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Abstract: The goal of maritime traffic management is to provide a safe and efficient maritime 

environment for different type of vessels facilitating port logistics and supply chain business. 

However, current maritime traffic management mainly relies on the massive individual vessel’s 

data for decision making. Lack of macro-level understanding of vessel crowd movement around 

port challenges maritime safety and traffic efficiency. In this paper, we describe a spatio-temporal 

data mining method to discover crowd movement patterns of vessels from their short-term history 

data. The method first captures vessels’ crowd movement features by building vessels’ tracklets 

with their speed and location. A movement vector clustering algorithm is developed to find 

different travel behaviors for different group of vessels. With nonparametric regression on the 

classified vessel movement vectors which represent the crowd travel behaviors, an overall vessel 

movement pattern can then be discovered. In this research, we tested real trajectory data of vessels 

near Singapore ports. Comparing with the actual massive vessel movement data, we found that this 

method was able to extract vessels’ crowd movement information. The hotspots on risk area in 

terms of vessel traffic and speed can be identified. The method can be used to provide decision-

making support for maritime traffic management. 
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1. Introduction 

In maritime industry, maritime traffic management is a key to prevent development of dangerous 

maritime traffic situations, and improve efficiency of maritime logistics and transport operations. 

Maritime traffic management, usually conducted by staff of vessel traffic service (VTS), has been 

challenged by massive vessel data monitoring, smooth coordination between ports and the vessels 

sailing around ports, lack of manpower support and intelligent data analytics. With development 

and application of various vessel tracking and positioning sensors in the maritime industry, e.g., 
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Automatic Identification System (AIS) and Vessel Monitoring Systems (VMS), abundant spatial 

and temporal data sets related to vessel voyage are available for vessel motion data analysis. Recent 

development of machine learning methods provided intelligent data-driven solutions to logistics and 

transportation problems, as well as traffic management for land and sea transportation [1,2]. 

Frequent route mining with AIS data has been widely studied [3-5] to find route patterns of vessels 

between ports and harbours. Trajectory data partitioning and re-grouping methods [6,7] could be 

used to explore massive trajectory segment of vessels. The final route patterns can be generated by 

density-based route segment clusters. Spatial outlier detection has been used to detect and remove 

the noise data for vessel route data processing [8,9]. Spatio-temporal sequential pattern mining was 

used to explore vessel’s travel behaviors and sequence patterns of vessel movement between 

different location [10]. To find insightful knowledge of vessels’ movement pattern, most current 

methods focus on mining individual or certain type of vessels’ trajectory data from which trajectory 

segments or similar vectors are assembled to a general trajectory. However, to rapidly identify a 

risk area and improve efficiency of maritime traffic flow, maritime traffic management highly 

requires a macro-level understanding of the recent movement patterns of different types of vessels, 

which is crowd movement pattern. 

In this research, a comprehensive spatio-temporal data mining method is proposed and 

developed to discover crowd movement patterns of vessels from their short-term history data. To 

establish a vessel crowd motion pattern for decision making support for maritime traffic 

management, the method applies a three-stage pipeline: (1) Vessel movement pattern detection and 

extract crowd movement features, (2) movement vector clustering, and (3) crowd trajectory pattern 

is generated by nonparametric spatial regression. By concatenating crowd movement pattern across 

different vessel types and different time periods, an overall vessel movement pattern can then be 

discovered. 

2. Crowd Movement Feature Mining 

This section describes data processing pipeline for vessel movement feature extraction and 

normalization. Spatio-temporal units, nodes, at location (latitude, longitude) and timestamp are 

created for construction of vector and tracklets which represent the crowd movement features. The 

crowd movement can be then described by tracklets which contain crowd location and speed 

information. 

2.1 Spatio-temporal Tracklet Extraction 

In order to find movement patterns from the massive spatio-temporal data sets, topological graph 

methods [11,12] are employed. Topological graph theories describe spatial embedding of graphs, 
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which have been commonly used in real-world applications including social network data analysis, 

transportation planning and text mining with graphs of word recurrences. Graph embedding is used 

in this method to reduce complexity of massive spatio-temporal data analysis. To describe vessel 

movement pattern, a stochastic proximity embedding (SPE) [11] is used to convert massive vessel 

data to motion vectors represented by tracklets. 
 

Assume nodes, N= {n1, n2, n3, …, nn}, are the massive historical vessel data at locations (lati, 

longi) with all the time stamp T= {t1, t2, t3, …, tn}. SPE performs multiple rounds of calculation to 

find node ni and nj within proximity at time ti. An average moving distance between the nodes, d, is 

used to sort the massive historical vessel locations in pairs by filtering and adjusting their distance. 

In our method, an improved SPE [12] is employed to generate the node pairs and generate the 

tracklets as follows. Firstly, nodes [ni(ti), nj(ti+1)] are randomly selected from the node space. The 

average moving distance ds can be derived from vessels crowd moving speed. Secondly, the nodes 

[ni(ti), nj(ti+1)] are iteratively adjusted by following rules, 

 If Di [ni(ti), nj(ti+1)] < ds, nj(ti+1) = nj(ti+1)+ks (1) 

 If Di [ni(ti), nj(ti+1)] > ds, nj(ti+1) = nj(ti+1)–ks  (2) 

to meet the condition, 

 Di [ni(ti), nj(ti+1)] ─ ds *h ≥ 0  (3) 

where: Di is the function calculating the distance between the node ni(ti) and nj(ti+1).  

The expected movement distance, ds, is acquired from the historical average speed of different 

vessel types. The increment/decrement, ks, could be stochastically optimized, in order to efficiently 

finding the clusters for tracklet calculation. The hopping parameter, h, h=2, 3 and 5, are used in this 

study for different vessel crowd. Crowd of different type of vessels normally may have different 

hop number in different time periods. Proper selection of hopping parameter plays a key role in 

generating accurate tracklets cluster. Based on the node location, a tracklet is defined as, 

 Tr(i) = ni(ti)+ kv  (4) 

to describe the movement from node ni to nj in time sequence. In this way, crowd’s tracklets can be 

calculated with the massive node location data [ni (ti), nj (ti+1)]. At this stage, the tracklets extracted 

from vessels’ spatio-temporal data sets indicate local movement features. Fig. 1 shows an example 

of local movement features, represented by tracklets, are extracted from the vessel crowd data, 

represent by, (lati, longi), spanning a certain time period. 
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2.2 Crowd Movement Feature Generation 

In order to discover the macro-level movement of the vessel crowd, spatial and temporal clustering of the 

tracklets are conducted. Crowd movement feature generation aims to mine cohesive motion pattern from the 

local features (tracklets).  

 

 
Fig. 1 Vessel crowd movement feature extraction. Source: authors 

In this method, we explore spatial and temporal clustering to generate the crowd movement 

features. The tracklets generated in Section 2.1 provide elemental movement features of vessels. 

With location and movement vector of the tracklets, spatial feature of the crowd can be discovered 

based on density and distance of the tracklets. The temporal clustering groups the spatially clustered 

tracklets into time sequence based clusters and extract their movement features in terms of location 

and moving direction. 
 

Spatial clustering is performed as describe by the Equation (5) and (6), 
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where P2 is tracklets’ kernel density calculation in the region S, comparing with a threshold value 

H. The tracklets, Tr(i) belongs to the region S. The crowd spatial feature is produced by generating 

representative featured tracklets. In traditional density estimations, the kernel functions are used.  

without considering directional and time information. With a tilted trigonometric bell [13], the 

density of dynamic points can be acquired by incorporating information of time and position 

changes of points. In addition, the kernel’s bandwidth is determined by the points at time ti and ti+1. 

To perform the density calculation in tracklet space, normalization of the tracklet in distance is 

required. In the region S, Tr(i) can be normalized by parameter, b = Σndist[(Tr(i), Tr(i)]/n. Based 

on the density value, a featured tracklet can be then generated by its neighboring similar tracklets. 

In this way, the location of center of the Tr(S) can the then be acquired by location data of Tr(i) in 

S. With featured tracklets located in different regions, the crowd spatial features are discovered. 

Temporal clustering aims to combine local spatial features and group them into clusters of 

movement patterns in time sequence. Based on the crowd spatial features extracted above, featured 

tracklets, Tf(i), can be observed in time, ti. In this research, we focus on the strong temporal relation 

between the featured tracklets, Tf(T1) and Tf(T2), where the mean of t in tracklets of Tf(T1) 

precedes Tf(T2). The relation of Tf(T1) and Tf(T2) can be described by with time indexes of the 

tracklets Tr(i). Assume Tf(S) = { Tr(t1) , Tr(t2) , …, Tr(n) | ti (T1, T2) } . For the cluster, 

Tf(T1) ={ Tr(t1) , Tr(t2) , …, Tr(tj)|ti∈  T1 }, 

Tf(T2) ={ Tr(t1) , Tr(t2) , …, Tr(tk)|ti∈  T2}, 

If T2>T1, Tf(T1) precedes Tf(T2). To build cluster of Tf(T1) and Tf(T2), time stamp distribution 

of cluster of tracklets of the spatial feature should be considered. An elbow view of the time stamp 

distribution could be used to decide threshold value for the temporal clusters and number of 

clusters. An alternative way to decide time boundary for the temporal cluster is to calculate the 

strength of the temporal relation, Tf(T1) precedes Tf(T2). 

3. Vessel Crowd Movement Pattern Mining 

In the maritime traffic management, vessel crowd’s travel behavior include vessels’ past and 

current trajectories, sailing speed and directions are the key information for VTS officers making 

decisions. With spatio-temporal features generated for the vessel crowd, the crowd’s movement 

pattern and travel behavior could be explored next. In this section, vessel crowd is further 

regrouped, based on their movement features, for vessel crowd movement pattern mining as well as 

their sailing behavior analysis. 

  



 

110 

3.1 Movement Feature Mining for Sub Crowd 

Vessels’ sailing direction is considered as one of the most key movement feature for the crowd 

travel behavior analysis. Since tracklets generated in the Section 3 contain vessels’ local movement 

vectors, we develop a vector clustering method to group vessels into different sub crowd.  

Firstly, vector data preprocessing is required. From the tracklet vectors between time t1 and t2, the 

tracklet vector, Tr(i)= {Tr(kvi)|(vxi, vyi)}, is examined by anomaly isolation to identify outliers of sailing 

directions in the crowd. We select only the major direction that have high impact on the crowd 

movement trend and behaviors. To extract the major movement direction, we exploit tracklet vectors, 

(vxi, vyi), and find major movement vectors of the sub crowd. However, current classification-based 

methods [7] normally has high computational cost in mining the tracklets’ direction. An iForest 

isolation method is developed to efficiently find major directions from the high volume vector data. The 

iForest is built on the basis of iTrees [14] which construct an ensemble of binary search trees. Given a 

vector data set, average path length of search cost is described by, 

 c(n) = 2H(n - 1) - (2(n - 1)/n), (7) 

where: n is the number of instance of the tracklet vectors.  

H(i) can be estimated by ln(i)+ 0.5772156649 (Euler’s constant). The anomaly score s for an 

anomaly tracklet vector can be calculated by, 

  (   )   
 ( ( ))

 ( )
 ,  (8) 

where: E(h(x)) is the average of h(x) from a collection of isolation trees.  

Given a tracklet vector, the anomalies are considered to have short average path to be reached. In 

this way, no distance or density measurement is required in searching the anomalies, so that 

computational cost could be significantly reduced. In addition, utilization of the iForest enables span of 

searching process to quickly converge with a small number of trees, which means it could process large 

volume of vessel data sets in real time and provide online decision-making support. Apart from the 

generation of major direction, normalization of the spatial features of the tracklets, Tf(i), is required in 

the stage of movement vector processing. The Fig. 1 (c) and (d) show the major direction of the vector 

extracted by iForest. 

3.2 Vector clustering 

Vector clustering aims to find major direction of the sub crowd. Due to less physical traffic 

constraints on vessels, e.g., lanes, curbs and traffic signs, vessels normally have high travel 

flexibility comparing with vehicles. However, higher flexibility means more complexity for 
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movement behavior analysis. To describe vessel crowd’s movement pattern, we develop a vector 

clustering method to automatically group the movement features of the sub crowds. 
 

To properly cluster the tracklets’ vectors, Ward's minimum variance criterion [15] is applied to the 

two-dimensional vector data sets, Tr(i)= {Tr(kvi)|(vxi, vyi)}. A random pair of vectors are selected to 

calculate vectors’ distance at each iterative step, so that the pairs that lead to minimum distance 

increment between clusters can be found. The distance increment could be considered as weighted 

squared distance or Euclidean distance. In order to properly determine the number of the clusters to be 

generated, user-defined parameters or elbow approach can be used. The tracklets with similar 

moving direction are grouped representing the local movement pattern in a certain time period. The 

Fig. 2 shows a comparison of performance of clustering of vessels’ Tr(i) vectors with k-means, 

Hidden Markov Model (HMM) and Ward’s criterion based clustering. Normally, Tr(i) vector 

clustering is challenging due to irregularity and flexibility of vessels’ trajectories. As shown in 

Fig.2, we can see that Ward’s criterion based clustering can produce a more satisfying result. 

 

 
 

Fig. 2 Temporal clustering to find crowd movement sequences. Source: authors 

3.3 Crowd Route Pattern Mining 

To find the crowd route pattern, nonparametric regression of the tracklets is used to generate macro-

level crowd’s trajectories. In this method, an algorithm for shipping route extraction [1] that we 

developed for frequent route mining is employed. We applied locally weighted smoothing to 

tracklets’ start and end points. A squared distance based measurement is used to evaluate deviation 

of the neighbouring points with respect to each local route segment. In this way, an iterative local 

polynomial fitting process can be then implemented to refine the local regression weight to generate 

proper route points. To overcome the poor performance of the route generation for none one-to-one 

correspondence, we use affine coordinate transformation to generate a proper route in an inversed 

vessels’ location data space. 
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Affine coordinate transformation is a special case of homography transformation by which 

variable correspondences between longitude and latitude can be changed by scaling, rotating, 

reflection and shear mapping. The affine transformation enables variable correspondence to be 

constructed in terms of coordinates (longitude, latitude) to which Locally weighted scatterplot 

smoothing (LOWESS) can then be applied. After crowd route is acquired in the transformed 

coordinate system, an inverse mapping is implemented to map the routes generated in the 

transformed coordinate system back to the original system. 

4. Experimental Results and Discussion 

Malacca-Singapore Strait is one of the busiest water way in the world, connecting maritime 

transportation from Asia to Middle East and Europe. The vessel traffic in the Strait keep growing 

with number of vessels consistently increasing. In the experiment, we analyzed two-week vessels’ 

AIS data recording movement of different types of vessels, including cargos, tankers, tugs and 

passenger ships, near Singapore. 
 

The first step of movement spatial feature mining is vessels speed data processing. Due to 

regular wave motion, vessel speed value record by AIS normally cannot reflect vessels’ actual 

movement status, especially when vessels anchor on the sea. As shown in the Fig. 3, most of vessel 

sailing at a low speed near Singapore. The vessel speed above 0.76 knot was considered as in active 

status which may contribute the pattern generation. 

 

 

Fig. 3 Vessel speed distribution. Source: authors 

Fig.4 shows crowd movement trend of vessels of different types in a two-hour time period, 

from 8 am to 10 am, on October of 2015. The vessel types, cargo, tanker, tugs and passenger ship, 

were selected, because these types of vessels cover most number of vessels around the Singapore 

Strait. Fig. 5 is a screenshot captured from MarineTraffic (https://www.marinetraffic.com/) with the 

same vessel types. As shown in Fig.4 (a), vessel crowd trends represented by different routes in 
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different colors were generated, indicating a continuous crowd movement in the past two hours. We 

can see that tankers and cargo vessels have similar motion patterns during the two-hour journey. 

The Fig.4(b) shows the risky areas can be identified based on vessel crowds’ movement trend. 

 

Fig. 4 Vessel crowd movement trend. Source: authors 

 

 

Fig. 5 Vessels’ movement captured from MarineTraffic. Source: authors 
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5. Conclusion 

Due to vessel traveling with more freedom comparing with the land transportation, understanding 

of vessels crowd movement in a given time period is required by vessel traffic offices, especially 

for the traffic management of busy waterway.  

In this research, we developed a method that is able to explore vessels’ crowd movement 

patterns to facilitate the maritime traffic management and risk prevention. With vessels’ historical 

speed and location data, tracklets can be constructed as units to represent spatio-temporal features 

of vessel crowd movement.  

By spatial and temporal mining of tracklets’ location and motion vectors, vessel crowd spatio-

temporal movement features can be derived, revealing the crowd’s continuous travel behavior in a 

given past time period. In addition, the crowds’ trajectories generated from different types of 

vessels can be used to identify movement trend of maritime logistics and transportation, as well as 

the risky areas where potential vessel collision may occur. 
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