc-
tion in consumption in comparison with 
dorm large consumption and in general. 
The reduction in carbon emissions will be 
similar to the increased renewable share 
and due to dorm large overall consumption, 
it provides the greatest reduction in carbon 
emission in volume.

Across all four dorms, the renewable 
share has increased by around 33.5 % with a 
margin of 1 %. This share increase is based 
on the calculated best outcome of the two 
setup types concluded in Section 4.1. This 
“best outcome” is based on individual dorm 
peak load, which is assumed as the value 
of PV panel size or ES capacity, depend-
ing on the setup type. In general, across all 

dorms the overall consumption reduction 
of around 58  % with a margin of 1% has 
been achieved using prior determined supe-
rior “Type B” setup. Due to the resulting 
renewable energy consumption reduction, 
the prior known 42.7  % (Table 1) renew-
able share for each dorm has increased by 
around 33.5 %, resulting in a very large the-
oretical renewable energy share. Addition-
ally, each dorm has the potential to achieve 
around 14–19  % reduction in the overall 
consumption by implementing 50 % degree 
of user awareness, which provides signifi-
cant power savings on the part of end user. 
From all examined user awareness potential 
impact factors, the biggest power saving 
can be achieved in lighting solution modi-
fication, primarily from converting to more 
efficient light bulbs and secondly by wider 
utilisation of natural lighting.

5. CONCLUSION

The paper has addressed the topic of 
KPI evaluation on UPB student dorms 
through utilisation of the high-end smart 
meter system installed at the floor level. 
Taking into account the time constraints, 
KPI evaluation has been performed through 
energy consumption modelling means, and 
the comprehensive model has been devel-
oped using a multisource approach that has 
higher flexibility with its modular structure. 
This model is able to generate multiple 
individual user consumption patterns based 
on the information taken from consumption 
surveys and real smart meter measurements 
as a guideline. Using models flexibility 
has allowed simulating the impact of user 
awareness changes regarding a specific 
tested consumption case.

The developed consumption model has 
been used to simulate various users based 

on the available information of electric 
appliances, appliance use frequency and 
other preferences as well as individual user 
activities. Diversity in preferences and indi-
vidual activity randomization has provided 
a large number of unique energy consum-
ers and further grouped them together, 
representing the inhabitants of each dorm. 
The chosen group of representing inhabit-
ants has been determined based on smart 
meter measurements. The representatives 
have been selected once and used in user 
awareness tests, as well as in the renewable 
energy setup feasibility study.

The UPB student dorm feasibility has 
been conducted from the user awareness 
perspective and renewable energy setup 
utilisation and depicted using KPI values. 
As a result of testing of renewable energy 
setups, it has been concluded that the supe-
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riority of “Type B” setup that prioritizes ES 
capacity selection is based on dorm peak 
load by providing most consumption reduc-
tion across all dorms. The utilisation of 
renewable energy setup, across all dorms, 
has provided an average of 58 % in energy 
consumption reduction and increased the 
individual dorm renewable share by an 
average of 33.5  %. Similar percentage to 
increase renewable share can be expected 
in regards to carbon emission reduction. 
Furthermore, by achieving degree of 50 % 
user awareness, the dorms have the poten-
tial to reduce their total yearly consumption 
by 14–19 %. The largest benefactor of user 

impact is lighting solutions with 3.6–7.9 % 
overall consumption reduction by using 
LED lighting and 3.4–7.6  % reduction by 
prioritizing natural lighting over artificial 
solutions.

Based on the evaluation of eight KPIs 
using a model approach, it has been con-
cluded that great consumption reduction 
can be made on the user part and that every 
dorm has a great potential for reducing its 
individual total consumption and at the 
same time for increasing renewable energy 
share and reducing dorm carbon footprint 
by PV panel and ES system implementa-
tion.
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