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INTRODUCTION

	 Ultra-pure aluminum has high corrosion resistance 
[1]. The 5xxx series of aluminum alloys are Al-Mg based 
alloy systems and specifically, AA5083 is used in the 
construction of ships and boats, due to its good corrosion 
resistance [2]. The microstructure of AA5083 consists of 
primary phase (α–Al) and secondary phase (β–Mg3Al2). 
The precipitation of β phase over a period of time 
increases the intergranular corrosion (IGC) susceptibility 
of this alloy. Interphase galvanic corrosion is induced in 
the alloy as β phase exhibits anodic potential with respect 
to α phase [3]. Precipitation of β phase as continuous 
network promotes intergranular stress corrosion cracking 
[4] and IGC [5] in AA5083.

	 From the literature [3-5], it is professed that pre-
cipitation, agglomeration or continuous network of β 
phase results in intergranular corrosion of the matrix. 
So corrosion rate of AA5083 can be controlled by dis-
integrating and/or dispersing β phase, which can be 
achieved by alloying or heat treatment process. 
	 Corrosion being a surface phenomenon can also be 
controlled by surface modification and coating processes. 
Friction stir processing (FSP) is one of the solid-state 
surface and subsurface modification processes, in which 
the composition of the matrix remains un-altered post-
processing. FSP is similar to the friction stir welding 
process, in which a rotating tool is traversed along the 
length of the plate in the processing direction under the 
action of an axial load. The microstructural refinement in 
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	 Aluminium alloy AA5083 is prone to intergranular corrosion 
in marine environments. In an attempt to reduce the intergranular 
corrosion, AA5083 was subjected to friction stir processing (FSP). 
The FSP experimental trials were conducted as per face-centered 
central composite design with three levels of variation in FSP pro-
cess parameters viz. tool rotation speed (TRS), tool traverse speed 
(TTS) and tool shoulder diameter (SD). Intergranular corrosion 
susceptibility of the processed specimens was assessed by perfor-
ming nitric acid mass loss test. The mass loss of the specimens 
was correlated with the intergranular corrosion susceptibility as 
per the standard ASTM G67-13. The experimental results indica-
te that FSP had significantly reduced the intergranular corrosion 
susceptibility of the AA5083 alloy.  Soft computing techniques na-
mely Artificial Neural Network, Mamdani Fuzzy system, and Suge-
no Fuzzy system were used to predict the intergranular corrosion 
(IGC) susceptibility (mass loss) of the friction stir processed speci-
mens. Among the developed models, Sugeno fuzzy system displayed 
minimum percentage error in prediction. So Sugeno fuzzy system 
was used to analyze the effect of friction stir processing process 
parameters on the IGC of the processed specimens. The results su-
ggest that stir processing of AA5083 at a TRS of 1300 rpm, TTS of 
60 mm/min and SD of 21 mm would make the alloy least suscepti-
ble to intergranular corrosion.

	 Hliníková slitina AA5083 je náchylná k mezikrystalové 
korozi (MKK) v mořském prostředí. Slitina AA5083 byla v rámci 
pokusu o potlačení vlivu mezikrystalové koroze podrobena 
frikčnímu svařování (FSP). Svařovací zkoušky proběhly na za-
řízení s třemi ovladatelnými parametry: rychlost rotace (TRS), 
pohyb nástroje (TTS) a průměr nástroje (SD). Náchylnost 
k MKK byla ověřována pomocí testu hmotnostních úbytků 
v roztoku kyseliny dusičné podle normy ASTM G67-13. Výsled-
ky experimentů ukazují, že frikční svařování výrazně snižuje 
náchylnost k MKK. K predikci náchylnosti k MKK byly použity 
výpočtové metody: neuronová síť, Mamdaniho porces a Sugeno 
proces. Sugebno porces vykazuje nejvyšší přesnost pro predikci 
náchylnosti k MKK. Byly nalezeny optimální podmínky svařo-
vání: TRS 1300 rpm, TTS 60 mm/min y SD 21 mm.
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FSP is similar to that of friction stir welding [6] and the 
schematic of FSP is shown in Figure 1.
	 Mishra et al., [7] found that the properties of fric-
tion stir processed materials are dependent on various 
process parameters such as tool rotation speed, tool 
traverse speed, axial force [8], geometric profile of 
tool (shoulder diameter, pin diameter, pin profile), and 
backing plate temperature [9]. Ma [10] reviewed the 
effect of FSP process parameters on the microstructural 
refinement of the metals and alloys. Padmanaban et al., 
[11] studied the effect of friction stir spot welding 
process parameters on the tensile strength of friction stir 
spot welded AA6061 joints.
	 Recently, artificial intelligence systems are gaining 
momentum in the field of intelligent manufacturing, 
process control, smart computation, complex decision 
analysis systems and design optimization [12-14]. 
The development of artificial intelligence systems is 
catego-rized as expert systems and artificial neural 
network systems. The expert systems are knowledge-
based systems, in which the problems are solved or 
conclusions are drawn based on the set of rules given 
by the user. The processing style of such expert systems 
follows a sequence. Fuzzy systems are examples of 
expert systems. Artificial neural network (ANN) is a bio- 
logically inspired computer program developed to pro-
cess data and its functioning is analogous to the human 
brain. ANN is trained through experience and not based 
on the programming codes or set of rules. ANN gains 
knowledge by sensing the patterns and relationships in 
the data. 
	 In this study, two soft computing techniques (ANN 
and Fuzzy) were used to predict the IGC susceptibility 
of AA5083. In fuzzy soft computing approach, the 
prediction efficiency of Mamdani and Sugeno based 
inference methods were analyzed. The prediction 
efficiency of the models generated by ANN, Mamdani 
fuzzy system, and Sugeno fuzzy system was compared 
and the model with the least prediction error was chosen 
for studying the effect of FSP process parameters on the 

IGC susceptibility of AA5083 alloy. As Sugeno based 
fuzzy system exhibited the least percentage error in 
prediction, it was used to analyze the effect of process 
parameters on the IGC susceptibility of friction stir 
processed (FSPed) AA5083. 

MATERIALS AND METHODS

Materials

	 Wrought aluminum alloy AA5083 of dimension 
150 mm × 60 mm × 5 mm were used in the study. The 
nominal composition of the alloy is given in Table 1.

Design of Experiments

	 Face-centered central composite design (FC-CCD) 
is a widely used experimental design in statistics to 
establish a relationship between the input process para-
meters and the output result, with a minimum number 
of experimental trials. FC-CCD is advantageous over 
conventional factorial designs, as it has center points 
augmented with the axial points in the design cube. 
This increases the prediction efficiency of the model 
developed through FC-CCD. In this study, three FSP 
process parameters were varied at three levels. The 
chosen parameters and their levels are given in Table 2.

Friction stir processing

	 The workpieces were cleaned and degreased with 
acetone before FSP trials. The workpieces were FSPed in 
a numerically controlled vertical milling machine. FSP 
tool was plunged into the workpiece and after a dwell 
time of 60 seconds, FSP trials were performed as per the 
FC-CCD experimental layout.

Intergranular corrosion susceptibility test

	 Intergranular corrosion susceptibility of AA 
5083 was assessed by conducting nitric acid mass 

Fig 1.	 Schematic of friction stir processing
Obr. 1.	Schéma procesu frikčního svařování

Tab. 1.  Nominal composition of AA5083 / Složení slitiny

El Mg Mn Si Fe Zn Cu Cr Al

Wt.% 4.7 0.5 0.11 0.29 0.08 0.05 0.08 Rest

Tab. 2.  Chosen level of process parameters and their corre-
sponding levels / Vybrané úrovně procesních parametrů

Sl.
FSP process parameters Linguistic 

termTRS (rpm) TTS (mm/min) SD (mm)
1 700 30 15 L
2 1000 45 18 M
3 1300 60 21 H
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loss test according to the ASTM standard. The FSPed 
workpieces were cut into specimens of length 40 mm. 
A metallographic emery sheet of 300 grit was used to 
smoothen the edges of the specimen. The dimensions of 
the specimens were measured using a Mitutoyo make 
digital vernier caliper. The surface area of the specimen 
(A) was estimated using (1), where the dimensions of 
the specimen are denoted as length (L), breadth (B) and 
height (H).

A = 2 · [(L · B) + (B · H) + (L · H)]            (1)

	 The specimens were desmutted by immersing 
in 5% sodium hydroxide (NaOH) at 80°C for one mi-
nute, followed by rinsing in distilled water. Then the 
specimens were immersed in concentrated nitric acid 
(HNO3) for thirty seconds. The specimens were rinsed 
in distilled water and dried in hot air. The specimens 
were weighed using a Shimadzu make weighing balance 
with a readability of 0.0001 g. The specimens were 
placed in a glass container such that their edges rest 
against the walls of the container. As outlined by ASTM 
standard, concentrated HNO3 was filled in the container 
maintaining acid volume to specimen surface area 
ratio at 30000 ml.m-2. The specimens were completely 
immersed and left undisturbed in the glass container for 
a time period of 24 hours. After the immersion period, 
the specimens were removed and rinsed in distilled 
water. The corrosion products and any particles adhering 
over the surface of the specimens were removed using a 
stiff plastic brush, followed by rinsing in cold water. The 
specimens were dried in a blast of hot air and weighed 
in the weighing balance. The mass loss of the specimens 
per unit area (Ma) was calculated using (2). 

(2)

where m1 denotes the mass of specimen after desmutting 
process; m2 denotes mass of specimen post IGC suscepti-
bility test.
	 The surface morphology of the specimens was cha- 
racterized by a field emission – scanning electron micro-
scope (FE-SEM). The FE-SEM (Make: Carl Zeiss) 
images were captured at an accelerating voltage (electron 
high tension EHT) of 10 kV.

Artificial neural network

	 ANN model has functionalities similar to the 
information processing modules of the human brain [15]. 
ANN is used to handle complex mathematical tasks such 
as fitting complex models, classification of complex data 
or signals, data clustering and time series forecasting 
[16]. ANN is a computational model developed by 
interconnecting the artificial neurons with the weights 
(coefficients) which constitutes the neural network. 
Artificial neurons are also called as processing elements, 

as they have weighted inputs, transfer function, and 
one output. Certain simple functions can be processed 
by a single neuron in the network. The power of ANN 
computations increases, as the number of neurons in 
the network is increased. In this study, a feedforward 
architecture based ANN model was constructed as shown 
in Figure 2. The learning algorithm used was Levenberg 
Marquardt algorithm.

	 Levenberg Marquardt (LM) algorithm is one of the 
efficient supervised learning algorithms, in which the 
learning rate ε is set to unity and an additional term eλ is 
introduced in the second derivative error. Let us consider 
a second order function F(w), g be its gradient vector and 
[H] be its Hessian matrix. In LM algorithm, an optimum 
adjustment in the weight vector (w) is given according 
to (3).

Δw = [H + λI]-1 g                        (3)

where Δw is optimum adjustment applied for w, I is iden-
tity matrix with dimensions as [H] and λ is regularizing 
parameter that forces [H + λI] to be positive definite. 
The feedforward network with single output neuron 
network is trained by minimizing the cost function which 
is given by (4). 

(4)

where {x(i), d(i)}i=1
N    is the training data set consisting 

of inputs and outputs, F(x(i);w) is the approximating 
function. The gradient and approximated Hessian of ξav 
is given by the (5) and (6) respectively.

(5)

(6)

	 In this method, λ is chosen automatically (starting 
from a value), until a downhill step is produced for each 
epoch. This reduces the error in the predictions made 
using the developed ANN model. The training of network 
terminates prior to the number of specified epochs if the 
conditions given in (7) and (8) are reached. 

Ma =                              [mg·cm-2] 
Δm = (m1 – m2)

A

ξav =         ∑[d(i) – F(x(i);w)]21
2N

N

i=1

g(w) =                =         ∑[d(i) – F(x(i);w)]2∂ξav(w)
∂w

∂F(x(i);w)
∂w

–1
N

N

i=1

H(w) ≈         ∑ [                  ] [                  ]T∂F(x(i);w)
∂w

∂F(x(i);w)
∂w

–1
N

N

i=1

Fig. 2.	 Layout of artificial neural network
Obr. 2.	Schéma neuronové sítě
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λ = 10 · Δ λ + Max [H]                     (7)

(8)

where MSE is mean squared error.

Fuzzy logic method

	 Fuzzy logic sets provide means to model the rela-
tionship between the input process parameters and 
output, even for problems with the uncertainty associated 
with vagueness and imprecision [17]. The schematic of 
a fuzzy system is shown in Figure 3. 

	 Membership functions take a value between 0 and 
1 and map the membership value with the input space. 
Gaussian membership function ensures smooth boundary 
conditions for invoking the fuzzy rules [18] and hence 
used in this study. The input parameters (either analog 
or digital) are translated to linguistic quantities, asso-
ciated with the membership function and then subjected 
to fuzzification. The process of comparing the input 
parameters with the membership function and obtaining 
membership value for each linguistic quantity is known 
as fuzzification. The translated data is applied to the 
predefined set of rules in the rule base in the inference 
mechanism. The inference mechanism generates output 
in the form linguistic terms. These terms are again 
converted to crisp function or value by defuzzification 
process [18].  The major inference methods in the fuzzy 
logic system are Mamdani’s fuzzy inference method and 
Sugeno fuzzy inference method. Mamdani fuzzy system 
uses fuzzy sets as rule consequent whereas Sugeno fuzzy 
system uses linear functions of input variables as rule 
consequent [19].

RESULTS

Artificial Neural Network model

	 In this study, a multilayer perceptron network (MLP) 
consisting of three layers of neurons was used. The first 
layer of neurons was the input layer, the intermediate 
layer was the hidden layer and the third layer was the 
output layer of neurons. In general, the stages in MLP 
model with p input neurons, q hidden neurons, and r out-

put neurons are constructed as given below. The input 
layer of neurons is mapped with the hidden layer of 
neurons by using the (9) and (10). 

(9)

yj = f(uj)                              (10)

where i and j are number of neurons in the input layer 
and hidden layer respectively, xi is the ith input, wij is the 
weight associated with the input i and the neuron j, woj 
is the bias weight of the hidden neuron j and f(uj) is the 
activation function of the jth neuron that transfoms any 
hidden neuron input uj to hidden neuron output yj. The 
hidden layer neurons are mapped with the output layer 
of neurons using the (11) and (12).

(11)

zk = f(vk)                              (12)

where m and k are number of neurons in hidden layer 
and output layer respectively, yj is the jth output, wjk is the 
weight related with the output k and the neuron j, wok is 
the bias weight of output neuron and f(vk) is the activa- 
tion function of the kth neuron that transforms any 
weighted sum of inputs vk to the final output zk. Equation 
(13) is used to calculate the MSE for all the training 
pattern of the networks with only one output neuron.

(13)

where N is the number of training patterns, ti is the target 
value and zi is the predicted value.
	 The technical computing environment MATLAB 
R2015© was used to generate the ANN model. The FSP 
process parameters were the inputs and Ma was the 

Fig. 3.	 Schematic of fuzzy system
Obr. 3.	Schéma fuzzy systému 

≤ MSEmin
MSEwm – MSEwm+1

MSEwm

uj = woj ∑ wij · xi

n

i=1

wk = wok ∑ wjk · yj

m

j=1

MSE =         ∑(ti – zi) ^21
N

N

i=1

Fig. 4.	 Error histogram of ANN model
Obr. 4.	Chybový histogram modelu neuronové sítě
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out-put. In this study, ANN was constructed with three 
neurons in the input layer, two neurons in the hidden 
layer and one neuron in the output layer. 80% of the 
experimental data was used for training and remaining 
20% of the data was used for validation and testing. 
LM algorithm was used to train the neural network model 
until the correlation coefficient (R) was maximum and 
MSE was minimum. Figure 4 shows the error histogram 
for the ANN predicted values.
	 The experimental versus predicted values of the 
training set, testing set, and validation set is shown in the 
Figure 5. A non-linear trend was observed between the 
experimental and predicted values. The correlation coeffi-

cients for training data, validation data and checking 
data were found to be 0.86802, 1 and 1 respectively. The 
overall correlation coefficient for the ANN model was 
found to be 0.7651. The overall correlation coefficient 
was not close to one, indicating inefficiency of the model 
in predicting the output.

Mamdani fuzzy system model

	 Mamdani fuzzy system for predicting the Ma of the 
FSPed specimens was generated using MATLAB. The 
lower level of the FSP process parameters (input) was 
coded as ‘L’, middle level as ‘M’ and high level as ‘H’ as 
given in Table 2. 
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Fig. 5.	 Experimental vs predicted values of: a) Training data; b) Validation data; c) Test data; d) Overall data
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	 The Ma (output) is categorized into 17 ranges and 
their corresponding coded variables are given in Table 
3. The fuzzy logic layout is shown in Figure 6a. As 
discussed earlier, Gaussian membership function was 
associated with each level in the input and each range 
in the output. The membership functions for TRS, TTS, 
SD, and Ma are shown in Figures 6b-e respectively.

Tab. 3.  Coded variable for the chosen range of Ma / Vybrané 
proměnné pro testování

Sl.
Mass loss per unit area (mg cm-2)

Coded variable
Lower limit Upper limit

1 2.30 2.5 M1
2 2.51 2.70 M2
3 2.71 2.90 M3
4 2.91 3.10 M4
5 3.11 3.30 M5
6 3.31 3.50 M6
7 3.51 3.70 M7
8 3.71 3.90 M8
9 3.91 4.10 M9
10 4.11 4.30 M10
11 4.31 4.50 M11
12 4.51 4.70 M12
13 4.71 4.90 M13
14 4.91 5.10 M14
15 5.11 5.30 M15
16 5.31 5.50 M16
17 5.31 5.54 M17
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Fig. 6.	 Layout of Mamdani fuzzy system (a); Membership function for TRS (b); Membership function for TTS (c); Member-
ship function for SD (d) – Continue on next page
Obr. 6.	Schéma Mamadani procesu – Pokračování na další stránce

Shoulder diameter (mm)

D
eg

re
e 

of
 m

em
be

rs
hi

p

0

0.2

0.4

0.6

0.8

1.0

17 18 2015 16 19 21

HML

d)



Soft computing model for analysing the effect of friction stir...	 Vaira Vignesh R., Padmanaban R., Chinnaraj K.

Koroze a ochrana materiálu  62(3) 97-107 (2018)	 DOI: 10.1515/kom-2018-0014	 103

	 The rule consequent (rule base) with three para-
meters p1, p2 and p3 as input and one parameter q as 
output is given below.
	 Rule 1: If p1 is D1, p2 is E1 and p3 is F1, then q is f1(x)
	 Rule 2: If p1 is D2, p2 is E2 and p3 is F2, then q is f2(x)
	 ….
	 Rule n: If p1 is Dn, p2 is En and p3 is Fn, then q is fn(x)

where Di, Ei, and Ci are subsets defined by analogous 
membership functions and fi(x) is the crisp function. The 
set of 20 rules are framed on the basis of membership 
functions of the input and output variables. The model 
was used to predict the Ma for the input data. The 
percentage error in prediction was calculated using (14).

(14)

Sugeno fuzzy system model

	 The layout of Sugeno fuzzy system is shown in Figu-
re 7a. The input process parameters were associated with 
the Gaussian membership function. In this study, fuzzy 
inference system was trained by a hybrid neuro-fuzzy 
system. In Sugeno fuzzy system, defuzzification is done 
by adaptive neuro-fuzzy interference system (ANFIS). 
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Fig. 6.	 Membership function for Ma (e)
Obr. 6.	Schéma Mamadani procesu

Fig. 7.	 Layout of Sugeno fuzzy system (a); Training data, 
Test data and Checking data and corresponding FIS Output 
(b)
Obr. 7.	Schéma Sugeno procesu
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Tab. 4.  Experimental results mass loss per unit area Ma / Expe-
rimentální výsledky hmotnostních úbytků

Sl. TRS 
(rpm)

TTS
(mm/min)

SD 
(mm)

Experimental mass loss 
per unit area, Ma (mg cm-2)

1 700 30 15 5.534
2 1300 30 15 3.435
3 700 60 15 2.864
4 1300 60 15 4.232
5 700 30 21 3.183
6 1300 30 21 4.774
7 700 60 21 2.639
8 1300 60 21 2.347
9 1000 45 18 2.605
10 1000 45 18 2.738
11 1000 45 18 2.754
12 1000 45 18 2.468
13 700 45 18 5.135
14 1300 45 18 3.896
15 1000 30 18 3.706
16 1000 60 18 2.749
17 1000 45 15 4.887
18 1000 45 21 2.582
19 1000 45 18 2.505
20 1000 45 18 2.785
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As this study had three FSP process parameters (input) 
and each process parameter was varied at three levels, 27 
rules were generated in the ANFIS structure. 
	 The number of epochs and error tolerance were 
given as 6 and 0 respectively. 80% of the experimental 
data was used for training, 10 % of the experimental 
data was used for testing and the remaining 10% of 
the experimental data was used for checking. The 
training data, testing data and checking data and their 
corresponding FIS output is shown in Figure 7b. The 
model was used to predict the Ma.

DISCUSSIONS

	 The mass loss per unit area of the friction stir pro-
cessed AA5083 are given in Table 4. The percentage error 
in prediction between the experimental and predicted 
values are given in Table 4. Figure 8 depicts the error in 
prediction of Ma, made by ANN model, Mamdani fuzzy 
system model, and Sugeno fuzzy system model. 

	 The percentage error in prediction ranged between 
-30% and +30% in the Mamdani fuzzy system model. 
The range of percentage error in prediction for ANN 
model was between -20% and +10%. Comparing the 
ANN model and Mamdani fuzzy system model pre-
diction efficiency, the latter had the least accuracy 
in prediction. It is observed from the figure that the 
Sugeno fuzzy system model had the highest efficiency 
in prediction, as percentage error in prediction did not 
exceed 10% for all observations. So Sugeno fuzzy 
system model was considered to analyze the effect of 
FSP process parameters on the IGC susceptibility of 
FSPed specimens.

Surface morphology analysis

	 AA5083 consists of primary phase (α–Al) and 
secondary phase (β–Al2Mg3) in the matrix [20]. An inter-
mediate mass loss of 19.967 mg cm-2 was observed for 
the base material. In the course of IGC susceptibility 
test, HNO3 dissolved the secondary phase in preferential 
to the solid solution of Mg in the alloy matrix. This 
depleted β phase present in the grain and along the grain 
boundaries, which resulted in loosening and falling of 
α phase grains from the matrix. It caused a huge mass 
loss in the order of 15 to 25 mg cm-2, as outlined by the 
ASTM standard G67-13.
	 As seen in Figure 9a, the microstructure of the base 
specimen subjected to IGC test displays pits and corroded 
grains. H2 gas from concentrated HNO3 diffused into 
alloy matrix through the notch root regions on the surface. 
Trapping and subsequent release of H2 gas resulted in 
intergranular corrosion [21]. The segregation of Mg 

Fig. 8.	 Percentage error in prediction for ANN, Mamdani 
and Sugeno models
Obr. 8.	Procentuální chyby modelů

Fig. 9.	 FESEM image of base specimen post IGC test and 
FSPed specimen FSP08 post IGC test (b)
Obr. 9.	Obrázek z elektronového mikroskopu (základní mate-
riál a vzorek po svařování)

b)

a)



Soft computing model for analysing the effect of friction stir...	 Vaira Vignesh R., Padmanaban R., Chinnaraj K.

Koroze a ochrana materiálu  62(3) 97-107 (2018)	 DOI: 10.1515/kom-2018-0014	 105

towards the grain boundary and/or formation of coarse 
precipitates of β phase inducted hydrogen embrittlement 
in the matrix by forming hydrides or by hydrogen 
chemisorption [22]. Added to this phenomenon, galvanic 
coupled corrosion was induced between the noble α 
phase [23, 24] and active β phase [3].
	 The FSPed specimens were lesser prone to inter-
granular corrosion, as it is evident from lower mass loss 
(< 15 mg cm-2) than the base material. The phase diagram 
of Al–Mg alloy system is shown in Figure 10 and it is 
observed that Al2Mg3 precipitates at a temperature of 
683 K. The nominal plasticizing temperature obtained 
during FSP is 400°C (approximately) [11, 25]. The 
heat generation and strain developed during FSP causes 
recovery, recrystallization and grain growth in the 
neighborhood of the processing zone. During FSP, the 
region in front and behind of FSP tool undergo static 
recovery – static recrystallization. The processing region 
beneath FSP tool undergoes dynamic recovery and 
dynamic recrystallization [6]. During this process, the 
formation of β phase in the grains restricted the motion 
of Mg towards the grain boundary [26] and it resulted 
in finely dispersed secondary phases in the matrix [27]. 
This reduced the availability of β phase for dissolution 
by HNO3. Hydrogen embrittlement was also reduced, 
as the β phase is a preferential site for H2 storage. This 
consequently reduced the intergranular corrosion of 
FSPed specimens [24, 28]. FE-SEM image of the FSP08 
specimen after IGC susceptibility test shown in Figure 
9b displays intact grains and a few pits. The recovery 
and recrystallization phenomenon are dependent on the 
strain and thermal cycles during FSP. As the process 
parameters influence the thermal cycles, thermal analysis 
during FSP is discussed in the following section.

Thermal analysis during FSP

	 The governing equation for heat transfer during 
FSP is given by (15). The heat generated at the shoulder 
– workpiece and tool pin – workpiece interfaces are 
given by (16) and (17) respectively. The relation between 
the angular velocity and TRS is given by (18). From (15) 
to (18), it is observed that the peak temperature reached 
during FSP is reliant on the TRS, TTS, and SD [9]. 

(15)

qshoulder = µ (Fn/As) · ω · rs                  (16)

(17)

(18)

where ρ is density of material, u is TTS in m s-1, N is 
TRS in rps, T is temperature in K, ɷ is angular velocity 
in rad/s, Fn is plunge force in N, rp is pin radius in m, rs 
is shoulder radius m, As is surface area of shoulder in m2, 
µ is coefficient of friction, qpin is heat generated at pin in 
W, qshoulder is heat generated at shoulder in W and Y(T) is 
average shear stress as a function of time F m-2.
	 As it can be observed from (17) and (18), increase 
in angular velocity (which in turn dependent on TRS) 
increases the heat input to the workpiece. Consequently, 
a decrease in TRS decreases the amount of heat generated 
at the interface of the tool and the workpiece. It is 
evident from (15) that increase in TTS increases the rate 
of heat transfer. With the increase in TTS, the contact 
time between tool with the workpiece decreases, which 
decreases the heat input. From the (16), it is observed 
that heat generated at the tool-workpiece interface is 
proportional to the tool shoulder diameter. The frictional 
heat generated between the tool shoulder and the 
workpiece is greatly influenced by the surface area of 
contact between the tool and workpiece.

Interaction effects of FSP process
parameters on Ma

	 The interaction effect of two FSP process parame-
ter is analyzed through the surface plots. The effect of 
TRS and TTS on Ma is shown in Figure 11a. Specimens 
processed at high TRS of 1300 rpm and high TTS of 
60 mm min-1 resulted in minimum Ma.
	 The insufficient heat generated at low TRS or high 
TTS resulted in the poor dynamic recovery and dynamic 
recrystallization. This resulted in non-uniform and coar-
se precipitates of β phase, which increased the Ma. It is 
observed from the Figure 11a that low TRS of 700 rpm 
and medium TTS of 45 mm/min resulted in Ma greater 
than Ma that occurred at other levels of TRS and TTS for 
SD of 18 mm. The effect of TRS and SD on Ma is shown 

cAl (wt.%)Mg

Mg17Al12

Mg2Al3

(Mg)

L

R

(Al)
437 °C 450 °C

650 °C 660.452 °C

Al

T 
(°

C
)

0
100

200

300

400

500

600

700

40 8020 60 100

Fig. 10.	 Binary phase diagram of aluminum-magnesium 
alloy system [22]
Obr. 10.	 Binární diagram Al–Mg 

ρ Cp u ·   T +    · (–k   T) = Q

Δ Δ Δ

qpin =                     · rp · ω · Y(T)
µ

√3(1 + µ)2

ω = 2� · N
60



Soft computing model for analysing the effect of friction stir...	 Vaira Vignesh R., Padmanaban R., Chinnaraj K.

Koroze a ochrana materiálu  62(3) 97-107 (2018)	 DOI: 10.1515/kom-2018-0014	 106

in Figure 11b and that variation of Ma due to variation 
of TRS at SD of 21 mm and variation of SD at TRS of 
700 rpm and TRS of 1300 rpm follow a crest parabolic 
trend. The insufficient heat input at low TRS reduced the 
extent of recovery and recrystallization of the processed 

material. So the specimen processed at TRS of 700 rpm 
and SD = 18 mm resulted in more Ma than other 
interaction levels of TRS and SD for constant TTS of 
45 mm/min. Figure 11c shows the interaction effect of 
TTS and SD on Ma. Crest parabolic trend is observed 
in Ma for the variation of TTS at an SD of 21 mm. 
Maximum Ma was observed in the specimen processed 
at medium TTS of 45 mm/min and SD of 21 mm. The 
variation of Ma with variation in SD at TTS of 30 mm/
min follows a crest parabolic trend. But the peak point of 
this parabolic curve was observed to be smaller than the 
former curves Figures 11a,b.

CONCLUSION

	 Aluminum alloy AA5083 plates were friction stir 
processed by varying the process parameters and the 
intergranular corrosion susceptibility of the processed 
plates was assessed by conducting nitric acid mass loss 
test. The base specimen exhibited the highest mass 
loss of 19.967 mg cm-2 indicating high susceptibility to 
intergranular corrosion. The FSPed specimens exhibited 
a lower mass loss (less than 5 mg cm-2) and were lesser 
prone to intergranular corrosion than the base material. 
	 Mass loss of the specimens was predicted using 
Artificial Neural Network model, Mamdani’s fuzzy 
inference system, and Sugeno fuzzy inference system. 
The Sugeno fuzzy system had the least percentage error 
in prediction (less than 10%) for all observations. The 
results indicate that friction stir processing process 
parameters significantly influence the intergranular 
corrosion resistance of AA5083 alloy.
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