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The present paper studies the problems of creation of techniques for the 
analysis of vibro-impact processes in systems with a large number of impact 
pairs. The used method of singularisation allows refusing from the ideas of the 
momentary impact and considering interaction hypotheses, which are more re-
alistic than Newtonian ones. We consider the features of synchronous modes of 
movements of the clap type in systems with parallel impact elements as well as 
in tubes colliding with intermediate supports. Such modes are most dangerous 
in terms of the vibration wear of structural elements. The examples of calcula-
tion are given for specific designs. 
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1. INTRODUCTION

The problem of modelling and analysis of non-Newtonian vibro-impact sys-
tems, where the forces of shock interaction are described by threshold nonlineari-
ties, was discussed in [1]. Apparently, V. K. Astashev was the first to consider such 
problems [2]. Any threshold nonlinearity represents the hypothesis of the impact in-
teraction. Having used the hypothesis of instantaneous impact interaction, the author 
of [3] proposed a method of singularisation, which allowed creating approximate 
solutions to the problems requiring consideration of the finite duration impact. Sin-
gularisation method, developed in [4], [5], consists in the following: at interaction 
the concept of impact in first approximation still remains Newtonian (elastic impact), 
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but the obstacles are set not as fixed but “floating” depending on the time of interac-
tion defined by the non-Newtonian impact hypothesis. Thus, it makes possible to 
take into account different characteristics of elastic loading during the impact of the 
interacting subsystems, as well as to consider more realistic models of the dispersion 
energy during interaction. These issues are discussed below. 

2. OPERATOR EQUATION OF MOTION

We consider a periodic vibro-impact process in a mechanical system of the 
general type comprising N impact pairs. In the construction process, we use in some 
modified form the methods of time-frequency analysis of vibro-impact processes [1], 
[4]–[10] based on the record of the desired laws of motion using periodic Green’s 
function of the interacting linear mechanical subsystems. As an example, we con-
sider a linear scleronomous, stationary mechanical system with an arbitrary finite 
number (N1) of degrees of freedom. For simplicity reasons, we restrict ourselves 
to assumption being, in general terms, insignificant that each point of the system 
performs a one-dimensional movement along a certain axis. Let us suppose that a 
family of operators of dynamic compliance of the given system L(u,y; p), where u 
and y are its arbitrary points, is known. Each such operator associates a force applied 
in the point u with the displacement of the point y; p ≡ d/dt. 

	 We suppose that at N ≤ N1 points {uk}: L(uk, uk) = O(p-2) (p→∞). This as-
sumption means, in particular, that at points {uk} some bodies with mass mk are 
concentrated. We assume further that each such point contains an impact pair, which 
is supposed to be asymmetric and unilateral for definiteness, i.e., there is an ordered 
set of numbers {Δk} such that uk ≤ Δk and at uk = Δk a direct and central non-New-
tonian impact interaction takes place. We denote the impact force in the k-th pair 
as ; we particularize the form of  below. It is common to set 

, where  is an elastic component and 
 is a dissipative one.

Assuming, finally, that periodic (with period T0) external excitatory forces 
 are applied in some selected H≤N1 points {uh}, we can write for the 

points uk :

	  (1) 

We should also point out that similarly we can consider the case where con-
centrated bodies of the studied system collide among themselves [4]. 

Let us assume that the family {Ph} is T-periodic. To find the T-periodic laws of 
motion uk(t), one can use a system of integral equations of the periodic fluctuations 
of Hammerstein type [4]–[7] when k= 1,...,n:

	  

(2)
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Here χ(uk, uh; t-s)  is a periodic Green’s function (PGF) corresponding to the 
operator L(uk, uh; p):

		   (3)

PFG properties are described in detail in [4], [6]; they represent the response 
of linear systems to periodic sequence of Dirac δ-functions (Dirac comb):

	  (4)

The first term on the right side (4), thus, turns out to be the solution to the linear 
problem (all Фk ≡ 0). If all the excitatory forces are symmetric and impact pairs are 
also symmetric, then in order to find the symmetric motion modes uk(t)=- uk(t+T/2) 
of the system (1) we can use symmetrizable integral equations (2), where the integra-
tion is taken in the interval [0, T/2], while symmetric PFG-s serve as kernels:

	  (5)

which proves to be a linear system response to a double Dirac comb: 

	
 (6)

The representation of PFG-s is useful in their final form at intervals of perio-
dicity (symmetry) – see [4], [6], [9] and below.

3. HYPOTHESIS OF IMPACT

In terms of collisions, we need to consider the hypothesis of an impact. We 
will initially assume that the impact is perfectly elastic and direct. Let us consider 
the so-called threshold functions from the class {Ф}∆  [1], [4], [5]. We denote the 
threshold as a coordinate, after passing of which the impact interaction between two 
bodies or a body and a fixed limiter begins. The coordinate is counted along the axis 
of impact. If the impact is absolutely rigid and the deformation of colliding bodies 
can be neglected, then the duration of the impact is zero (momentary impact). 

In the event of momentary impact, a well-known Newtonian hypothesis is ap-
plied. The impact force, in this case, is written using a singular generalized function 
[1], [3], [4], [6]. However, if it is important to take into account either finite duration 
of impact force or energy losses during the interaction, one should take into account 
some theories of contact damping based, for example, on the material properties of 
the interacting bodies, and here it is necessary to abandon assumptions about the 
momentary nature of the interaction. 

First, let us consider an elastic impact. Generally speaking, the choice of  
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hypothesis of impact is a problem of designation of representation of the interac-
tion force. If an impact pair is one-sided and asymmetric as shown in Fig.1, then a 
responding threshold function  is also asymmetric. In fact, with 
the help of this function, the hypothesis of the impact in this pair can be determined. 
Here λ>>1 is a large parameter. The class of threshold functions for a given task is 
defined as follows (Fig. 1):

Фk∈{Ф}∆≡

≡{Фk )( ku ;Ф )( ku =ψk ku( -∆)η ku( -∆),∆≥0;ψk ku( -∆)≡0; ku ≥0}. (7)

Fig. 1. One-sided and asymmetric impact pair. Ф(u) – threshold function; 
u – local displacement.

	
It is assumed that ψk )( ku is continuously differentiable on the entire number 

axis, is convex and monotonically increases at x≥0; η(х) is a unit function.
	 Following the first works, this approach was later developed in the book [4], 

while for systems with multiple impact pairs – in [6]. We fix the hypothesis of elastic 
interaction in each impact pair in form (3) and consider problem (1) [(2)] using the 
method of singularisation. 

4. THE REPRESENTATIONS OF PERIODIC MODES

	 We consider a conservative analogue of the system of operator equations 
of motion (1). For all k and h we put Ph = Ф2k = ImL(un, uq;iω) =0 for all points in 
the system. Then the equation of motion of a conservative system with the operator 
L0(uk, un; p) for all k takes the form:

	
 (8)

In order to find periodic modes of motion in a conservative system, we use the 
integral equation of nonlinear oscillations, which in this case takes the form:
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	  (9)

Works [1], [4] under similar assumptions show that when λ→∞, the solutions 
of equations similar to (8) transform into the solutions that meet the hypothesis of a 
momentary (in this case elastic) impact.

It is postulated that during the interaction in arbitrary impact pair one can 
neglect the effect of any forces applied in the point of the pair localization, as well 
as of any forces, including interaction forces applied at other points of the system. 

Let us use the method of singularisation that associates a non-momentary 
short interaction with a momentary impact, which takes place at a “shifted time”. In 
accordance with the method, we can approximate the forces from equation (8) as a 
singular generalized function. In particular, for T-periodic process under the assump-
tion of a single interaction for the period of movement in each impact pair: 

	 (10)

where tn is a fixed moment of the beginning of interaction in the n-th impact pair 

(phase); furthermore,  – half time of interaction in this pair de-

termined from the previously obtained  formulas [10], [6], [11] (see also below).
Representation (9)–(10) is caused by the fact that, first, we find the modes of 

motion namely of periodic type in a conservative system, and, secondly, the forces of 
interaction, as in the case of hypothesis of momentary impact, are given by equations 
of motion containing singular generalized functions. Such equations of motion are 
called singularized. In formula (10), Jλn is a momentum of interaction in each n-th 
impact pair:

	
 (11)

Now from (8) we obtain: 

	  (12)

Representation (12) determines the solution using 2N parameters that are mo-
menta of interaction and the moments of the beginning of interaction. As in problems 
with momentary impact, we will call such a solution as 2N – parametric representa-
tion [6]. To find N unknown motion parameters, we use the terms of the beginning 
(or the end) of the interaction:

uk(tn) ≡ uk(tn+ tλn) = ∆k,      k = 1,…, N,                                                                        (13)

where ∆k – the values of the installation clearance (preload) and

 
	  (14)
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Relations (14) represent a system of N linear algebraic equations; the quanti-
ties τλn will be given below. Furthermore, N conditions for quantities tn can be ob-
tained from the additional relations resulted from (13) and concretized hypotheses 
of interaction. When addressing a conservative task, it is expedient to involve consi-
deration of symmetry. To obtain analytical design equations, it is advisable to remain 
within the analytical design formulas, assume for all k: ∆k ≡ ∆. On the use of numeri-
cal methods in such systems, see [12].

5. PERIODIC CLAPS IN THE ELASTIC CHAIN

By a clap we mean a driving mode, in which all or a part of massive bodies 
move in-phase and interact synchronously, for example, with limiters. With a clap, 
the vibro-impact process turns out to be most intensive [8]. We consider a model 
system with periodic structure (Fig. 2) [8]–[10].	 Let us consider an elastic model. 
So as not to limit generality, we assume, for simplicity, m = c =1. In addition, it is 
natural to assume that all impact pairs act under the same hypothesis of interaction.

Fig. 2. Elastic model system with a periodic structure: m – local mass; ∆ – gap.

Under the assumption of a conservative system, the equations of motion for 
k=1,...,N and boundary conditions take the form

	  (15)

where uk ≤ Δ and the clap, first, is assumed to be perfectly elastic (see below).

Let the system experience a clap in which all the particles take part. Then 
2N-parametric representation (12) and defining relations (13), (14), when k =1,...,N 
and tn=0, describe the clap, in which the beginning of the interaction is combined 
with the reference point of time. PFG system in this case is determined by a series 
(3), which, taking into account the representation of the operators of dynamic com-
pliance given in [4], can be written in final form on an interval of periodicity for 
t  [0,T]:

	  (16)

further, natural frequencies of the linear chain

 
 	  (17)
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To obtain a finite representation for PFG χkN(t) outside the interval [0, T], we 
have to extend the function (16) periodically, using the condition χkn(t)=χkn(t+T) for 
all .

	 Formulas (12) and (14) contain the quantity τλn which is a half of the interac-
tion time in the n-th impact pair.

Quantities τλnj, generally speaking, depend on the selected hypotheses and im-
pulse of interaction. Works [4]–[6] give the defining relations when choosing the 
hypothesis of interaction in form:

 	  (18)

In a common case of the hypothesis of linear dependence of the interaction 
force in the contact zone, i.e., when in (19) α=1, it is shown that at a fixed parameter 
λ and large momenta, the interaction time does not depend on the quantity of the 
latest and

	  (19)

so, by choosing this hypothesis (18), in representation (12) for all n we can assume 
nλτ ≡τλ= const(Jλ). In this case m = 1.

While abandoning the assumption that the momenta of interaction are large, 
the interaction becomes dependent but this dependence is rather weak. When α>1 
(always nλτ ≡τλ≠const(Jλ)), for large momenta, this dependence is weak. Expres-
sions for the parameters of singularitarian equations and representations of move-
ment when α>1 are not given here, as they are not used further; see [4]–[6]. Note that 
the interaction time ~τλ can also be taken from experimental data.

6. EXAMPLE: A THREE-SPAN CHAIN

Consider a three-span chain (N=2). From (14) it follows:

	  (20)

As  and , then J1= J2= J. For natural fre-

quencies we find from (17): Ω1 = 1, Ω2 = 3 .
The quantity of J uniquely depends on the total energy and appears to be the 

integral of motion. Another integral of motion is arbitrary moment of the interaction 
beginning [4]–[7].

Thus, from formula (14) we obtain an approximate representation of the solu-
tion (m=1):

	  (21)

For example, from the first equation (18), considering (20) and (22), we find 
for large momenta of the interaction:
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		   (22)

Given PFG properties [4] inside the interval of periodicity and using the Tay-
lor’s formula we write:  Then formula (23) can be 
represented as follows:

	  (23)

where J0 is the momentum of the interaction at the synchronous clap under the as-
sumption that the hypothesis of momentary impact takes place (λ→∞). As 

	  (24)

in an approximation of momentary impact:

 	  (25)

This formula exactly corresponds to the representation for the traditional “im-
pact oscillator” [4], [8]. From the condition j ≥ 0, it follows that the claps are pos-
sible in the frequency range 1< Ωλ ≤ ω < 2, further Ωλ= О(λ-1/2). Given the performed 
calculations, from (21) for laws of motion we obtain:

	  (26)

i.e., the motion of each body is similar to the motion of singularitariased impact 
oscillator. For large N the picture becomes slightly more complicated, because the 
claps are accompanied by unequal momenta in impact pairs.

Representation (23) appears to be most accurate for large values of the mo-
mentum, i.e., it presumes being close to the frequency ω =2. 

It is shown that in the case of three bodies, the momentum of the impact of the 
central body is somewhat larger than the momenta of the lateral bodies. In the case 
of four bodies, two central and two lateral ones, the momenta are pairwise equal, and 
so on. The dependence of J (ω) is given in [4].

7. RESONANT MODES IN A THREE-SPAN CHAIN

Let us consider the equation of motion (15), assuming that at the interaction 
in the contact zone the bodies are subjected to equal dissipative forces g( ku ). Let us 
assume, in addition, that during the motion the interacting bodies are subjected to a 
force of viscous friction that depends on the absolute velocities of the bodies. Then, 
assuming the excited oscillation to be sinusoidal with frequency ω0, instead of (15) 
we obtain (in the case studied here N=2; u0=uN+1=0): 
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  (27)

Analysing the problem of finding of periodic modes of frequency ω0 in the 
system (27), we restrict ourselves to in-phase resonant modes, by which we imply 
the motions similar to the above-mentioned periodic modes of the correspondent 
conservative system. Let us assume that the levels of forces of excitation and dis-
sipation are low, so that at the resonant modes a mutual compensation of their work 
takes place. We see such understanding of resonance in [4]–[11], in particular.

	 Let us consider the basic resonance modes. The frequencies ω0 (1<Ωλ≤ω0<2) 
lie in the interval of existence of simultaneous claps. Let us assume that all exter-
nal effects Pk(t)=ePkcos(ω0t+φk) are in-phase and of equal amplitudes, i.e., for all 
φk=φ; Pk=P.  Let us denote the modes of the conservative system (15) at ω=ω0 as u(0)

(ω0; t). Thus, in this case for all k we approximately assume:

	 (28)

In the studied case N=2. Therefore, the impulses of the interaction for both 
impact pairs are equal; at the increasing number N the form of the equation given 
below appears to be more complicated.

The momentum of the interaction J(0)(ω0) is given using the second relation 
(23) with ω=ω0. The assumption made above about large momenta, leading to the 
simplification of the expression for the time of interaction, is consistent with the 
view of the resonant nature of the movement. 

Considering that the beginning of the interaction coincides with the beginning 
of the zero time, we assume that the phase φ is unknown. To find the phase, we write 
the equation of the balance of the works of non-conservative forces for motion 

u (0)(ω0; t) for the period T0:

 (29)

Strictly speaking, this ratio should be written for all coordinates uk. After 
transformation and computing of the number of quadrature, and being given the 
notation introduced in equation (28), we find:

	  (30)

Here  is the energy loss during contact. It should be noted 
that as the force  acts in a short time  in order to account this force 
in the present approach, we should consider Ф2 ~1.   From equation (30) we define 
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two quantities of phase, one of which corresponds to the unstable mode as well as 
to the condition of the resonant mode existence: . Thus, we have:

The driving modes of the clap type were registered experimentally and studied 
quite extensively [4], [8]–[11].

8. CALCULATION OF PIPE VIBRO-IMPACT SYSTEM

 	 In heat exchanger pipes of power equipment, wear of tubes occurs due to 
continuous collisions with elements of spacer grids [13]. Periodic (in particular, sine 
wave) excitation of pipe vibration is conditioned by the unsteadiness of fluid flow, 
impinging on the pipe with velocity v. Let us consider the system presented in Fig. 
3. A simply supported rod simulating a pipe at oscillations in the plane (u, x) can in-
teract with n flat extended with limiters hj (j=1, 2, … , N). Parameters of the system 
are: rod length l >> hj; tensile force N0, the rigidity and linear mass of the rod K and 
ρ, respectively; adjusting clearances ∆j1,2; coordinates of the beginning and the end 
of the limiters xj and xj+hj, respectively. We consider a symmetric system and as-
sume: ∆j1= ∆j2≡∆. In order to take into account the finite duration of impact, let us 
assume that the interaction occurs in elastic-dissipative buffers equipped with a dry 
friction damper, i.e., the interaction corresponds to some hysteresis characteristic.  

Fig. 3. A simply supported rod simulating a pipe at oscillations in the plane (u, x).

Assuming that small dissipation is taken into account only at interaction and 
in the case the level of excitation is low, we write the equation of motion under the 
assumption that the rod is modelled by the Bernoulli beam

	  (31)
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Let the boundary conditions correspond to simple support: u(0, t)= 
= u(l, t)= uxx(0, t)= uxx(l, t)=0 ; ε=O(λ-1/2) – a small parameter; quantities  

hj,∼ ε; b~1; T0 – a periodic external excitement.
	 Let us suppose that the symmetric elastic force of the interaction is described 

by a function from the class of symmetric threshold functions:   Φ* ∈{Ф*}∆ - [4]. 
At first, let us assume that ε=β=0 and consider a conservative model. Let us 

assume that in the system free periodic fluctuations settle. Then, in definitory rela-
tions in Section 4 and below we turn to the density of the parameters and record the 
density of the elastic impact forces acting at x∈[xk, xk+hk] through the density of 
the impact momentum I(x), the phase distribution φ(x) and the distribution of the 
interaction time  [15]

 (32)

where a double Dirac comb 2/Tδ is given in (6). Therefore, for the searched dis-
placement field an integral representation, analogous to the 2N-parametric represen-
tation (12) [7], holds:

	  (33)

where  are the corresponding distributions in k-th impact ele-
ment. Symmetric PFG for the beam for 0≤t≤T/2 has the form [4], [5]:

 (34)

It also corresponds to the operator of dynamic compliance, which 
acts from point z to point x. The natural frequencies of the linear system are 

. Outside the interval [0, T/2], function (34) is 
extended on the whole axis in terms of frequency, based on conditions of symmetry.

	 We will use the fact that the values hk are small and the dynamic processes 
in the impact element itself have little influence on the settling regime. Further-
more, the interaction time, obviously, in all impact elements can be taken constant: 

 and instead of (33) we can switch to 2n-parametric represen-
tation in the form

	
 (35)

where Jλk – the full momenta in the k-th element. 

Representation (35) also contains PFG ∗χ  being averaged over the small 
length of the impact element:



62

Representation (35) is quite similar to (12). It implies that the mass of the 
reduced point contacting body , while the momenta Jk can be found from 
the system that follows from representation (35) and from the additional conditions, 
such as conditions of in-phase beginning of the interactions in all impact pairs of 
shock or other allowable additional conditions. For in-phase motions, we obtain 
(compare with (14))

	  (36) 

Now, assuming that during the implementation of resonant condition the mode 
of movement approximately corresponds to a motion in a conservative system, we 
find the condition of existence of resonant modes based on the principle of energy 
balance, whereby the works of non-conservative forces are balanced on periodic 
motion. 

In the conservative case, period T is a function of Jλn (n= 1,.., N). Further, 
when examining single-frequency resonant modes, we assume that the period of the 
exciting effect is among the possible periods of oscillation of a conservative system 
Т0=Т.

It should also be noted that in the practical use of singularized representations 
of type (35), we can use the estimated quantities obtained empirically and do not 
resort to calculations arising from the representation of power  , on the 
basis of which the values of kλτ  should be calculated. 

9. A THREE-SPAN TUBE

Let us consider a three-span tube (N=2) modelled through Bernoulli beams. 
Let us assume that h1=h2≡h; Δ1=Δ2≡Δ; x2=l-x1-h. Solving system (24) and 

denoting the frequency of free oscillations, from system of equations (35) we find: 
Jλ1 =Jλ2 ≡Jλ, where:

 (37)

moreover, this entry holds only when . Formula (37) together with 
(35) describes the claps with alternate interaction with the limiters in a conservative 
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system. Equating to zero brace (27), it is possible to find the frequency correspon-
ding to the infinite pulses, i.e., the frequencies of maximum vibration wear.

Fig. 4. Results of experimentally observed claps.  
Curves (a), (b) and (c) correspond to the cases  

x1=0.7, 0.85 and 1, respectively.

Let us perform calculations using the following geometrical and physical 
characteristics of round tube [15]: the outer and inner diameters D=16.10-3 and d= 
13.10-3 m, respectively, Young’s modulus Е=2.1011 N.м-2, whence it follows that 
K=1/64πΕ(D4-d4) = 363 N.м-2; tube length l=3 м, ρ =1.1 kG/м, N0=4.103Н, h=10-2м, 
λτ =5 10-4с. 

The frequency zones, where the modes of motion of clap type may exist for-
mally, are defined by the condition λJ ≥0. In order to find their boundaries, it is 
necessary to determine the frequencies at which λJ =0 и λJ →∞.  

Numerical calculations reveal that one such zone exists on the right of the first 
natural frequency of the linear system and occupies the interval [1.05 1Ω ,1.28 1Ω ]. 
The calculations took account of 22 terms of the series (37). Verification of conver-
gence was carried out numerically. Along with the specified zone, the others were 
identified, which turned out to be very narrow. Consideration of them in this case 
makes no practical sense. The observation made is in agreement with the experiment 
[10], [11].

	 We restrict our consideration to experimentally observed claps – the modes, 
settling to the right of the first natural frequency of the linear system. This makes 
possible to obtain the dependences shown in Fig. 4 (curves (a), (b) and (c) corre-
spond to the cases x1=0.7, 0.85 and 1, respectively).

Let  in equation (31). We consider the 
forced resonant oscillations of the synchronous type, which can only be carried out 
in case the frequency 0ω  belongs to the interval of natural frequencies [1.05 1Ω , 
1.28 1Ω ]. We describe the movement through (35)–(37), (39), assuming, as noted 
above, that the studied regime is close to the regime of free vibrations u(0  and ω0=ω: 
u(x, t)≈u(0)( λJ ;x, t)+…, where the momentum λJ  is given by formula (37). 

Aligning the impact with the zero time, we assume that the phase φ is un-
known. To find it, we will use the principle of energy balance [see (31)], which in 
this case can be written for the half-period: 
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	  (38)

where the left part of the equation contains the work of external source force on the 
motion u(0)(x, t) (T=T0); with the expression for energy loss in the interaction [see 
(32)] being in the right part. Equation (38), given the correlations, enables us to ob-
tain the condition of the existence of the resonant mode ( 1)sin( ≤+ λτϕ ): 

Here the incoming quantity   in accordance with the 
structure of the right side of (38) determines the energy loss during the interaction. 
We similarly analyse an asymmetric case as well as other types of movement settling 
in such systems.

An overview of the issues discussed here is available in [14], [15].
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NE ŅŪTONA VIBROTRIECIENA PROCESU ANALĪZE CAURUĻU 
KONSTRUKCIJĀS UN PARALĒLU TRIECIENA PĀRU SISTĒMĀS

V. L. Krupenin, J. A. Vība

K o p s a v i l k u m s

Šajā rakstā ir izpētīta iespēja radīt jaunu teoriju tādu vibro trieciena sistēmu 
analīzē, kurās ir liels skaits sadursmju pāru.

Izmantotā metode (ar singularitāti) atļauj atteikties no idejas par īslaicīgu ob-
jektu sadursmi un izvērtēt tam nolūkam jaunu mijiedarbības hipotēzi, kas ir tuvāka 
īstenībai, nekā Ņūtona metode. Rakstā izmantotās funkcijas apraksta sinhronas sadu-
rsmes kustības “plaukšķināšanas” veidā sistēmās ar paralēliem trieciena pāriem, kā 
arī caurules sadursmēs ar starpposmu balstiem. Šādi sadursmju režīmi no vibrācijām 
ir visbīstamākie konstrukciju elementos to nodilumu ziņā. Doti aprēķināšanas 
piemēri no reālajām konstrukcijām.
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