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The focus of the present research is to investigate possibilities of volu-
metric defect detection in thin film coatings on glass substrates by means of 
high definition imaging with no complex optical systems, such as lenses, and 
to determine development and construction feasibility of a defectoscope em-
ploying the investigated methods. Numerical simulations were used to test the 
proposed methods. Three theoretical models providing various degrees of ac-
curacy and feasibility were studied.
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1. INTRODUCTION

To assess the quality and usability of a glass substrate covered with thin film 
coating it is of utmost importance to detect positions of volumetric defects, if any 
present, in said coatings. To do this rapidly, in manufacturing setting an automated 
process for detecting micron scale volumetric defects is necessary. Mechanically, 
the following process can be proposed: the sample (glass substrate covered with thin 
film coating) is fed (by a conveyer) to a test station where one side of the sample is 
uniformly illuminated. A sensor of some sort is positioned on the other side of the 
sample. If no defects are present – the sensor should produce a uniform reading. If 
a defect is present in the sample, it should produce a non-uniform reading from the 
sensor, which shall allow for determination of a defect position. In this paper, three 
methods for detecting position of micron scale volumetric defects, two using a one-
pixel camera as a sensor and one using a pixel matrix, are proposed and tested by 
means of numeric simulation. 

2. THEORETICAL BASIS

Convolution. In imaging, if no optical devices, such as lenses, are used, the 
result sampled from a sensor can be viewed as convolution between function  , 
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which describes intensity of light reflected off or emitted from the object being pho-
tographed, and the visibility function , set by parameters of the sensor (pixel). 
The continuous time convolution (mathematically marked as operator ) of two func-
tions  and  in one-dimensional (1D) case is an integral, when function  
is mirrored and shifted over  [1]. Often the integral is taken over infinite time; 
however, for real world applications finite time variation is used:

	 	  (1)

In two-dimensional (2D) occasion, discrete convolution (operator ) is given 
by formula:

	  	  (2)

In signal processing, convolution also describes the multiplication of spectra 
from two signals [2]. The definition of convolution suggests that the opposite – the 
reconstruction of one of the initial functions is possible if the other function and 
the convolution are known. Such a procedure is called deconvolution [3]. In other 
words, deconvolution is the inverse mathematical operation of convolution:

 	  (3)

where h is the resulting signal, f – the renewable signal, g – the interference signal, 
but  describes noise. Deconvolution can also be achieved by dividing the convolu-
tion spectrum by spectrum of the known initial function. This in turn produces spec-
trum of the other initial function, which can be transformed to time domain [1], [2].

Compressive sampling (compressed sensing, CS) is a signal sampling tech-
nique that allows representing a compressible signal  as signal  with sample 
count n and m respectively by use of easily implementable expression

      

   
, 	  (4)

where  is the so-called measurement matrix, but  is a measurement. As a result,  
. For recovery of signal  -minimisation algorithms must be used [4].

To exploit CS, the measurement matrix  must conform to specific rules 
and ensure specific properties [5]. The most important is the coherence property of 
the measurement matrix  that determines how many elements measurement  
should contain to allow for perfect recovery of .

3. PROPOSED METHODS

Based on the theory, three methods for detecting the positions of volumetric 
defects in thin film coatings on a given glass sample were proposed.
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The first method utilises a direct algorithm of convolution, where function 
 represents normalized translucency of the sample but function  represents nor-

malized visibility function of the sensor. This model uses a one-pixel sensor for 
detection of light passing through the sample. For ease of mathematics, a cosine was 
chosen to represent the sensor visibility function. 

The mechanics of this model is as follows: the sensor is set at known distance 
 from the sample and the sensor viewing angle  is known. 

 
Fig. 1. Schematic of visibility distance calculation.

Mathematically, the visible distance L is calculated by equation

 
		   (5)

In Fig. 1 the line  representing the visible distance can be imagined as a 
conveyor. In the mathematical model, it is realized by a one-dimensional array with 
length , which represents the sample translucency function . Initially, all ele-
ments are set to one, representing a fully translucent medium with no sample present. 
Next the viewing angle alpha is expressed in radians and used in cosine calculations 
to construct the visibility function . When the measurement process starts, it-
eratively the convolution of functions  and  is calculated, thus simulating 
a conveyor to move the sample precisely by one unit (size of defect). If there are no 
more sample coefficients available, the first value of  is set to one, thus repre-
senting a situation where the sample is about to pass the sensor. This way, for the last 
iteration  is uniformly equal to one, therefore returning to the initial state. 

To detect the position of a volumetric defect it is necessary to calibrate the 
system. This is done by simulating a result from a sample with no defects. The cali-
brated measurement is compared to the measurement of the sample by subtracting 
them. The position of the first nonzero element represents the position of a volumet-
ric defect in the sample. This algorithm of position detection works only to find the 
position of the first defect. This is not suitable if all defects need to be accounted for; 
however, this method is applied for such purposes. The key is to recalculate cali-
bration each time a defect is found by introducing the said defect in the calibrated 
measurement.

The second method is based on the Fast Fourier Transform (FFT) and spec-
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trum properties of convolution. The experimental setup is the same as for the first 
method, to produce convolution, which corresponds to a measurement. To recover 
the original  function, spectrum of the measurement must be divided by spec-
trum of , and transformed to time domain by inverse FFT. By doing this, the 
translucency function of the sample within a visibility range is recovered. By repeat-
ing this process iteratively and recording results in order, it is possible to reconstruct 
the whole sample. Moreover, this method is easily performable in two-dimensional 
(2D) setting. To do this the visibility function must be expanded in 2D, representing 
a surface of a cosine and the “conveyor” system must be changed so that the sample 
is moved in 2D through the visibility range.

The third method. In a 1D case of the third method, convolution of a given 
signal  with convolution kernel  variously shifted in time can be imple-
mented by using (4) so that signal  can be reconstructed by the method used 
in compressed sensing: -minimisation. The third method uses similar mechanical 
setup as described previously; however, a multiple pixel sensor is used and during 
measurement, the conveyor is stationary, since there is no need to shift the sample. 
It is assumed that all pixels have a similar visibility function that is cut at both sides 
(1D case) of measurement system by use of black walls (see Fig. 2).

Fig. 2. Visibility function of 5 imaging pixels.

To use compressive sampling signal recovery methods, the signal has to be 
sparse or has to have a sparse representation [6]. Yet in a 1D case of a semi-translu-
cent sample, the signal  will not be sparse. Nevertheless, the compressive sam-
pling methods can be used if signal  has in time (or in this case along 1D axis) 
a constant value  with some (sparse) places where signal is 0. If this is the case, a 
sparse function  can be found

	   (6)

where . Placing  in (4) will give

	  	  (7)
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It means that the sampled signal  will contain some constant  in each 
measurement , where  is row  of . The  can be called amplification factor 
of  measurement. To find  using (6) the sparse  has to be found from

				     (8)

To recover signals that are compressible but not sparse in traditional sparsify-
ing transformations from measurements , the sampling system has to register 
the described signal value a. Similarly, formulas can be developed for these kinds 
of signals if the minimum of the signal is some constant b. Moreover, if this signal 
has in time (or dimension) changing value of maxima (minima) , where   

 is some known function, the compressive sampling technique still can be used 
to sample the signal.

It follows that maximum, minimum or exact values of coated sample translu-
cency are not important for modelling, which allows simplifying the experiment us-
ing 1 to represent translucency of a sample value without a defect and 0 for defects.

4. EXPERIMENTAL RESULTS AND DISCUSSION

For modelling, testing and simulations, the National Instruments graphical 
programming environment “LabVIEW” was used. Due to time and processing pow-
er constraints, simulations were limited, yet a sufficient amount of information was 
gathered to perform the statistical analysis.

 The first method’s front panel is shown in Fig. 3. For simulation and result 
analysis, a 100 coefficient long sample (100 µm) was used. The sensor viewing 
angle was swept from 1 to 160 degrees, the translucency of a defect was swept from 
0 to “No defect” while the sensor distance to the sample (h) was swept from 1 to 
100 units. For calculations, a numeric type “double” consisting of 64 bits was used. 
By analysing results, it was determined that the position of a volumetric defect was 
found correctly in approximately 76 % of cases; however, in the remaining 24 % of 
cases the position detected was ± 1 unit off. In these 24 % of cases, the resolution of 
calculations (64 bits) was not sufficient to detect a change in results.

To test the second method, two LabVIEW projects were created: for a one-
dimensional case and for a two-dimensional case, respectively.

For simulation and result analysis, a 100 by 100 coefficient sample was used, 
the sensor viewing angle was swept from 1 to 160 degrees, and the sensor distance 
to the sample (h) was swept from 1 to 100 coefficients. From one to five randomly 
placed volumetric defects with varying translucency were introduced in the sample. 

After data analysis an unexpected result was found; in a one-dimensional 
case, results, both for one and multiple volumetric defect samples, showed that the 
positions of the defects were found correctly (as well as the translucency values 
were within 1 % error margin) only in 52 % of cases. For the rest 48 % of cases, the 
translucency value was rapidly oscillating for every other position in the sample. 
However, in a two-dimensional case the spectrum multiplication method found all 
volumetric defects correctly and returned full translucency function within 1 % tol-
erance in 98.6 % of time for the case with 1 volumetric defect and 97.3 % of time 
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for the case with multiple volumetric defects. This indicates that there can be a bug 
in the algorithm for a one-dimensional case or some (small) parameter causes the 
algorithm to work incorrectly.

Fig. 3. Front panel example of Simple_Method.

Fig. 4. Front panel of simulation using 1D FFT.
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Fig. 5. Front panel of compressive sampling simulation.

The third method (see Fig. 5) was tested by using 1024 to 4096 coefficient 
samples possessing one to five volumetric defects with translucency value 0 set at 
random places for multi-error samples and all possible places in case of one defect. 
Sensor distance to sample  was swept from 0.5 mm to 1 cm. Additional simulation 
with  to 25 cm was carried out for samples with only one volumetric defect 
testing all possible positions of defects. This method correctly returned position of 
the volumetric defect in 100 % for the following defect cases: for  0.5 mm to 1 cm 
if the sensor had 3 to 99 pixels, for  cm if the sensor had less than 7 pixels 
(in this case, an increase in pixel count produced worse results, possibly due to error 
accumulation during calculations).

At first, this method failed to find multiple defects since measurement ma-
trix  was highly coherent; therefore, each pixel visibility function was randomised 
(see Fig. 5 graph “Visibility Functions”), thus adding white noise (with adjustable 
amplitude) to the pixel visibility function (see Fig. 5 graph “Visibility Function”); 
afterwards the summarised visibility function was normed. Physically this means 
that the sensor should be illuminated through a glass with random thickness pattern. 
As a result, coherence of  did not improve much (see Fig 5. value “Coherence”), 
yet simulation was able to find multiple defects. Simulations with randomised vis-
ibility functions and 4096 unit samples produced the following results: for samples 
with one volumetric defect,  cm and sensor with 5 to 99 pixels the model 
found defect when the added random noise level was as low as 0.01 %. In case of 
samples with 5 volumetric defects it can be seen that an increase in pixel count and 
decrease in distance  improve defect detection accuracy (see Fig 5. graphs “Exact”, 
“ ”, “Not found”); results were calculated for rather unrealistic randomisation of 
visibility function (added noise amplitude 50 %). Additional calculations showed 
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that by increasing sensor pixel count the randomisation of the visibility function 
could be reduced.

Performance and memory. A computer with 64 bit operating system, 4 GB 
of RAM and Intel Pentium T4500 processor (dual core, 2.3 GHz) was used to carry 
out simulations. In case of the first method, it takes approximately 50 milliseconds 
for this system to perform a measurement, which uses, on average, 8.9 kB of mem-
ory per measurement of   sample. In a 1D case of the second method, it takes 
approximately 86 milliseconds for this system to perform a measurement using, on 
average, 4.2 kB of memory per measurement. In a 2D case of the second method, 
the system uses approximately 1.7 seconds and, on average, 19.3 MB of memory per 
measurement. Although these numbers are significantly higher than for other cases, 
they are quite remarkable, since these measurements produce full translucency infor-
mation of 2D visibility range. The measurement time needed for the third method is 
linearly dependent on a number of sensor pixels and sample defect count. In case of 
99 pixels, for this system, to find one defect it takes approximately 6.1 milliseconds; 
however, in case of 49 pixels it takes only 3.2 milliseconds. On average, the third 
method uses 2.15 MB of memory per measurement.

5. FEASIBILITY OF DEFECTOSCOPE

Digital images are dependent on performance of an imaging sensor. Two wide-
ly used sensor types are CCD (Charge-Coupled Device) and COMS (Complemen-
tary Metal-Oxide-Semiconductor). Although CMOS is a newer, cheaper and more 
power-efficient sensor, a CCD sensor would be more appropriate for application in 
a defectoscope. This is so due to inherent CMOS problem called rolling shutter. The 
so-called rolling shutter means that the sensor is read line by line, thus skewing a 
moving object such as in case with a conveyor above the sensor. In case of CCD, the 
whole image is captured at once as well as the analogous nature of CCD can provide 
a higher definition if appropriate circuitry is used [7], [8].

Digital image consists of two parts – usable signal and noise, which is an inte-
gral part that arises from different sources. Three main noise sources are identified: 
photon noise, read-out noise and dark current noise. Listed sensor noise parameters 
dictate a signal-to-noise ratio (SNR). SNR value of the sensor can be determined by 
expression

	
 	  (9)

where  is photon flux,  is background photon flux (both given in photon/pixel/
sec),  stands for quantum efficiency of CCD,  is exposure or integration time but 

 is dark current. From [9], [10] it is determined that the first and second models 
working with 64 bit values provide an SNR value of approximately 290 dB. Best 
CCD sensors provide SNR up to 120 dB [6], [7] which corresponds approximately 
to 30 bit resolution; therefore, practical test would be necessary to determine the real 
life accuracy of the discussed methods. Further experiments would be necessary to 
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determine an SNR value provided by the third model; however, it is well known that 
noise has a little effect when compressive sampling is used [11].

In construction of a defectoscope that utilises the proposed methods, a precise 
conveyor capable of moving exactly at 1 micron intervals is needed for the first and 
second methods, but a precision laser measuring system must be implemented for 
the third method. To achieve the best possible results, the sensor must be positioned 
as close to the sample as possible (less than 1 mm).

6. CONCLUSIONS

All three investigated methods are capable of detecting micron scale volumet-
ric defects in thin film coatings on glass substrates. However, each method provides 
different degree of accuracy and performance, thus, different potential application.

The first method is the simplest one and, potentially, the easiest to implement, 
since only one measurement of voltage is needed per movement of the conveyor. Yet 
this is also the least accurate method.

The second method needs more computing resources, however, could prove 
to be suitable in research setting where a full translucency analysis of the sample can 
be useful. 

In manufacturing setting, the third method would be the most appropriate, 
since it is the fastest and most accurate in detecting position of one volumetric defect 
at quite large distances (up to 25 cm) as well as it needs a simple imaging sensor and 
only moderate computing power.

In the multiple defect case of the third method, a special glass with randomised 
thickness must be placed before the sensor; its complexity defines pixel count in the 
sensor; visibility function randomisation of 33 % allows finding more than 60 % of 
defects at a sample distance of 1 mm in case of 199 pixel sensor. Doubling the pixel 
count can effectively reduce complexity of the glass, thus increasing the detection 
accuracy and allowing higher sensor distance to sample.

Computing hardware for the third method can effectively be implemented in 
FPGA due to parallel signal processing capabilities of this technology.

Further work will be continued to study result stability of CS approach versus 
noise of imaging matrix and ADC bit count.  Practical research is needed to test real 
world applicability of the proposed methods in development of a defectoscope.
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MATEMĀTISKO MODEĻU IZSTRĀDE MIKRONA IZMĒRA TILPUMA 
DEFEKTU DETEKTĒŠANAI PLĀNO KĀRTIŅU PĀRKLĀJUMOS 

G. Gaigals, M. Donerblics, G. Dreifogels

K o p s a v i l k u m s

Aprakstītais darbs ir saistīts ar matemātisku metožu izstrādi viena mik-
rona izmēra tilpuma defektu pozīciju noteikšanai stikla paraugiem, kas pārklāti 
ar plānajām kārtiņām, izmantojot attēlformēšanas paņēmienus, bet izvairoties no 
dārgām optiskām iekārtām, piemēram, lēcām. 

Tika izstrādātas trīs metodes šādu defektu pozīciju noteikšanai, dots šo 
metožu apraksts. Metožu pārbaudei izveidoti simulāciju modeļi National Instru-
ments grafiskās programmēšanas vidē LabVIEW.

Rakstā salīdzināti ar katru metodi iegūtie rezultāti, metožu precizitāte, 
ātrdarbība un implementācijas īpatnības. Iezīmēts turpmāko pētījumu virziens.

16.11.2015.


