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Abstract In this paper I concentrate on Euclidean diagrams, namely on those dia-
grams that are licensed by the rules of Euclid’s plane geometry. I shall overview 
some philosophical stances that have recently been proposed in philosophy of ma-
thematics to account for the role of such diagrams in mathematics, and more par-
ticularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the 
epistemic role that Euclidean diagrams may (and, indeed) have in empirical sciences, 
more speci! cally in physics. I shall claim that, although the world we live in is not 
Euclidean, Euclidean diagrams permit to obtain knowledge of the world through 
a  peci! c mechanism of inference I shall call inheritance.
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1. Introduction

The fate of Euclidean geometry, similarly to that of the Newtonian’s 

conception of space and time (which was, indeed, strongly aff ected by the 

former), is very peculiar. On one hand, Euclidean geometry has lost the 

status of paradigm of epistemic certainty that it had before the advent 
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of non-Euclidean geometries and formal axiomatizations programs.1 On 

the other hand, however, Euclidean geometry is still alive and continues 

to be used in mathematics and in empirical science. And this despite the 

advent of more sophisticated, non-Euclidean, mathematical concepts 

and formal systems. This is especially true in physics, where Euclidean 

geometry, in tandem with Newtonian mechanics, continues to be an 

essential instrument of analysis insofar as “the actual physical three-

dimensional space we live in is curved and matter, as Einstein told us, is 

the source of the curvature; therefore the rules of Euclidean geometry 

break down if we want to correctly describe the physical space; however, 

if the local curvature of our three-dimensional space is very small, we 

can still use Euclidean geometry and consider that it provides a good 

approximation of physical reality”.

The previous considerations prompt a very simple question: what is 

the role of Euclidean geometry in science (i.e. contemporary mathe-

matics and empirical science)? This is, of course, a diffi  cult question to 

answer, and it is plausible to think that providing a satisfying answer to 

this question would require a huge variety of analysis, depending on the 

domain of science that is considered. For instance, we may think that 

there are parts of modern mathematics (e.g. set theory) in which Eucli-

dean geometry has no role at all, while in others (e.g. linear algebra) it 

is still involved and used (though implicitly or embedded in the forma-

lism). As the philosopher of mathematics Ken Manders has pointed out: 

“modern mathematics subsumes Euclid’s geometrical conclusions in real 

analytic geometry, real analysis, and functional analysis” and “Euclid’s 

Elements already sets patterns that are extrapolated by more abstract 

20th-century mathematics” (Manders, 2008a, p. 67). And the same can 

be told of physics, where we still use Euclidean geometry in mechanics, 

in educational or even research contexts, while Euclidean geometry di-

sappears in quantum mechanics and is replaced by hyperbolic geometry 

in special relativity. Therefore, whether there is no doubt that most of (if 

not all) the advances in modern mathematics (and in empirical science 

1  There are many books that trace the history of Euclidean geometry before and 
after the advent of non-Euclidean geometries due to the work of Gauss, Bolyai and Lo-
bachevsky in diff erential geometry. The historian of mathematics Geremy Gray off ers an 
excellent (historical and mathematical) treatment in his Gray (1989).
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as well) are the result of Euclidean geometry and its study, the relevance 

of Euclidean geometry to modern mathematics and empirical science is 

very diffi  cult to estimate.

In this paper I address one speci" c aspect of the question concerning 

the role played by Euclidean geometry in contemporary science. I shall 

focus on the epistemic role of Euclidean diagrams (henceforth ED), which 

I take to be those diagrams than can be constructed and “read” using 

the rules of Euclid’s plane geometry (henceforth EPG). ED are therefore 

speci" c kind of diagrams, being the recipient and the artifact of EPG. 

And it is important to stress from the beginning that I am not conside-

ring here diagrams tout court. Indeed, not all diagrams are Euclidean. 

For instance, I consider that a diagram representing the Möbius strip, 

a one-sided non-orientable surface obtained by cutting a closed band 

into a single strip, is not Euclidean because it cannot be obtained and 

interpreted using EPG. A diagram representing what I am seeing out of 

my window is, arguably, a non Euclidean diagram because it cannot be 

obtained using the resources of EPG alone. On the other hand, a dia-

gram representing two straight lines or a triangle as the result of three 

lines that intersect in three distinct points, constructed according to the 

possibilities admitted by Euclidean geometry, is an Euclidean diagram.

Various studies of Euclidean diagrams have been proposed in philo-

sophy of mathematics (I will survey some of these below). For the most, 

these analyses have investigated the role played by ED in mathematics, 

more speci" cally in Euclid’s Elements, and little attention has been de-

voted to the function of ED in the empirical sciences. This is why I shall 

restrict my attention to physics and I shall analyze ED in this context. 

Using some notions that have been proposed by philosophers of mathe-

matics in the context of the analysis of ED in mathematics, I shall propose 

the idea that there exists a pattern of reasoning which is employed when 

a physical situation is represented and studied through an Euclidean 

diagram: manipulating mentally the diagram we transfer information 

from an higher (i.e. more abstract) structure to a lower (i.e. less abs-

tract) structure, namely the physical system. Thus the physical structure 

inherits the information from the geometrical structure. This is a form of 

inference and I shall call it “inheritance”. The epistemic outcome of this 

process is knowledge concerning the physical system under scrutiny.
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In the next section I shall give a quick overview of some philosophical 

analysis devoted to visual reasoning and the role of Euclidean diagrams in 

mathematics. This section will be instrumental in developing my analysis 

of ED in physics, which will be the content of section three. In section 

three I shall also provide a very simple example of how inheritance works 

in a concrete case. Finally, I will report my conclusions.

Rather than off ering a comprehensive analysis of the role played by ED 

in empirical science, the purpose of this study is to contribute to a young 

but very vibrant debate, namely that concerning the understanding of 

the function of diagrams and diagrammatic reasoning in science, and to 

underline the import of Euclid’s geometry in modern science.

2. The philosophical analysis of Euclidean diagrams

The philosophical investigation of Euclidean diagrams has been carried 

out along two main research paths, both of which have received a lot 

of attention in philosophy of mathematics during the last two decades. 

This interest is also due to the fact that the study of the function of ma-

thematical diagrams is a topic that interests diff erent domains of philo-

sophy of mathematics (logic, epistemology, metaphysics, proof theory, 

mathematics education) and it also has far-reaching rami" cations for 

many areas of philosophy, including, in addition to philosophy of ma-

thematics, epistemology, cognitive sciences, and philosophy of science.2

The " rst line of investigation concerns the analysis of visual reasoning, 

and more particularly the study of diagrammatic reasoning (i.e. visual 

reasoning on diagrams), in mathematics. This is a vast area of study, 

which encompasses research questions that may be very varied and 

that have been also prompted by studies in domains which are far from 

traditional philosophy of mathematics, as for instance studies in visual 

imagery in cognitive psychology (cf. Shepard and Cooper 1982; Kosslyn 

1994). The main goal of this research path can be stated as follows: 

have a better understanding of the ways in which visual reasoning on 

a diagram may produce mathematical beliefs and be a resource for justi-

" cation, discovery or even proof, thus playing a genuine epistemic role in 

2  Mancosu (2005) provides a detailed survey.
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mathematics. To what extent, if any, diagrams and visual reasoning can 

provide us with mathematical knowledge? In this context, visual reaso-

ning is generally taken as the thought process through which we form an 

inner, mental image, of a situation and we perform a mental operation, as 

for instance an inference, on this mental image (Giaquinto 2007; cf. also 

studies in Mancosu et al. 2005).3 Thus, whether diagrammatic reasoning 

has an epistemic import in mathematical activity, the utility of diagrams 

is not only psychological and merely heuristic, as a time-honoured view 

(still prevalent) has maintained, but also epistemological.4 For instance, 

Marcus Giaquinto has claimed that diagrammatic reasoning can play an 

epistemic role in mathematical practice which goes beyond the mere 

heuristic role attributed to it in the past, and more precisely that it plays 

the role of “trigger” for belief-forming dispositions which in turn give 

us geometrical knowledge (Giaquinto 2008). Barwise and Etchemendy 

have considered diagrams as “essential and legitimate components in 

valid deductive reasoning” (Barwise and Etchemendy, 1996, p. 12). A rare 

3  Note that ‘visualization’ and ‘visual reasoning’ are distinct notions. Visualization is 
the act of visualizing, literally ‘seeing something’, while visual reasoning requires more. 
To reason visually on a situation we need to ‘see’ it and, furthermore, to perform a mental 
operation on the mental image of that situation. For instance, we can just see (visualize) 
that the chair is close to the couch. But if we close the eyes for a moment we may still 
be able to form a mental image of that situation and performing a mental operation 
(Thagard, 2005, p. 98). An example of non-mental image is given by the words on this 
page. An example of mental image is given by the layout of the university campus that we 
form in our mind for getting to building to building.

4  The time-honoured view has many eminent partisans in past and present math-
ematics and philosophy of mathematics. Leibniz wrote that “it is not the ! gures which 
furnish the proof with geometers, though the style of the exposition may make you think 
so. The force of the demonstration is independent of the ! gure drawn, which is drawn 
only to facilitate the knowledge of our meaning” (Leibniz 1949, p. 403; on Leibniz’s proj-
ect of putting Euclidean geometry on secure grounds, and more particularly on his works 
on the parallel postulate, see De Risi 2016). Frege’s position, for instance, was that the 
only role of perception or an experience of visual imaging is that of providing evidence 
for a further generalization. According to Frege, indeed, psychological activity cannot 
warrant the generalizations drawn from it and therefore in this way one could not account 
for the objectivity of mathematics. The modern attitude towards diagrams and reasoning 
on them is to consider that diagrams are at best an heuristic aid. This viewpoint is well 
summarized by the logician Neil Tennant: “[The diagram] is only an heuristic to prompt 
certain trains of inference; [...] it is dispensable as a proof-theoretic device; indeed, [...] it 
has no proper place in the proof as such” (Tennant, 1986, p. 304).
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view, endorsed by the philosopher of mathematics James Robert Brown 

(Brown, 1999, Ch. 3), is that in some cases a diagram alone is a proof.

The ! rst research path that I shortly reviewed in the previous paragraph 

concerns ED only partly, and this simply because not all diagrams are 

Euclidean. Nevertheless, there is a second line of investigation in philo-

sophy of mathematics that is related to the former but is more focused 

on ED. Indeed, it speci! cally deals with the role of diagrams in Euclid’s 

Elements and Euclid’s geometry in general. Research questions addres-

sed in this area generally have to do with the argumentative structure of 

the Elements and the thesis that many of Euclid’s geometric arguments 

are (or are not) diagram-based. In his studies on Greek mathematics, 

Reviel Netz maintained that diagrams were for the Greeks the object of 

mathematics, and the object of the proof was logically determined by the 

diagram and not by the text alone (Netz 1998, 1999). Apart from the his-

torical import of Netz’ analysis, his studies have prompted new research 

questions on the role of diagrams in the Elements and a large number 

of philosophers of mathematics are now interested in this topic. In his 

book After Euclid: Visual Reasoning and the Epistemology of Diagrams, 

Jesse Norman argues that diagrams play a genuine justi! catory role in 

traditional Euclidean arguments and that certain Euclidean arguments 

(such as Proposition I.32, namely the internal-angle-sum theorem) re-

quire inferences from diagrams (Norman, 2006). Other philosophers, as 

for instance Nathaniel Miller (Miller, 2008) and John Mumma (Mumma 

2006; cf. also Avigad et al. 2009 and Mumma 2010), have off ered formal 

systems for Euclidean geometry to analyze the methods of inference that 

are employed in the Elements. Both Miller and Mumma argue that the 

role played by diagrams in the proofs of the Elements is essential, and 

both address the issue of how reasoning based on a particular diagram 

can secure general conclusions (though they develop diff erent formal 

systems). A diff erent analysis has been advanced by Marco Panza, who 

has proposed an alternative way to account for the relation that (abstract) 

geometrical objects have with diagrams in Euclid’s geometry (Panza, 

2012). Panza distinguishes between diagrams that are taken to display 

some properties and relations of some other objects (possibly abstract 

ones) which are associated to them, and diagrams that do not. Eucli-

dean diagrams represent (abstract) geometrical objects like for instance 
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points or circles, which are associated to them, but arguments in EPG 

are about (abstract) geometrical objects. In order arguments in EPG be 

diagram-based, diagrams should have an appropriate relation with these 

objects and Panza’s analysis is aimed to account for this relation. Another 

important contribution to the study of the role of ED in Euclid’s geometry 

has been put forward by Ken Manders. Manders has proposed the idea 

that in a Euclidean proof diagrams are only used to infer “co-exact” (re-

gional/topological) information (such as incidence or intersection) while 

“exact” (metric) information, like congruence, is always made explicit in 

the text (Manders, 2008a,b).5

In the next section I shall pro! t from some of the analysis advanced by 

philosophers of mathematics engaged in the analysis of diagrams and 

visual reasoning. More precisely, I shall provide a novel, though very pri-

mitive and basic, analysis of the role of ED in physics and, more generally, 

of the epistemic role that ED may play when used in empirical science.

3. Euclidean diagrams and inheritance

Scientists extensively use diagrams in their educational and research 

practice. They use diagrams to perform very diff erent tasks, for instance 

to model and represent a physical setting, to convey knowledge (hypo-

theses, methods, ! ndings) within a scienti! c community or educational 

context, to calculate, to analyze data, to resume some basic information 

about a process or an experiment or even to design and analyze novel 

experimental settings. Feynman diagrams, for example, are used to per-

form calculations in sub-atomic physics. Minkowski diagrams, originally 

used by Minkowski himself to obtain local geometrical axioms (cf. Smadja 

2012), are commonly used to illustrate the properties of space and time 

in the special theory of relativity. Although the previous examples come 

from physics, diagrams are used in other empirical sciences as well. For 

instance, biologists make a great use of diagrams (Sheredos et al., 2013). 

5  As expected, I am not exhausting here all the types of studies that have been pro-
posed in this research context. Nevertheless, the works summarized here off er a good 
overview of this area and I take them to be representative of the research ! eld that con-
cerns the study of ED in Euclid’s geometry. Furthermore, some of these studies are instru-
mental to the analysis I shall off er in the next section.
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Many of these diagrams used in science, though not all, are ED. But what 

is the epistemic import of using an Euclidean diagram in science? While 

there have been several attempts to make sense of the role of Euclidean 

diagrams in mathematics, in what follows I focus on the epistemic import 

of using an ED in science.

Consider two ! nite straight lines AB and CD (‘segments’ in modern ter-

ms) that intersect in point E on a plane (Figure 1). The resulting diagram 

is Euclidean. Indeed, it is a very simple one and it can be constructed 

very easily using the rules of EPG. Consider now that the two segments 

‘represent’ the rectilinear motions, i.e. the trajectories, of two bodies 

a and b along paths AB and CD respectively. Intersection point E on the 

diagram ‘represents’ a point in real space where both the trajectories 

have gone through.6 There is, of course, a process of idealization (i.e. fal-

si! cation of some of the actual properties of the concrete system) behind 

the step in which we consider the two bodies as points and the two 

Fig. 1: ED representing two trajectories in a small region of space.

segments as their rectilinear trajectories in real space. Nevertheless, 

this process concerns the physics and it comes before the tracing of the 

6  It may be noted that E could also represent a point in real space where both the 
trajectories will go through (in the future). Nevertheless, let me point out that time-di-
mension is not relevant for my analysis. Therefore, in what follows, I will refer to the two 
trajectories as the trajectories that have gone through a speci! c point in space, represent-
ed by E in the diagram.
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diagram and our reasoning on it. The same, indeed, can be told of the 

fact that the trajectories in real space are considered rectilinear in a local 

(small enough) region of space, which is of course not true because we 

know that for the two bodies the curvature of space time is always pre-

sent (although negligible for our analysis). All these are physical assump-

tions we make and therefore they do not aff ect the fact that the diagram 

can be now (i.e. after the idealization was made and a proper mapping 

has been established between the concrete system and the geometrical 

elements of the diagram) seen as representing a local region of space 

with two bodies moving along their rectilinear paths.

Let’s now focus on the elements of the Euclidean diagram that appear 

in Figure 1, and more particularly on the intersection point E. Ken Man-

ders distinguishes between two types of assertions that can be made of 

the geometric con" gurations arising in Euclid’s proofs: “co-exact attri-

butions”, which describe general topological properties of the diagram 

con" guration that are stable under perturbations of the diagram, and 

“exact attributions”, which describe properties of the diagram con" gu-

ration that are not stable under (even small) variations of the diagram 

(Manders, 2008b, p. 92). Intersections and incidence of points and lines 

are co-exact attributions, while proportionalities or congruence of seg-

ments and angles 

constitute examples of exact attributions (the latter exact conditions, in 

fact, would fail immediately upon almost any diagram variation). Mo-

reover, as Manders points out, co-exact attributions may be licensed 

directly by what is seen in the diagram (rather than by what appears in 

the discursive text of the Elements):

Co-exact attributions either arise by suitable entries in the discursive 

text (the setting-out of a claim, the application of a prior result or a pos-

tulate, such as that licensing entry of a circle in the proof of I.1); or are 

licensed directly by the diagram; for example, an intersection point of 

the two circles in Euclid I.1. This poses no immediate threat of disarray, 

because co-exact attributes (again, by de" nition) are ‘locally invariant’ 

under variation of the diagram: they are shared by a range of perturbed 

diagrams (Manders, 2008b, p. 94)
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Let’s now “perturb” the diagram of Figure 1 by considering a con-

tinuous variation of the initial diagram that results in the diagram of 

Figure 2. In this variation, the straight line CD has remained the same, 

point A has not moved, however point B has been moved to B′ so that 

AB′ is equal to AB. The eff ect of this variation, which is licensed by the 

rules of EPG, is that the intersection point E has now moved to E′. Note 

that the intersection point has followed the diagram-pertubation conti-

nuously, namely it has continuously moved from E till E’ in the passage 

from Figure 1 to Figure 2. Thus a speci# c co-exact condition, given by 

the intersection of AB and CD, has resulted insensitive to the eff ects of 

a range of variation in the diagram entries, namely to the eff ects of the 

variation B → B′. In fact, although point B has now moved to B′, AB and 

CD still have an intersection point (now E′) on the diagram.

The fact that there exists a co-exact condition, and this condition has 

remained stable under a speci# c perturbation of our initial diagram, is 

particularly important for the point I want to make in this section. Indeed, 

if we focus on the ED after the perturbation (Figure 2) and we consider 

that it still represent the trajectories of the same bodies, we can now infer 

that changing the trajectory of body a has not aff ected (or won’t aff ect, 

if we consider a future setting) the fact that the trajectories of the two 

bodies have intersected (or will intersect, in the future) at some point in 

real space. And this holds for a limited range of variations of the initial 

diagram (I shall say more on these variations below). This inference, 

though not particularly illuminating and interesting from a scienti# c 

point of view, produces knowledge about the world and therefore has 

epistemic value. Consider, for instance, that it gives an answer to the 

very simple question: “Would the trajectories of bodies a and b have in-

tersected if the trajectory of a had been changed within a speci# c range 

of variation?”. Furthermore, observe that the inference can be obtained 

by reasoning visually on the original diagram, namely that of Figure 1, 

and this simply varying it within a speci# c range of perturbations. Due 

to its co-exact character, the intersection point will always be preserved 

within a range of continuous variations (Figure 2 gives only the result 

of a particular perturbation/variation, however we can ‘mentally track’ 

a full range of continuous variations in which the intersection point will 

always exist).
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Fig. 2: Perturbed ED representing the two trajectories. 

Not all thinking is a matter of making inferences in the way that logic

-based systems do. And the speci! c form of inference that is involved in 

visual thinking on a diagram, as in the example above, is exactly of this 

kind. This is a form of inference I call “inheritance”.7 Manipulating men-

tally the diagram, i.e. reasoning visually on it, we can keep track of the 

local invariance of certain features of the diagram (co-exact attributes 

as the intersection point in our case) and therefore transfer information 

from an higher (i.e. more abstract, geometrical) structure to a lower (i.e. 

less abstract) structure, namely the physical system.8 Thus the physical 

structure “inherits” the information from the geometrical (abstract) struc-

ture. The epistemic outcome of this process is knowledge concerning the 

physical system under scrutiny. In this process, moreover, it is important 

to note that our (mental or graphical) manipulations on the diagram are 

licensed by the rules of EPG.

7  Inheritance is a form of inference studied in cognitive science (Thagard, 2005, p. 
63). Inference by inheritance is also used in object-oriented programming, when a class is 
de! ned in terms of another class. Although I share with cognitive scientists and informa-
ticians the idea that inference via inheritance obtains when we transfer information from 
an higher structure to a lower structure, I consider here that the structures involved are 
essentially diff erent. I take the higher structure as the ‘more abstract’, i.e. the mathemat-
ical structure, while the lower structure is the ‘less abstract’, namely the actual world.

8  En passant, let me note that the cognitive process through which we form a mental 
image and we perform a mental operation on this image is not relevant to the issue at 
hand.
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A straightforward objection to my argument above would be that not 

every variation of B preserves intersection and therefore, in order the 

inheritance inference may be valid, I should de! ne its conditions of va-

lidity, namely specify the family of variations that preserve intersection. 

Nevertheless, this could be made only considering metric information 

which is not available (not attributable) in a Euclidean diagram. Indeed, 

metric information is shown by, but not determined by, the ED. For ins-

tance, in our example we might choose B′ in a way that AB′ and CD do not 

intersect anymore because they became parallel or they became too short, 

and these variations belong to a family of variations that can be de! ned 

only using metrical considerations. This objection, which is central to the 

debate on the role played by diagrams in Euclidean geometry, can be re-

plied adding further considerations about the role played by the rules and 

instruments of EPG in my account.9 Consider Figure 3, where I show how 

using the rules of EPG we can de! ne a speci! c range of variations that 

arises from varying the position of B as that the intersection point is still 

subject to a topological constraint. More precisely, we consider the circle 

of center A and radius AB. Next, varying the position of B along the arc 

GF, we obtain point B′ (as well as points B′′ or B′′′) and a corresponding

Fig. 3: Range of variations in which intersection is preserved.

9  Although I consider here only one response to this objection, my feeling is that my 
claims above can be defended adopting other strategies as well. Nevertheless, an illustra-
tion of these strategies would stretch the present paper far beyond its scope. This is why 
I leave it for future work.
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intersection point E′ (as well as intersection points E′′ or E′′′). This 

de" nes the range of variations that preserve intersection and therefore 

the conditions of validity of the inheritance inference for this particular 

case. According to this reply, diagrams should be read in tandem with 

EPG. This is, in fact, what I have in mind when I stress that the dia-

grammatic representations are constructed using the rules of EPG. It 

should be observed, however, that these considerations do not amount 

to say that diagrams are only heuristic devices. Indeed, they permit us to 

infer information about the physical system. Of course, the conditions of 

validity of the inheritance inference are not given here at the same level 

of generality that we require in pure mathematics (this simply because 

in pure mathematics we want general conditions in order a proof to be 

valid; representation should be representation of a full range of geome-

trical con" gurations and conditions of validity of an inference should be 

provided for all these possible con" gurations). But this is not a problem 

for physics, where we are considering a particular representation and 

we might ask for more relaxed conditions of validity (in our example 

this translates into the claim that the two trajectories will still intersect 

in a point E′ or E′′ if topology of Figure 2 arises when B is moved to B′ 

or B′′).10

Even if my aim here is not to give a comprehensive characterization 

of the inferences that be obtained when reasoning visually on a ED, and 

at this stage my claim that Euclidean diagrams have epistemic value in 

science is conditional to the presence of co-exact attributes in such 

diagrams, I want to close this section with some remarks that may be 

fruitful for future investigation.

First of all, I want to consider again the mechanism of idealization that 

is involved in the scenario I considered above. Idealizations are often (if 

not always) used in physics, and once an idealization has been put in 

place we analyze the physical system through our mathematical machi-

10  It is not the goal of the present paper to discuss the role of generality in mathemat-
ics and in the empirical sciences but is well know that the standards of rigor required and 
used in mathematics are quite diff erent from those of the empirical sciences. As Feynman 
pointed out: “The mathematical rigor of great precision is not very useful in physics. But 
one should not criticize the mathematicians on this score ... They are doing their own job” 
(Feynman, 1965, p. 56).
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nery. This machinery may be formal (for instance, a set of equations) or 

not (as in the case of the Euclidean diagram we used), but in both cases 

the analysis is made on the idealization itself. Therefore the fact that an 

idealization step already be present does not detract from the fact that 

the successive analysis be formal or diagrammatic. In our example abo-

ve, for instance, we considered that space is locally ! at and there is no 

curvature. Moreover, the two bodies are points that move in rectilinear 

motion. All this is physical idealization, and therefore (once assumed) it 

legitimates the use of Euclid’s (! at) geometry and the acceptance of an 

analysis performed through its instruments, including diagrams. Moreo-

ver, I think we can push further my analysis above and consider a dif-

ferent setting in which another sort of idealization is employed. We can 

consider, for instance, an ED that represents a physical system in which 

no idealization has been made concerning the space-time properties of 

the physical system under study. The example I have in mind is that of 

two thermodynamic systems that are described by thermodynamic state 

variables such as temperature, entropy, internal energy and pressure. 

Straight lines in Figure 1 may represent diff erent states of the system 

during two transformations, with each point of a line representing a pre-

cise state of the system. The intersection point represents a common 

state, in which the two thermodynamic states of the systems are the 

same. Although I won’t pursue here an analysis of this scenario, and 

I suppose that similar examples can be off ered within other empirical 

sciences as well, it is prima facie plausible to think that we can get some 

knowledge of the system by reasoning on the Euclidean diagram in a way 

very similar to that we used in the case of the two trajectories.

There is another topic that is closely related to the analysis of dia-

grammatic reasoning in science. This topic concerns the applicability of 

mathematics in science, namely the research on how mathematics applies 

successfully to the world (cf. Molinini and Panza 2014 for a survey on the 

applicability problem). Indeed, if diagrammatic reasoning has an epis-

temic import in empirical science, therefore we should say something 

about the way in which we apply geometrical diagrams and get interes-

ting conclusions about our concrete non-! at world. The applicability 

problem covers a huge area of research in philosophy of mathemati-

cs, and here I only want to show that the considerations I put forward 
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above can be potentially accommodated by one in! uential account of 

applicability, the so-called “inferential conception” of the application 

of mathematics proposed by Otávio Bueno and Mark Colyvan (Bueno 

and Colyvan, 2011). According to Bueno and Colyvan, the process of 

applying mathematics to the world can be accounted through a three

-steps analysis: the immersion step, in which we specify a mapping 

from some relevant aspects of the empirical domain to a mathematical 

structure; the derivation step, also called deduction step, which takes 

place entirely within the mathematical domain and in which we realize 

mathematical inferences, licensed by the mathematical theory, about the 

immersed structure; the interpretation step, in which the consequences 

found in the derivation step are mapped back to the empirical domain 

via an appropriate mapping (in this step we interpret the results of our 

mathematical investigation). Within this framework I see the possibility 

to accommodate the inheritance form of inference. Diagrammatic rea-

soning on ED, indeed, operates at level of the deduction step, in which 

deductions are licensed by the rules of EPG. Before this step, a mapping 

is established between the physical system and the diagram (immersion 

step), while after the derivation step the consequences found on the 

diagram are mapped back to the empirical domain (interpretation step).

4. Conclusions

On an older view, which dates back to Kant, diagrams have epistemic 

value in mathematics via a dubious appeal to a postulated faculty of “in-

tuition”. Nevertheless, this appeal to intuition lost its appeal by the late 

19th century, when mathematicians such as Dedekind, Pasch and Hilbert 

regarded the use of geometric intuitions and " gures in basic in" nitesimal 

analysis and geometry as unreliable. This anti-diagrammatic standpoint 

was not shared by some mathematicians, however it led to an attitude 

which is still predominant today: mathematicians and philosopher of 

mathematics usually consider that diagrams only have heuristic value and 

could not bear any epistemological weight. Trying to reverse the latter 

standpoint, a recent trend in philosophy of mathematics has given great 

importance to the epistemic role that, according to some, diagrams and 

visual reasoning may have in mathematics.
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Although the interest in the function of diagrams and visual reasoning 

has grown among philosophers of mathematics, the contemporary dis-

cussion on diagrammatic reasoning has remained almost entirely con! -

ned to the role of diagrams in proofs and in the argumentative structure 

of the Elements. In this paper I have followed a diff erent research path. 

I have considered Euclidean diagrams, namely those diagrams that can 

be constructed and read using the rules of Euclid’s plane geometry, and 

I have provided a primitive analysis of their role in science, more parti-

cularly in physics. In my analysis I have considered a very basic scenario 

in which an Euclidean diagram represents a concrete physical system (via 

an idealization and a suitable mapping), claiming that the epistemic role 

of the Euclidean diagram is disclosed once we analyze a speci! c form of 

inference. I called inheritance this form of inference. Inheritance is licen-

sed by the fact that we can reason visually on a diagram and some of its 

co-exact properties (therefore co-exact properties should be present in 

the diagram). This shows how manipulations and visual reasoning with 

diagrams can shed light on the concrete realm of physical objects, and 

how Euclidean diagrams may have epistemic value in science.

Even in light of the attenuated role of Euclidean diagrams in modern 

mathematics and empirical science, understanding their nature and 

function is still an important part of understanding how modern science 

works. The modest aim of the present study was to make a step towards 

such understanding.
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