First report on the occurrence of CO$_2$-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting

Sina Asadi1*, Farid Moore1, Alireza Zarasvandi2 & Majid Khosrojerdi3

1 Department of Earth Sciences, Faculty of Sciences, Shiraz University, Shiraz, Iran; email: geosinaa@gmail.com; moore@susc.ac.ir
2 Department of Geology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran; email: zarasvandi_a@scu.ac.ir
3 National Iranian Copper Industries Company (NICICO), Sarcheshmeh, Iran; email: m_khosrojerdi@nicico.com

* corresponding author

Abstract

Hydrothermal alteration of the Meiduk porphyry copper deposit, south of the Kerman Cenozoic magmatic arc and southeast of the central Iranian volcano-plutonic belt has resulted in three stages of mineralisation characterised by veins and veinlets. These are, from early to late: (1) quartz + K-feldspar + biotite + pyrite ± chalcopyrite ± pyrrhotite ± magnetite (early potassic alteration and type-A veins); (2) quartz + chalcopyrite + pyrite + bornite + pyrrhotite + K-feldspar + biotite + magnetite (potassic-sericitic alteration and type-B veins); and (3) quartz + pyrite + chalcopyrite + sericite (sericitic alteration and type-C veins). Most ores were formed during stages 2 and 3.

Three main types of fluid inclusions are distinguished based on petrographical, microthermometrical and laser Raman spectroscopy analyses, i.e. type I (three-phase aqueous inclusions), type II (three-phase liquid-carbonic inclusions) and type III (multi-phase solid inclusions). The fluid inclusions in quartz veins of the stages are mainly homogenised at 340–530°C (stage 1), 270–385°C (stage 2) and 214–350°C (stage 3), respectively, with salinities of 3.1–16 wt.% NaCl equivalent, 2.2–43 wt.% NaCl equivalent and 8.2–22.8 wt.% NaCl equivalent, respectively.

The estimated trapping pressures are 97.9–123.6 MPa (3.7–4.6 km) in stage 1 and 62.5–86.1 MPa (2.3–3.1 km) in stage 2, respectively. These fluid inclusions are homogenised in different ways at similar temperatures, suggesting that fluid boiling took place in stages 2 and 3. The fluid system evolved from high-temperature, medium-salinity, high-pressure and CO$_2$-rich to low-temperature, low-pressure, high-salinity and CO$_2$-poor, with fluid boiling being the dominating mechanism, followed by input of meteoric water. CO$_2$ escape may have been a factor in increasing activities of NaCl and S$^2-$ in the fluids, diminishing the oxidation of the fluids from stage 1 to 3. The result was precipitation of sulphides and trapping of multi-phase solid inclusions in hydrothermal quartz veins.

Keywords: CO$_2$-bearing fluid inclusions, laser Raman spectroscopy, collision, Meiduk porphyry copper deposit, Iran

1. Introduction

Porphyry copper deposits (PCDs) form commonly in association with the emplacement and crystallisation of silicic epizonal intrusions derived from hydrous arc magmas generated during partial melting of subducted oceanic crust (e.g., Wang et al., 2006) and/or from a thickened juvenile mafic lower crust (e.g., Hou et al., 2004; Hou & Cook 2009; Karsli et al., 2010; Topuz et al., 2011). According to early metallogenic models, porphyry systems...
form in subduction-related magmatic arcs such as the Circum-Pacific porphyry copper belt, with no granitoid magmatism and mineralisation (Guild, 1972). Based on studies of mineralisations in the collisional Alpine-Himalayan orogenic belt, several (e.g., Chen & Fu, 1992; Chen et al., 2007; Shafiei et al., 2009; Haschke et al., 2010) indicate, however, that a collisional orogenic setting is favourable for the development of adakitic magmatism and porphyry copper mineralisation. Several tectonic models for collisional orogenesis have been proposed by various authors; they have been summarised by Pirajno (2009).

Copper mineralisation in PCDs is mainly controlled by the behaviour of reduced sulphur, S^2_- (Liang et al., 2009), which inevitably requires the reduction of sulphate (S^{4-}_2/SO$_4^{2-}$) in the initial oxidised source magma to sulphides (S^2_-: H$_2$S/HS-/S0) or polysulphides (e.g., S^2_2, S^3_-) during deposition (Sun et al., 2013). The final phase of mineralisation in PCDs is attributed to magnetite crystallisation (i.e. ferrous iron oxidation), which induces sulphate reduction and accompanying oxygen-fugacity fluctuations during potassic alteration (Sun et al., 2004; Liang et al., 2009).

The Urumieh-Dokhtar magmatic belt in Iran was interpreted by Dewey et al. (1973) as an Andean-type Cordilleran arc system within the collisional Alpine-Himalayan orogenic belt, reflecting subduction and collision of the Afro-Arabian plate with Eurasia. All known porphyry copper deposits of Iran occur within the so-called Cenozoic Urumieh-Dokhtar magmatic belt. Cenozoic tectono-magmatic activity and porphyry copper mineralisation along the Urumieh-Dokhtar magmatic system is attributed by various authors to three time-windows: (1) Eocene-Oligocene (Ahmadian et al., 2009); (2) mid-late Oligocene (Kirkham & Dunne, 2000; McInnes et al., 2005); and (3) mid-late Miocene (McInnes et al., 2005; Razique et al., 2007; Richards et al., 2012). The majority of the authors, however, believe that the main porphyry Cu mineralisation occurred during the Miocene (e.g., Zarasvandi et al., 2005, 2007, Taghipour et al., 2008; Shafiei et al., 2009; Haschke et al., 2010).

The Meiduk porphyry copper system is located at the southern edge of the Kerman Cenozoic magmatic arc (KCMA; Shafiei et al., 2009) in the Shahr-Babak area. Meiduk and a number of subeconomic porphyry copper deposits (e.g., Iju and Chah Firuzeh) are all associated with middle to late Miocene diorite/granodiorite to quartz-diorite stocks in the region. So far, more than sixty diamond drill holes (>8000 m) with a maximum depth of 1100 m have proved the presence of a sizeable and potentially economic porphyry copper mineralisation of the Meiduk deposit. Evaluation of the deposit by National Iranian Copper Industries Company (NICICO) outlines the ore reserve as around 170 million tonnes, with an average 0.86% Cu, 0.007% Mo, 82 ppb Au and 1.8 ppm Ag (Taghipour et al., 2008); the total resources are, however, known to be considerably larger than 170 million tonnes, because high-grade hypogene mineralisation continues at depths of over 1 km (Boomeri et al., 2009).

Moore (1992) was the first to present details of the geology, alteration and fluid inclusions of the deposit. On the basis of mineralogy, fluid-inclusion studies and hydrothermal-alteration assemblages, Taghipour et al. (2008) and Hezarkhani (2008) suggested that late boiling occurred in the upper part of the sericitic zone associated with significant chalcopyrite precipitation during inflow of oxidised, acidic meteoric water and cooling of the system. Boomeri et al. (2009) came to a similar conclusion.

CO_2^--rich fluid inclusions have been commonly reported from different types of metallic ore deposits (e.g., skarns and porphyry lode systems) and petroleum and basinal fluids (e.g., Dubessy et al., 2001; Hurai et al., 2002; Robb, 2005; Shen et al., 2010; Asadi et al., 2013). These inclusions are, however, typically not present in most porphyry Cu deposits, but CO$_2$ has been identified in inclusions from some porphyry Cu deposits (e.g. from Butte: Rusk & Reed 2002; from Bajo de la Alumbra: Ulrich et al., 2002; from Bingham: Redmond et al., 2004; Landtsting et al., 2005; and from El Teniente: Klemm et al., 2007; Rusk et al., 2008; Landtsting et al., 2010). By contrast, fluid inclusions in several quartz veins from the Meiduk porphyry Cu deposit are CO_2^--rich. The presence of CO_2 in fluid inclusions in the Meiduk porphyry is reported here for the first time.
To elucidate the evolutionary history of CO$_2$-rich fluids and the origin of the Meiduk Cu deposit further, the present contribution focuses on the origin and composition of the fluid during the mineralisation that was associated with potassic and sericitic alterations. In order to achieve this goal, the field relationships, vein mineralogy, and microthermometry of the fluid inclusions were investigated, the oxygen fugacity (f_{O_2}) was calculated, and laser Raman spectroscopy analysis was applied.

2. Regional geology

The magmatic and tectonic evolution of the KCMA in the south-eastern part of the Urumieh-Dokhtar arc system was influenced by the subduction of the Tethyan oceanic lithosphere under the central Iran microcontinent during the Eocene (e.g., Shahabpour, 2005; Alavi, 2007; Shafiei, 2010). Richards et al. (2012) believe that such a setting probably represents a developed magmatic arc on the central Iran microcontinent on top of a Neotethyan subduction zone (Shafiei, 2008) and Shafiei et al. (2009) suggested, based on previous gravimetric studies by Dehghani...
& Makris (1983), that collision-related shortening produced a thickened crust of the order of 45–55 km (Fig. 1a), especially in the central and north-western parts (e.g., the Meiduk region) of the KCMA. This mid-Miocene orogenic magmatism formed adakite-like porphyritic granodiorites without volcanic equivalents, which host several world-class copper deposits (e.g., Meiduk: Hou et al., 2011).

The Meiduk area is located on the La Chah Mountain, about 3 km north-east of the village of Meiduk and 46 km from Shahr-Babak City (Fig. 1b). The Meiduk porphyry lies in a basin confined within a curved ridge (Hezarkhani 2008). In the study area, the regional structures comprise a series of major NW-SE trending Palaeogene volcano-sedimentary rocks.

Stratigraphically, the Meiduk area is composed of three volcanic successions (Hassanza-deh, 1993) (Fig. 2): (1) the early Eocene Bahraseman complex, comprising acidic pyroclastics, tuffs, volcanic breccias, mostly trachybasaltic to trachyandesitic, (2) the mid-late Eocene Razak complex (40Ar/39Ar age of albite 37.5±1.4 Ma), and (3) the late Eocene Meiduk complex. The stratigraphic succession, volcano-plutonic events and porphyry copper mineralisation episodes in the Shahr-Babak area and location of Meiduk porphyry (dating from (1) Hassanza-deh 1993; (2) McInnes et al. 2005 and (3) Taghipour et al. (2008).

Unauthentifiziert | Heruntergeladen 17.09.19 04:53 UTC
Ma), composed mainly of basaltic-rhyolitic volcaniclastic rocks, and (3) the Oligocene Hezar complex (40Ar/39Ar age of analcime: 32.7±6.3 Ma) of trachyandesites and trachybasalts. The Razak volcanic complex (~7500 m thickness) is the main host rock of the Meiduk porphyry.

According to McInnes et al. (2005) the U/Pb and U-Th/He zircon age of the Meiduk deposit is 12.5 Ma (Table 1). The mineral whole-rock Rb-Sr age of the Meiduk porphyry is reported as 12.4±0.2 Ma, but it must be mentioned here that the Rb-Sr age data do not seem to be reliable due to Rb addition and Sr depletion during potassic alteration (Hassanzadeh, 1993). Hassanzadeh (1993) reported the ages of the potassic and sericitic alteration events using 40Ar/39Ar dating; the age of the potassic alteration zone, based on biotite and K-feldspar, is 11.3±0.5 Ma and 11.2±0.4 Ma, respectively, whereas the 40Ar/39Ar isochron age for sericite in the sericitic alteration zone was also found to be 10.8±0.4 Ma (Hassanzadeh, 1993; Table 1). The Re-Os molybdenite data provide the timing of sulphide mineralisation at 12.23±0.07 Ma for the Meiduk porphyry (Taghipour et al., 2008; Table 1).

Petrographical observations of thin sections indicate that the Meiduk porphyry is strongly altered and contains 40–50 vol% of phenocrysts consisting mainly of plagioclase, quartz, biotite and hornblende. The original composition of the plagioclases is unclear because all of them have been altered, as well as the hornblende and the biotite. The matrix of this intrusive phase consists mainly of fine-grained quartz, biotite, titanite, apatite, plagioclase, K-feldspar and anhydrite.

3. Hydrothermal alteration and relationships between copper and the quartz veins

Several types of hydrothermal alteration at the Meiduk porphyry deposit have been studied (IGME-INOMRM, 1973; Hassanzadeh, 1993; Taghipour et al., 2008). These alteration types extend upward and outwards several kilometres from the deposit’s centre and they show zoning in space and time. Three distinct types of hydrothermal alteration and mineralisation have been recognised at Meiduk: (a) a hypogene zone, (b) a supergene sulphides zone; and (c) an oxidised or leached zone.

The alterations at Meiduk include: (1) potassic alteration, with biotite and feldspar as predominant hydrothermal minerals; (2) a transitional potassic-sericitic zone, characterised mainly by K-feldspar, biotite and sericite, with minor albite, tourmaline and chlorite; (3) sericitisation, characterised by the transformation of feldspar and biotite into sericite, with disseminated pyrite and quartz-sericite veins and veinlets; (4) argillisation, characterised by transformation of feldspar into smectite or kaolinite, usually controlled by fractures; (5) propylitisation, with epidote, chlorite and calcite as predominant hydrothermal minerals (Taghipour et al., 2008).

Based on cross-cutting relationships among minerals and mineral assemblages, the mineralisation in the Meiduk system can be divided into three episodes of vein formation (Fig. 3 a-h).

Table 1. Radiometric age of Meiduk porphyry and associated hydrothermal alterations.

<table>
<thead>
<tr>
<th>sample material</th>
<th>dating method</th>
<th>age (Ma)</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>sericite (sericitic zone)</td>
<td>40Ar/39Ar</td>
<td>10.8±0.4</td>
<td>Hassanzadeh (1993)</td>
</tr>
<tr>
<td>K-feldspar (potassic zone)</td>
<td>40Ar/39Ar</td>
<td>11.2±0.4</td>
<td>Hassanzadeh (1993)</td>
</tr>
<tr>
<td>biotite (potassic zone)</td>
<td>40Ar/39Ar</td>
<td>11.3±0.5</td>
<td>Hassanzadeh (1993)</td>
</tr>
<tr>
<td>whole rock</td>
<td>Rb-Sr</td>
<td>12.4±0.2</td>
<td>Hassanzadeh (1993)</td>
</tr>
<tr>
<td>single zircon</td>
<td>U-Pb</td>
<td>12.5 ±0.1</td>
<td>McInnes et al. (2005)</td>
</tr>
<tr>
<td>single zircon</td>
<td>U-Th/He</td>
<td>12.5 ±0.5</td>
<td>McInnes et al. (2005)</td>
</tr>
<tr>
<td>molybdenite</td>
<td>Re-Os</td>
<td>12.23±0.07</td>
<td>Taghipour et al. (2008)</td>
</tr>
</tbody>
</table>
3.1. Stage 1: early quartz veins (type-A veins)

The earliest quartz type is characterised by the assemblage of K-feldspar, quartz, biotite, pyrite and minor amounts of pyrrhotite and magnetite. Pyrite is mostly disseminated and coexists with K-feldspar and epidote; pyrite occurs as hypidiomorphic cubes; minor chalcopyrite amounts are scattered in the porphyry. Type-A veins occur in the pre-ore stage (stage 1) located in the centre and the deepest parts of the Meiduk system, and associated with early potassic alteration (Fig. 3 a, e). Structural irregularities suggest that the veins formed at relatively high temperatures, when the rock was relatively ductile, probably shortly after the stock consolidated; they vary in width from 1 to >5 cm.

3.2. Stage 2: Main quartz veins (type-B veins)

The potassic-sericitic alteration is directly associated with abundant stockwork quartz-rich veins and includes euhedral quartz-chalcopyrite-pyrite-bornite-pyrrhotite-K-feldspar-biotite and anhedral anhydrite (Fig. 3 b, c, f, g). Magnetite displays a dissemination form within quartz-sulphide veins. Secondary K-feldspar, sericite and clay minerals are commonly present adjacent to the vein where plagioclase phenocrysts are intersected and biotite is altered to secondary biotite, sericite and rutile aggregates. They occur throughout the potassic-sericitic alteration zone and extend into the adjacent volcanic wall rocks of the Razak complex. They are interpreted to have been emplaced during waning stages of the potassic alteration.
Type-B veins are typically irregular in width (generally >10 cm). These veins generally cut type-A veins (Fig. 3b).

3.3. Stage 3: late quartz veins (type-C veins)

Sericitic alteration forms selvages typically a few centimetres wide (3–10 cm) along structurally controlled type-C veins that lie on fractures and faults. Where these veins are closely spaced, the alteration is pervasive in volumes up to 1 km³. Sulphides are commonly strongly zoned from central chalcopyrite-rich veins cutting the potassic-sericitic ore zone upwards and outwards to pyrite-chalcopyrite veins to pyrite-dominated veins (Fig. 3 d, h). Type-C veins tend to be pyrite-rich with obvious sericitic alteration halos (including quartz and sericite) formed within the Meiduk porphyry as well as in the adjacent wall rocks.

3.4. Relationship between copper mineralisation and the vein types

Copper mineralisation at the Meiduk system appears to be dominated volumetrically by type-A, type-B and type-C veins, which are particularly abundant in the intermediate and deep parts of the intrusion, corresponding to the potassic, potassic-sericitic and sericitic alteration zones, respectively.

4. Methods applied to the research of the fluid inclusions

Microthermometric measurements were made using a Linkam THMSG600 with a combined heating and freezing stage with a temperature range of –196 to +600 °C, attached to an Olympus petrographical microscope with LinkSys software (version 1.83). The reproducibility of the measurements was better than ±0.2 °C for temperatures of less than 30 °C and ±2 °C at a total homogenisation temperature when the chips were centred in the specimen holder. Stage calibration was carried out at –56.6 °C (pure CO₂), 0.0 °C (H₂O), and 340 °C (H₂O) using standard synthetic fluid inclusions. Ice-melting temperatures were determined at a heating rate of no more than 0.1 °C/s. Homogenisation temperatures were determined at a heating rate of 1 °C/s. Homogenisation of multi-phase solid inclusions was obtained with heating cycles of about 5 °C. For two-phase inclusions, the homogenisation temperature of liquid and vapour (predominant LV→L and rare LV→V) was recorded. In the multi-phase solid inclusions, two points were recorded: (1) T_h(NaCl) (the temperature at which halite dissolves) and (2) T_h(LV) (the temperature of vapour and liquid homogenisation).

Fifty core samples from the hypogene alteration zones (potassic, potassic-sericitic and sericitic) and several vein types from various depths were collected for laboratory analyses. Over forty samples were investigated for the types of inclusion, their abundance, spatial distribution, and size. Thirty quartz wafers were polished at both sides using the procedure of Shepherd et al., (1985). The thickness of the wafers varied between 100 and 150 µm, depending on the transparency of the quartz crystals. Sample selection was biased to quartz containing an abundance of ore-related sulphide minerals in type-A, type-B and type-C veins.

The bulk compositions, pressure range, density and mole fractions of CO₂, H₂O and NaCl (XCO₂, XH₂O and XNaCl) were calculated using equations of state (Bowers & Helgeson, 1983, for H₂O–CO₂–NaCl fluid inclusions; Zhang & Frantz, 1987, for H₂O–NaCl fluid inclusions) in computer programs MacFlinCor (Brown & Hagemann, 1994) and FLUIDS (Bakker, 2003).

The salinities of H₂O–CO₂–NaCl and NaCl–H₂O inclusions were calculated using the final melting temperatures of CO₂-clathrate (Collins, 1979) and ice points (Bodnar, 1993), respectively. The salinities of multiphase-bearing fluid inclusions were calculated using the dissolution temperatures of daughter minerals (Hall et al., 1988). Because the opaque daughter minerals do not melt during the heating process, the salinities presented here do not include the contribution of these opaque daughter minerals.
The densities of $\text{H}_2\text{O}-\text{CO}_2-\text{NaCl}$ and $\text{NaCl}-\text{H}_2\text{O}$ inclusions were calculated using the Flincor procedure (Brown, 1989). In addition, laser Raman spectroscopy was applied to vapour phases in selected inclusions at Geoscience Lab Australia, using a Dilor SuperLabram laser Raman microprobe with a spatial resolution of $<1\ \mu\text{m}$, following the method of Burke (2001). The laser beam with a wavelength of 514.5 nm and a spot size of about 1 μm was focused on the bubble for each fluid inclusion through a light microscope.

5. Petrography of the fluid inclusions

The petrographical characteristics of the fluid inclusions were, as well as their morphology, recorded at room temperature following Roedder (1984) and Shepherd et al. (1985). The criterion used for the recognition of primary inclusions was that the inclusions were distributed individually or in random clusters (Roedder, 1984). Based on petrographical and microthermometrical studies and phases present at temperature room, the inclusions were divided into the following types (Fig. 4 a-f). Type-I consists of three-phase aqueous inclusions (liquid+vapour±solid), type-II of three-phase liquid-carbonic inclusions ($\text{LH}_2\text{O}+\text{LCO}_2+\text{V}$), type-III of multi-phase solid inclusions, type-IV of monophase liquid inclusions (aqueous liquid), and type-V of monophase gaseous inclusions.

Type-I inclusions consist of liquid+vapour±solid phases with the liquid phase being volumetrically dominant. These fluid inclusions are common in all mineralised quartz veins. The sizes of these fluid inclusions range from 11 to 18 μm. These inclusions have a de-
gree of fill (F) typically of 0.7 and rarely ~0.5. In a small number of type-I inclusions, unidentified transparent or opaque minerals are present. The distribution and volume of solid phases are irregular (2–10%), suggesting that they represent trapped solids rather than daughter minerals. They are isolated or most commonly form trails and clusters in the veins. The relative abundances of type-I inclusions increase from stage 1 to stage 3.

Type-II inclusions are three-phase liquid-rich (F = ~0.6) inclusions, up to 10 µm in size and are negative crystal in shape (hexagonal). They occur as isolated clusters, suggesting a primary origin. Liquid CO$_2$ is evident at room temperature as a dark boundary in the inner wall. The populations of type-II inclusions decrease from stage 1 to stage 2 and from deep to shallow levels.

Type-III inclusions are, at room temperature, multi-phase solid inclusions. Generally, they have negative crystal shapes, and are typically 10–20 µm in size. These inclusions contain at room temperature liquid plus daughter phases plus 10–20 vol.% vapour. The daughter phase is predominantly halite (cubic shape), occasionally accompanied by sylvite (rounded shape); therefore, almost all inclusions measured are halite-bearing inclusions and $T_{h(KCl)}$ (the temperature at which sylvite dissolves) was not recorded.

The solid phases (mostly sulphides such as chalcopyrite) and unidentified opaque minerals seldom constitute more than 1% by volume of an inclusion and therefore do not significantly affect its homogenisation temperature. Type-III inclusions are commonly scattered variably in all mineralised quartz veins, but in stages 1 and 3 mostly contain transparent daughter minerals (e.g., halite and/or sylvite) that homogenised to the liquid or vapour before total homogenisation by halite dissolution. This is what Wilkinson (2001) termed “halite undersaturated inclusions” for porphyry copper deposits. The populations of type-III inclusions increase from stage 1 to stage 3 and in particular in stage 2.

Type-IV inclusions contain at room temperature one-phase liquid. These inclusions may be irregular and/or rectangular in shape. The diameters of these fluid inclusions range from 3 to 5 µm. These fluid inclusions are common in all mineralised quartz veins.

Type-V inclusions are divided, according to their filling ratio, into V_1 inclusions (~65% vapour) and V_2 inclusions (>90% vapour). Both types commonly have a rounded isometric shape and are 4–7 µm in size. They are scattered in individual quartz veins. These inclusions are generally dark and show no visible aqueous phase at room temperature. Type-V inclusions are mostly scattered variably in type-B veins.

6. Results of microthermometrical and Laser Raman Spectroscopy

The microthermometrical data of fluid inclusions are summarised in Table 2 and Figure 5 (a-f), which clearly show the relationships between mineral assemblages, physical-chemical conditions and metallogenic stages.

The stage-1 quartz veins contain lots of IA, IIA, and minor IIIA fluid inclusions. The final ice-melting temperatures (T_{m-ice}) of type-IA fluid inclusions range between ~10.1°C
and –4.7°C. These temperatures correspond to a moderate salinity of 7.4 to 14.1 wt.% NaCl equivalent. The homogenisation temperatures (T_h) of IA inclusions in early quartz veins vary between 340°C and 518°C (mean: 443°C), with densities of 0.62-0.78 g∙cm$^{-3}$. The type-I-IA carbonic fluid inclusions melt between –62.8°C and –58.4°C (T_{m-CO_2}), which is lower than the
melting temperature of pure CO₂ (triple-phase point is –56.6°C), suggesting minor amounts of dissolved CH₄ and/or N₂ in addition to CO₂ (Dreher et al., 2007; Volkov et al., 2011). Clathrate melting temperature values (Tm-CLATH) for this group is between +3.5°C and +8.4°C, corresponding to salinities of 11.2–3.7 wt.% NaCl equivalent, with a peak at around +7.1°C (5.5 wt.% NaCl equivalent). Estimated salinities are based on the assumption of pure H₂O-CO₂-NaCl. Type-IIA fluid inclusions are totally homogenised to liquid or vapour at temperatures ranging from 369°C to 530°C (Tm), concentrating between 380°C and 460°C. Some type-IIA fluid inclusions decrepitated before reaching homogenisation (usually above 380°C), probably because of increased internal pressure of CO₂ (cf. Roedder, 1984). The carbonic portion of most of the type-IIA fluid inclusions homogenised into a vapour phase, and their Tm-CO₂ values span a range from +23.2°C to +30.4°C, which corresponds to a density range of 0.73-0.82 g·cm⁻³ for CO₂. In type-III A inclusions, Tm- CO₂ values fall between -12.1°C and -6.8°C, corresponding to a moderate salinity, between 16 and 10.2 wt.% NaCl equivalent. Tm values of type-III A fluid inclusions range from 380°C to 515°C (mean 432°C). The majority of the inclusions homogenised to a liquid phase (LV→L).

The fluid inclusions in stage 2 are IB, IIB, and IIIB types. In type-IB inclusions, Tm-ice values vary from -6.2°C to -2.4°C, corresponding to salinities of 9.4 and 3.9 wt.% NaCl equivalent and densities of 0.62 to 0.94 g·cm⁻³. They are mainly homogenised to liquid at temperatures between 270°C and 342°C. The type-IB inclusions contain 20–40% CO₂ by volume at room temperature and yield a Tm-CO₂ mainly ranging from -57.1°C to -59.5°C, suggesting a small quantity of other gases being dissolved in the carbonic phase. Tm-CLATH occurs in the interval of +5.2°C to +8.9°C, corresponding to salinities of 8.6–2.2 wt.% NaCl equivalent and carbonic phase homogenised to vapour at temperatures from 18.6°C to 31.1°C (Tb-CO₂). The total homogenisation temperatures ranging from 281°C to 380°C, peaking at 310°C, with densities of 0.77-0.84 g·cm⁻³. In type-IIIB inclusions, chalcopyrite and unidentified solid minerals occur, which do not melt in heating runs, while the daughter halite dissolved at 182°C to 356°C (Tm-HCl), corresponding to high salinities of 31–43 wt.% NaCl equivalent. These hypersaline fluid inclusions are totally homogenised to liquid or vapour at temperatures of 316–385°C, with 345°C being the peak value, and densities of 0.76-0.98 g·cm⁻³.

In stage 3, only IC and IIIC fluid inclusions are present in the quartz veins. The type-IC inclusions yield Tm-ice values of -7.4°C to -2.3°C, corresponding to salinities of 10.9–4.7 wt.% NaCl equivalent. These fluid inclusions are totally homogenised to liquid at temperatures of 214°C to 336°C, and densities of 0.84-0.92 g·cm⁻³. In type-IIIC inclusions, the Tm-ice values fall between -20.7°C and -8.4°C, corresponding to a moderate salinity, between 12.2 and 22.8 wt.% NaCl equivalent. The homogenisation temperatures vary from 263°C to 350°C, with densities ranging from 0.88 to 0.90 g·cm⁻³. The majority of the type-IIIC inclusions homogenised to a liquid phase (LV→L).

Laser Raman spectroscopy analysis on the vapour phase of five samples in type-IIA (2 samples) and type-IIB (3 samples) fluid inclusions generally reveals obvious peaks of CO₂ (1284 and 1390 cm⁻¹) and a small amount of CH₄ (2914 and 2916 cm⁻¹). This is in agreement with the microthermometrical results that the melting temperatures of solid CO₂ (Tm-CO₂) are lower than –56.6°C (Fig. 6).

7. Results and discussion

7.1. P-T conditions and oxygen fugacity (fO₂)

Considering the homogenisation temperatures, homogenisation behaviour and proportion of the CO₂ phase in the type-IIA and type-IIB inclusions, as well as the total homogenisation temperature of the inclusions, the trapping pressures were estimated using the Flinor program (Brown, 1989) and the formula of Bowers & Helgeson (1983) for the H₂O–CO₂–NaCl system.

The homogenisation temperatures of the type-IIA fluid inclusions (stage 1) used here are all above 320°C. The trapping pressure of
the fluid inclusions was estimated to be 97.9 to 123.6 MPa, which corresponds to a depth of 3708 to 4681 m (assuming a constant pressure gradient of ~26.4 MPa per 1 km of depth). In contrast, inclusions in the type-IIB (stage 2), with a pressure below 86.1 MPa (62.5–86.1 MPa) and homogenisation temperatures between 281°C and 357°C correspond to depths of 2367–3147 m. No pressure estimation has been obtained for stage 3, due to the small amount of CO₂ phase in type IC and IIIC inclusions. This suggests that the trapping pressure of the fluid inclusions decreased from stage 1 to stage 2, which is similar to magmatic-hydrothermal systems in the Alpine-Himalayan orogenic belt (e.g., Yang et al., 2009; Zhong et al., 2011; Fan et al., 2011; Li et al., 2012; Asadi et al., 2013).

Generally, the pressure decrease indicates that most of the magmatic-hydrothermal systems were formed in a rapid crust-uplift setting caused by synorogenic crustal thickening (such as KCMA) or post-orogenic delamination of the lithospheric root (Yang et al., 2012). Hence it appears that the copper mineralisation in the Meiduk area took place mainly at depths of about 2300–3000 m, although the onset of the mineralisation probably took place at greater depths. The inferred depth interval coincides with the estimated mineralisation depth range (1–5 km) for other porphyry deposits in the world (e.g., Pirajno, 2009).

The oxygen fugacity (fO₂) and trapping conditions were also calculated for the full range of XCO₂, XH₂O and XNaCl at the assumed T-P range, using the equations and equilibrium constant of Ohmoto & Kerrick (1977) and the fugacity coefficient of Huizenga (1995) at 200 MPa in the liquid-carbonic inclusions (type-IIA and type-IIB fluid inclusions; Table 3).

Assuming that the following equilibrium reaction pertains to the ore fluids in the present study: (1) CH₄(g) + 2O₂(g) ↔ CO₂(g) + 2H₂O(g) then the oxygen fugacity of the fluids can be calculated as log fO₂ = 0.5*(log fCO₂ + 2 log fH₂O-log fCH₄-log K) (for temperatures of 250–500°C and where log K = 81.1 at 250°C and 45.8 at 500°C: Ohmoto & Kerrick 1977). The calculated values of log fO₂ (MPa) shown in Table 3 are from reaction (1), type-IIA (~1.99 to ~3.11 MPa) and type-IB (~3.01 to ~3.74 MPa). The results give lower limits of fO₂ for the ore-bearing fluids in the Meiduk deposit. The ore-forming fluids are in a relatively oxidised state and high XCO₂ (average 0.16) during stage 1, which is supported by the absence of magnetite and minor pyrrhotite in the mineral assemblages. In oxidised states (e.g., stage 1) CO₂ and H₂O are dominant species, leaving ferrous iron as the sole reducing agent (Sun et al., 2013). Therefore, ferrous-iron oxidation during magnetite crystallisation is critical for sulphate reduction and copper mineralisation (Sun et al., 2013).

The general association of porphyry copper deposits with relatively oxidised magnetite-series (I-type) granitoids implies that the derived fluids will tend to be enriched in δ³⁴S values up to 4‰ higher than the source magma (Hassanzadeh, 1993: δ³⁴S = +6.1 to +13.4‰; and
Table 3. Calculated bulk composition and oxygen fugacity for liquid-carbonic inclusions (IIA and IIB inclusion types) in ore-bearing quartz veins from Meiduk mine.

<table>
<thead>
<tr>
<th>inclusion types</th>
<th>vein type (stage)</th>
<th>phase</th>
<th>XCO$_2$</th>
<th>XH$_2$O</th>
<th>XNaCl</th>
<th>log fO$_2$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.794</td>
<td>0.0309</td>
<td>-2.49</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.871</td>
<td>0.008</td>
<td>-2.75</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.146</td>
<td>0.839</td>
<td>0.014</td>
<td>-3.05</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.859</td>
<td>0.02</td>
<td>-2.58</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.206</td>
<td>0.779</td>
<td>0.014</td>
<td>-2.72</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.146</td>
<td>0.844</td>
<td>0.009</td>
<td>-2.37</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.813</td>
<td>0.011</td>
<td>-2.43</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.895</td>
<td>0.031</td>
<td>-2.21</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.146</td>
<td>0.831</td>
<td>0.022</td>
<td>-2.44</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.75</td>
<td>0.81</td>
<td>0.014</td>
<td>-2.72</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.865</td>
<td>0.014</td>
<td>-2.41</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.207</td>
<td>0.784</td>
<td>0.008</td>
<td>-2.13</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.848</td>
<td>0.031</td>
<td>-2.89</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.798</td>
<td>0.026</td>
<td>-2.64</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.146</td>
<td>0.827</td>
<td>0.026</td>
<td>-2.08</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.862</td>
<td>0.017</td>
<td>-2.90</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.914</td>
<td>0.012</td>
<td>-2.95</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.871</td>
<td>0.008</td>
<td>-2.61</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.034</td>
<td>0.955</td>
<td>0.011</td>
<td>-3.11</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.908</td>
<td>0.017</td>
<td>-2.74</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.241</td>
<td>0.731</td>
<td>0.027</td>
<td>-1.99</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.798</td>
<td>0.026</td>
<td>-2.55</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.796</td>
<td>0.029</td>
<td>-1.99</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.206</td>
<td>0.766</td>
<td>0.027</td>
<td>-2.07</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.85</td>
<td>0.029</td>
<td>-2.13</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.906</td>
<td>0.02</td>
<td>-2.97</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.806</td>
<td>0.018</td>
<td>-2.02</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.868</td>
<td>0.011</td>
<td>-2.09</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.914</td>
<td>0.011</td>
<td>-3.03</td>
<td></td>
</tr>
<tr>
<td>IIA A (1)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.804</td>
<td>0.02</td>
<td>-2.01</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.855</td>
<td>0.025</td>
<td>-3.24</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.919</td>
<td>0.006</td>
<td>-3.74</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.904</td>
<td>0.022</td>
<td>-3.53</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.074</td>
<td>0.904</td>
<td>0.021</td>
<td>-3.72</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.034</td>
<td>0.932</td>
<td>0.033</td>
<td>-3.28</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.915</td>
<td>0.011</td>
<td>-3.67</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.905</td>
<td>0.021</td>
<td>-3.25</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.034</td>
<td>0.94</td>
<td>0.026</td>
<td>-3.32</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.9</td>
<td>0.026</td>
<td>-3.46</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.073</td>
<td>0.903</td>
<td>0.022</td>
<td>-3.45</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.857</td>
<td>0.022</td>
<td>-3.18</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.0737</td>
<td>0.905</td>
<td>0.021</td>
<td>-3.50</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.0737</td>
<td>0.904</td>
<td>0.022</td>
<td>-3.53</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.0737</td>
<td>0.908</td>
<td>0.018</td>
<td>-3.53</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.175</td>
<td>0.812</td>
<td>0.012</td>
<td>-3.01</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.864</td>
<td>0.015</td>
<td>-3.68</td>
<td></td>
</tr>
<tr>
<td>IIB B (2)</td>
<td>L$_1$+L$_2$+V</td>
<td>0.12</td>
<td>0.864</td>
<td>0.015</td>
<td>-3.57</td>
<td></td>
</tr>
</tbody>
</table>

Notes: XCO$_2$, XH$_2$O, XNaCl = mole fractions of CO$_2$, H$_2$O and NaCl estimated from microthermometric data and log fO$_2$ = oxygen fugacity estimated from the reaction CH$_{4(g)}$ + 2O$_2(g) \leftrightarrow$ CO$_2(g)$ + 2H$_2$O$_(g)$ for H$_2$O-CO$_2$-bearing inclusions.
As shown in Figure 7, the estimated log \(f_O^2 \) from the type-A veins (stage 1) indicate that the initial fluids were derived from a highly oxidised magmatic system (values of log \(f_O^2 > QFM \)), with oxygen fugacities (\(f_O^2 \)) between the nickel/nickel-oxide (NNO) and magnetite/hematite oxygen (MH) buffers. In contrast, log \(f_O^2 \) values from the type-B veins (stage 2), fall along the QFM (quartz-fayalite-magnetite) buffer line, which is consistent with the observed ore mineral assemblages (Fig. 7). Therefore, the ore-forming fluid was in a relatively reduced state and low XCO2 (average 0.08) during the main mineralisation (stage 2).

The mineralisation involved further reduction of S\(^2\) to S\(^-\), HS\(^-\), etc, which also required oxidation of ferrous iron to magnetite, and lower pH values. This is probably responsible for triggering the potassic-sericitic alteration (stage 2) at lower pH values (Sun et al., 2013):

\[
2S_3^- + 20H_2O + 15Fe^{2+} = 6HS^- + 5Fe_3O_4 + 34H^+
\]

Magnetite formed during this process usually coexists with sulphides (e.g., chalcopyrite-pyrite-bornite-pyrrhotite). Therefore, ferrous-iron oxidation during magnetite crystallisation is of critical importance for sulphate reduction and copper mineralisation. The optimal initial oxygen fugacity for porphyry copper deposits should be lower than the magnetite/hematite buffer; otherwise there will be no ferrous iron in the system. A low oxygen fugacity is favourable for copper porphyry mineralisation (Sun et al., 2013).

7.2. Origin of the CO\(_2\) and mineralisation processes

Studies of the Circum-Pacific porphyry copper deposits indicate that porphyry systems typically contain aqueous fluid inclusions with or without daughter minerals (Redmond et al., 2004; Klemm et al., 2007, 2008), and with no or minor fluid inclusions that are rich in pure CO\(_2\) or CO\(_2\)-bearing (Cline & Bodnar, 1991; Bodnar, 1995; Ulrich et al., 2001; Lu et al., 2004). Abundant CO\(_2\)-rich fluid inclusions have, however, recently been reported from most porphyry systems formed in intracontinental tectonic settings (e.g., China and Tibet: Chen & Li, 2009; Chen & Wang, 2011; Yang et al., 2013), particularly from a continental-collision setting such as the Meiduk deposit.

On the basis of the tectonic setting and geochemical characteristics, Chen & Li (2009) and Chen & Wang (2011) suggested that the ore-forming fluid of magmatic arcs (e.g., the Circum-Pacific region) were generated mainly from metamorphic dehydration of subducted oceanic slab. Such fluids could be somewhat enriched in NaCl brine, H\(_2\)O, Na and Cl, but depleted in CO\(_2\) (or carbonate), K and F. In contrast,
porphyry copper systems formed in a collisional tectonic regime such as the Meiduk deposit in the KCMA originate from the partial melting of a thickened juvenile lower crust or lithospheric mantle, and they are poor in H₂O and NaCl, and they have high CO₂/H₂O, K/Na, F/Cl ratios in comparison to the subducting oceanic slab.

Shafiei et al. (2009) considered that the KCMA and their prospects (e.g., the Meiduk porphyry) were derived from partial melting of a thickened juvenile mafic lower crust. Therefore, the ore-forming fluid system at the Meiduk deposit was rich in CO₂ and evidently resulted in the development of abundant fluid inclusions of type-IIA, type-IIB and daughter minerals and CO₂-bearing fluid inclusions (Yang et al., 2012, 2013).

Following the criteria proposed by Martin et al. (2005) and Castillo (2006, 2012), many geochemical features of the Meiduk porphyry in the KCMA, such as the moderate Mg number (average 43), the high Sr (>554 ppm), the low Y (<21 ppm), the low Yb (<1.4 ppm), and the high K (>2%) contents, the absence of an Eu anomaly, and the moderately high Sr/Y (>56) and La/Yb (>20) ratios are similar to adakitic rocks (Asadi, 2013). A close relationship between adakites and porphyry ore deposits (Cu, Mo, Au) was proposed by several authors (e.g., Mungall, 2002; Conly et al., 2006; Richards & Kerrich, 2007). Fluid exsolved from this magma (stage 1) is characterised by CO₂-rich, high-temperature, low-salinity and Cu-rich properties. The fluid percolated through and reacted with the cooling porphyry rocks and their host (Razak volcanics), causing early potassic alteration (biotite and K-feldspar) and forming stockworks containing quartz and minor Cu sulphides (type-A veins). In stage 1, the early fluids were relatively oxidising (from −1.9 to −3.1 MPa) and S²⁻ poor, and therefore, unfavourable for sulphide deposition and copper mineralisation. Also, a high pressure (>100 MPa) prevented phase separation (boiling) during the early stage of mineralisation (Fig. 8).

Because of the consumption of alkali ions and the escape of CO₂ (2H⁺ + CO₃²⁻ → H₂O + CO₂↑) in stage 1, the fluid became more acidic, reducing and rich in S²⁻. According to Lowenstern (2001) and Yang et al. (2013), the fO₂ of the ore-fluid decreased (from −3.0 to −3.7 MPa) due to the precipitation of abundant sulphide minerals and magnetite and escape of CO₂, resulting in an increase in S²⁻ activity during stage 2. Accompanied by further cooling of the Meiduk porphyry, boiling and hydraulic fracturing, the meteoric water percolated into and mixed with the magmatic hydrothermal system (Fig. 8). The fluid boiling characterised by CO₂ escape and mixing with meteoric water are two key factors resulting in the deposition of sulphides or ore-metals (Robb, 2005; Li et al., 2012; Yang et al., 2013; Asadi et al., 2013).

Therefore, the homogenisation temperatures became lower in stage 2 than in stage 1.
and salinities of fluid inclusions displayed a trend of increasing salinity (Fig. 8). The fluids became less carbonic, which is indicated by the decrease of the volume proportions of the CO₂ phase in type-II B inclusions. These changes of ore-forming fluid facilitated the deposition of sulphides, together with potassic-sericitic alteration and quartz-sulphide stockworks (type-B veins). Laser Raman spectroscopy also confirms that the gas content of fluid inclusions (e.g., CO₂ and CH₄) decreased with decreasing depth (Fig. 6), possibly consistent with gas loss during boiling in the Meiduk porphyry system.

In stage 3, the fluids got more dilute and CO₂-poor, and therefore none of the type-II three-phase liquid-carbonic inclusions (LH₂O+LCO₂+V) were present. This stage represented the waning ore-forming process during sericitic hydrothermal alteration with quartz-sulphide stockworks (type-C veins) that resulted from CO₂-poor, low-temperature and dilute hydrothermal fluids derived from meteoric-hydrothermal waters (Fig. 8).

8. Conclusions

The Meiduk porphyry copper system, which is located in the collisional Kerman Cenozoic magmatic arc (KCMA), is associated with intrusive rocks of Miocene age that intruded the Eocene Razak volcanic complex. The mineralisation process included three stages, characterised by early potassic alteration: quartz + K-feldspar + biotite + pyrite ± chalcopyrite ± pyrrhotite ± magnetite (stage 1 and type-A veins), potassic-sericitic alteration: quartz + chalcopyrite + pyrite + bornite + pyrrhotite + K-feldspar + biotite + magnetite (stage 2 and B-type veins), and sericitic alteration: quartz + pyrite + chalcopyrite + sericite (stage 3 and type-C veins). Most ores were formed during stages 2 and 3.

Three main fluid inclusions types are distinguished in the hydrothermal quartz veins of the Meiduk deposit: liquid + vapour ± solid (type I), LH₂O + LCO₂ + V (type II) and multi-phase solid inclusions (type III). Types I and III are characteristic of all porphyry copper systems, but type II is distinctive of the porphyry copper deposits formed in a continental collision regime (e.g., the Meiduk deposit).

Microthermometrical results indicate that the homogenisation temperatures of the fluid inclusions gradually decreased from 530–340°C (stage 1), through 385–270°C (stage 2), to 350–214°C (stage 3). The estimated trapping pressures were <120 MPa in stage 1 and <80 MPa in stage 2, suggesting a mineralisation depth of approx. 3 km.

The CO₂-bearing fluid of the Meiduk system is a distinctive feature related to a continental-collision setting. Based on the criteria of Lowenstern (2001), Robb (2005), Yang et al. (2012, 2013) and Sun et al. (2013), degassing of CO₂ from the CO₂-rich magma and the high ratio of CO₂/H₂O in fluids resulted in a low NaCl activity in the initial ore-forming fluids, causing paucity of halite-bearing inclusions, distinctive of hydrothermal quartz veins during stage 1. The CO₂/H₂O ratio typically decreased during progressive decompression or crystallisation-induced degassing. Therefore, CO₂-escape was an important factor in (1) increasing the activity of NaCl, S²⁻ and the boiling process in the fluids, (2) reducing the initial oxidation of the fluids, and (3) precipitation of sulphide minerals in the Meiduk quartz veins during stages 2 and 3.

Acknowledgements

This contribution represents part of the Ph.D. thesis of S.A. at Shiraz University, Iran. Logistic and financial support was provided by the Research and Development Centre of National Iranian Cu Industries (NICICO.) at the Sarcheshmeh mine. We are grateful to M.R Ramezani (Meiduk mine) for providing core samples of the Meiduk Cu deposit. We would like to extend our thanks to Professor David Lentz (New Brunswick University) which pre-reviewed the manuscript.

References

Hassanzadeh, J., 1993. Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Ker-

IGME-INORMRM (Institute for Geological & Mining Ex

Yang, Y.F., Li, N. & Chen, Y.J., 2012. Fluid inclusion study of the Nannihu giant porphyry Mo–W deposit, Henan Province, China: implications for the nature of por-
phyry ore-fluid systems formed in a continental collision setting. *Ore Geology Reviews* 46, 83–94.

Manuscript submitted 9 June 2013
Revision accepted 12 November 2013