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Abstract In this paper, I examine an evolutionary approach to the action selection 
problem and illustrate how it helps raise an objection to the predictive processing 
account. Clark examines the predictive processing account as a theory of brain func-
tion that aims to unify perception, action, and cognition, but - despite this aim - fails 
to consider action selection overtly. He off ers an account of action control with the 
implication that minimizing prediction error is an imperative of living organisms 
because, according to the predictive processing account, action is employed to ful" ll 
expectations and reduce prediction error. One way in which this can be achieved is 
by seeking out the least stimulating environment and staying there (Friston et al. 
2012: 2). Bayesian, neuroscienti" c, and machine learning approaches into a single 
framework whose overarching principle is the minimization of surprise (or, equiva-
lently, the maximization of expectation. But, most living organisms do not " nd, and 
stay in, surprise free environments. This paper explores this objection, also called 
the “dark room problem”, and examines Clark’s response to the problem. Finally, 
I recommend that if supplemented with an account of action selection, Clark’s ac-
count will avoid the dark room problem.
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1. Introduction

Selecting an appropriate action is very important to the effi  ciency and 

" tness of an animal1 because at any time an animal has numerous avail-

able actions to choose from. This is the action selection problem and 

can be stated as follows: Given an agent with a repertoire of available 

actions, a number of goals, and knowledge about its internal states and 

external environment, how does an agent select the most useful or most 

valuable action in a given situation?2 The action selection problem can 

be approached in at least two ways by asking the following questions. 

First, why are actions selected? This question would involve discussion 

on reward, incentive and " tness. The second question is, how are actions 

selected, or what mechanisms are involved in selecting an action? This 

question requires an account of cognitive architecture, mechanisms and 

processes.

2. The architecture problem

In his 2013 paper, Whatever next? Predictive brains, situated agents, 

and the future of cognitive science, Andy Clark off ers an account of the 

mechanisms and architecture involved in cognition and action. Clark 

supports the predictive processing account of cognition and shares his 

view with physicists, such as Karl Friston, and philosophers, such as 

Jakob Hohwy. Though Clark does not directly consider the action selec-

tion problem, his account may off er a solution to the problem involving 

cognitive architecture and mechanisms.3 The architecture of cognition is 

not the only element of cognition to study, effi  ciency is also a concern. 

Therefore, in this paper, I propose that cognition should be studied with 

two objectives in mind. First, an account of cognition should consider 

the architecture and mechanisms involved in cognitive systems – this will 

involve an explanation of how the system selects an action. I call this the 

1  Houston, McNamara and Steer 2007, 1531.

2  Maes, 1990, 991; Seth, 2007, 1545.

3  Clark mentions action selection only twice: " rst to say that minimizing prediction 
error is the driving force behind action selection and second to brie$ y raise a concern 
about the scope of the predictive processing account.
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architecture problem. Second, a successful account will also explain why 
an action is selected – this is the effi  ciency problem. Clark’s account of 

cognition does not provide an answer to the effi  ciency problem because 

he does not take seriously the problem of action selection but the ac-

count tells us something about the mechanisms involved in cognition and 

action. The lack of a solution to the effi  ciency problem will be discussed 

in future sections.

3. Predictive processing model of cognition 

The predictive processing account is characterized by the key notion 

that the brain uses prediction-driven processes “…to acquire and deploy 

hierarchical generative models of the hidden causes (sometimes called 

latent variables) that best explain the changing patterns of sensory input 

that impinge upon the agent.”4 Traditional views of perception model the 

brain as a passive, stimulus-driven mechanism5 and take the process 

of perception to infer from eff ect to cause.6 These traditional accounts 

model the brain as feature detector - a view not supported by the pre-

dictive processing account. The predictive processing account proposes 

that instead of simply accumulating information and building a model 

of the world, the brain tries to predict the sensory information and at-

tempts to match its predictions of sensory causes with actual sensory 

stimuli. Higher level systems predict activity in lower level systems; errors 

in higher level predictions are corrected based on the lower level input 

received. This is to say, any errors that occur in higher level models are 

modi# ed to reduce future discrepancies.7 The function of higher level 

predictions is to explain away any incoming sensory stimuli to reduce 

information propagated; this is because only the prediction error is prop-

agated instead of the entire sensory stimulus.8

4  Clark, 2012, 760.

5  Clark, 2014, 23.

6  Hubel & Wiesel, 1965; Biederman, 1987; Riesenhuber & Poggio, 2000.

7  Clark, 2013, 182.

8  Ibid., 182.
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The predictive processing account described above is traditionally used 

to explain the mechanisms and functions involved in perception, but has 

recently been extended to include action.9 Clarks off ers the “action-ori-

ented predictive processing” account which constitutes the novel claim 

that action and perception follow the same predictive principles. This 

follows from the presumption that perception and action are computa-

tionally related and work together to reduce prediction error. Prediction 

error is the result of a mismatch between bottom-up input and top-down 

predictions. Clark’s account does not consider action selection overtly 

but says that action control is driven by the minimization of prediction 

error.10 Agents with complex cognition, however, do not only control 

actions in response to the environment but are required to select the 

best possible action in a particular situation. In the following sections, 

I provide a descriptive account of the nature of the cognitive system as 

proposed by Clark. This will provide necessary background information 

needed to critically examine Clark’s action-oriented predictive process-

ing account.

3.1. The nature of the system

Clark’s general account of cognition has three properties: 1) the system 

is bidirectional in nature. 2) The system is hierarchical in nature. 3) The 

system uses Bayesian inference in the selection of predictions/top-down 

information. I discuss each of these properties in turn.

3.1.1. Bidirectional nature

According to the predictive processing model of the brain, information 

is encoded using both top-down and bottom-up processes.11 Top-down 

information is predictive in nature, and functions to predict the causes 

of sensory input; bottom-up input constitutes stimuli and functions to 

update predictions. This view - that cognition is bidirectional in nature 

- diff ers from traditional theories of cognition which propose that top-

down and bottom-up processes are mutually exclusive. According to 

the predictive processing account, perception is a constant interaction 

9  Friston & Stephan, 2007; Brown et al., 2011; Clark 2013.

10  Clark, 2013, 190.

11  Ibid., 186.
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between current and previous information and constitutes comparing 

bottom-up stimuli with top-down predictions.12 This process is known 

as “explaining away” and involves explaining away the incoming stimuli 

by matching it with expectations.13 

An example of this process is an experiment investigating binocular 

rivalry which is a visual experience that occurs when each eye is simulta-

neously presented with a diff erent visual stimulus.14,15 What is interesting 

about the experiment is that instead of seeing a merged picture, only 

one stimulus is perceived at a time.16 The perceptual system switches 

between the two pictures, focusing on each for a few seconds. This ex-

periment is important in understanding bidirectional processing because 

the bottom-up stimuli remain constant but the top-down information 

changes.17 The top-down information explain away only those elements 

of the incoming signal that match the current prediction18 resulting in 

the switching of perceptual experience. This implies that perception does 

not necessarily include encoding the entire stimulus but rather encod-

ing the difference between the sensory stimulus and a prediction. If the 

prediction is good, only the discrepancy between the prediction and the 

incoming stimulus will be perceived as input.19 If the prediction is poor, 

the entire input signal is encoded as new information. This diff erence is 

known as prediction error and is reduced through updating top-down 

information. Even though the top-down predictions are doing much of 

the perceptual work, the bottom-up signals provide ongoing feedback 

on top-down activity because perception is only guided by expectations 

and not enslaved by it.20 Therefore, the view put forth is not radically 

internalist but a hybrid view using both internal knowledge and external 

experience.

12  Ibid., 186.

13  Ibid., 187.

14  See Hohwy et al., 2008 for an in depth discussion on binocular rivalry.

15  Clark, 2013, 184.

16  Hohwy et al., 2008, 690.

17  Clark, 2013, 185.

18  Ibid., 185.

19  Hohwy et al., 2008, 689.

20  Clark, 2013, 190.
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3.1.2. Hierarchical nature

The bidirectional process occurs at various levels of cognition and sup-

ports the view that cognition is hierarchical in nature. A key function of 

the hierarchical system is to guess the next states of its neural economy 

- each higher level in the cognitive hierarchy predicts the informational 

state of the lower level.21 In the binocular rivalry case, “… a visual per-

cept is predicted by a process … operating across many diff erent levels 

of a (bidirectional) processing hierarchy, each concerned with diff erent 

types and scales of perceptual detail”.22 This process constitutes back-

ward updating of higher levels to keep prediction error to a minimum. 

The nature of the levels in the hierarchy varies in that the basic input 

level encodes basic stimuli and higher levels encode more abstract and 

perspective invariant data.23

3.1.3. The Bayesian brain

At each level of the cognitive hierarchy, interaction between top-down 

and bottom-up information takes place. Bottom-up information consti-

tute sensory stimuli and top-down information constitute predictions 

about the causes of stimuli. How are these predictions generated? Ac-

cording to the predictive processing account, the brain performs Bayes-

ian inference to select the models, or priors, that best predict the causes 

of sensory input. This means that the prediction with the highest poste-

rior probability is the prediction that is selected and that determines the 

perceptual content of the system.24 In the Bayesian prediction model of 

the brain, stable, internal hypotheses have two important constituents: 

prior probability and likelihood.25 The hypothesis with the highest prior 

probability is the hypothesis that informs top-down predictions about 

incoming sensory stimuli.26 If the prediction corresponds well to the 

incoming stimuli, the likelihood of the input increases. High prior prob-

ability combined with high likelihood implies high posterior probability.

21  Ibid., 183.

22  Ibid., 185.

23  Hohwy, 2010, 136.

24  Hohwy et al., 2008, 688.

25  Clark, 2013, 185.

26  Hohwy, 2010, 136.
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In the binocular rivalry case, the predictions of the stimuli have a 

roughly equal likelihood but if, for some reason, one stimulus has a 

higher likelihood, then it will be selected for perceptual dominance.27 

The conjoint prediction (of both stimuli) has a higher likelihood because 

it can predict both stimulus X and stimulus Y but it has a much lower 

probability because it is a priori very improbable for the two objects to 

occupy the same space.28,29 The brain has learned that only one stimulus 

can cause sensory input at a given place and time.30 In other words, giv-

en prior probability and likelihood, only one stimulus will be perceived 

at that time. The stimulus that is perceived is the one with the highest 

likelihood given other contextual information.

The predictive processing account suggests that the probability den-

sity of information is encoded rather than the information.31 What this 

means is that when we perceive an object, the nature of the object is not 

represented in the brain but the relative probability of the nature of the 

object is encoded. This function enables the brain to deal with uncer-

tainty, noise and ambiguity.32 For example, to encode the event TREE IN 

THE FOREST, the Bayesian brain will encode the conditional probability 

density function of this event using top-down and bottom-up processes 

and presents an approach where the general scene is ! rst identi! ed and 

the details are ! lled out.33 The general picture is presented and initially 

informed by internal hypotheses, which are selected through Bayesian 

inference. In other words, perception constitutes a process that follows 

the principle: forest ! rst, then trees.

It seems as though this is a computationally costly process but this is 

not the case. Neurons are not suddenly turned on when new information 

is encountered because the brain is already active with a large set of 

27  Hohwy et al., 2008, 690-691.

28  Hohwy’s use of the term a priori is not the same as the traditional philosophical use 
of the term. What he means is that the brain’s models are a priori in the sense that they 
encounter particular experiences after they have propagated down the hierarchical levels.

29  Hohwy et al., 2008, 691.

30  Ibid., 691.

31  Clark, 2013, 188.

32  Ibid., 188.

33  Ibid., 188.
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priors, which impact the processing of new information.34 This means 

that a large amount of context information is already in place when new 

information is encountered; at each level of the neural economy, pre-

dictions are probabilistic and take into account uncertainty at each stage 

of the processing.35 This illustrates the Bayesian nature of the cognitive 

system. When the system encounters new bottom-up information, the 

neuronal responses are expected to change signi! cantly given the con-

textual information provided by top-down predictions.36 The view that 

perception is a task of top-down predictions, more than it is of sensory 

stimulation is supported by Rauss et al. (2011) who claim that “…neural 

signals are related less to a stimulus per se than to its congruence with 

internal goals and predictions, calculated on the basis of previous input 

to the system.”37

3.2. The function of the system

The predictive processing account of cognition also makes an im-

portant claim about the function of cognition. It states that perception 

involves top-down predictions interacting with bottom-up signals from 

the environment. The discrepancy between top-down predictions and 

bottom-up signals, called prediction error, is a result of the content that 

is entered into the system through sensory input but that is not predicted 

by higher-level processes.38 It is the function of the system to reduce this 

error by transmitting the discrepancy/prediction error backward in order 

to update predictions in higher levels of the hierarchy. When prediction 

error is minimized, the accuracy of likelihood and prior probability of 

predictions increase and posterior probability is increased. However, if 

the prediction is poor, the entire input signal is transmitted as prediction 

error. A process involved in prediction error minimization, is the updat-

ing of higher-level hypotheses through lower-level input.39 In addition to 

updating the hypotheses that feed predictions, prediction error can also 

34  Clark, 2013, 188.

35  Knill & Pouget, 2004, 713.

36  Clark 2013, 189.

37  Rauss et al., 2011, 1249.

38  Hohwy 2010, 135.

39  Friston 2003, 1341.
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be minimized through action. This supports the claim that perception 

and action function to reduce prediction error and expresses the view 

that it is the function of biological organisms to reduce prediction error.

4. Action-oriented predictive processing

Clark proposes that action also functions to minimize prediction error. 

One way in which action enables the minimization of prediction error is 

by changing how an agent samples the environment rather than chang-

ing its expectations of the environment.40 An animal moves its sensors 

and body, and acts on the environment in ways that can be described as 

active sculpting of the environment to match expectations.41 Action, it 

can be said, exhibits a similar pro! le to perception but reduces predic-

tion error by eliciting movements that change bottom-up information.42 

This means that prediction error is used to adjust action to minimize 

the discrepancy between the consequences of action and that, which is 

predicted.43 Clark’s action-oriented predictive processing account makes 

two claims about perception and action. The ! rst is that perception and 

action work together to move an organism through time and space.44 The 

second states that perception and action follow the same principles; this 

is based on the premise that both perception and action are implemented 

through the same computational strategies.45

Clark’s ! rst claim is that perception and action work together to reduce 

prediction error. In other words, prediction error is minimized through 

the selective sampling and active sculpting of stimuli.46 Perception func-

tions to update internal models and expectations about the causes of 

stimuli, and action works to ful! ll these expectations. Friston illustrates:

40  Hohwy et al., 2008, 690.

41  Clark, 2013, 186.

42  Ibid., 186.

43  Friston, 2003, 1349.

44  Clark, 2013, 186.

45  Ibid., 186.

46  Ibid., 186.
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“Perceptual learning and inference is necessary to induce 

prior expectations about how the sensorium unfolds. Action 

is engaged to resample the world to ful! ll these expecta-

tions. This places perception and action in intimate relation 

and accounts for both with the same principle.”47

The second claim put forth by Clark’s account is that perception and 

action are computationally similar. This claim is captured by Eliasmith 

(2007) who supports the notion because “The best ways of interpreting 

incoming information via perception, are deeply the same as the best 

ways of controlling out-going information via motor action…”.48 What 

Eliasmith has in mind is something such as a Kalman ! lter which func-

tions by predicting system states and updating these predictions through 

incoming information. In a Kalman ! lter, there are mechanisms that ad-

just the weight of a model’s predictions depending on the measurement 

of the prediction error. This implies that both perception and action are 

driven by predictions and expectations49 and that both perception and 

action function to ful! ll the expectations of the system.

Where does this leave us in terms of action selection? Clark does not 

discuss action selection in his article but he off ers an account of action 

control by looking at the free energy principle. The free energy principle 

proposed that the biological imperative of living organisms is to mini-

mize free energy.50,51 In terms of action, the claim is that an agent acts 

on the world and adapts accordingly in order to ful! ll its expectations. 

Implied in this claim is the view that the selected action is the action that 

has the highest likelihood of ful! lling an agent’s expectations or that 

can shape the environment in such a way that expectations are matched. 

The function of cognition can be understood in terms of prediction-error 

minimization because, according to the free energy account, living or-

47  Friston et al., 2009, 12.

48  Eliasmith, 2007, 380.

49  Clark 2013, 186, 200.

50  I refer here to the minimization of free energy but this can be translated as minimiz-
ing prediction error. In other words, prediction error is free energy. 

51  Friston, 2011; Friston et al., 2012.
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ganisms have a neural and biological imperative to minimize prediction 

error.52

5. The effi  ciency problem

Clark’s account of cognition does not consider action selection and 

neglects discussion on effi  ciency, motivation and reward. There are 

three features to take into account when considering action selection.53 

First, the outcome of an action provides information about future out-

comes. The state of the environment is a source of information, which 

can be correlated with diff erent variables and enables organisms to move 

through space and time. The information that is found in the relationship 

between the # rst and second variables can be the outcome of an action 

(reward or punishment). Reward or punishment, i.e. the outcome of an 

action, carries important information about the action that is selected 

and performed.

Second, there are several possible actions to choose from and some 

are better than others in that they result in more effi  cient behaviour and 

carry positive outcomes. Animals with $ exible behaviour can learn about 

better and worse responses to features in the environment; this can be 

achieved through associative learning. Behavioural responses can be 

shaped over a variety of timescales and, on an evolutionary timescale, 

the agent may not know which is the better option but evolution se-

lects agents that make better choices. Effi  ciency is not the only element 

that makes one action better than another positive outcomes (rewards) 

also aff ect action selection. Each outcome has a consequence, which is 

translated as either a reward, or a punishment; an animal would learn to 

associate certain rewards and punishments with selected actions.54 If the 

outcome of the selected action is rewarding, the action will be repeated 

when the opportunity arises, and if the outcome is not rewarding, the 

action should be avoided. This leads to the third element that is im-

portant in action selection and particularly the effi  ciency problem. Each 

52  Friston 2011; Friston et al., 2012; Clark 2013.

53  Houston, McNamara and Steer, 2007, 1533-1534

54  Sterelny, 2003, 82.
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possible action is accompanied by consequences, which are taken into 

account when actions are selected. Sterelny proposes that behaviour is 

a result of the motivation that arises from the combination of variables, 

both internal and external. Clark does not take into consideration the 

elements discussed above and as a result his account faces a serious 

objection called the dark room problem.

6. The dark room problem

Friston and Clark run in to a serious concern regarding the behaviour 

of living organisms because of the claim that organisms have a sole 

biological imperative to ful! ll expectations. The dark room problem is 

a reductio ad absurdum objection which states that accepting the claim 

that all living organisms have the sole biological imperative to mini-

mize free energy leads to a peculiar, and false, consequence. This can 

be illustrated as follows. If the predictive processing account is correct 

about the function of cognition, all living organisms with cognitive ca-

pacities will seek to minimize surprise. One way of achieving this is for 

an organism to block out all sensory information by seeking out the least 

stimulating environment and staying there.55 In such an environment, a 

living organism will be deprived of sensory stimuli and prediction error 

will be minimal, if not absent. This seems absurd since it is empirical 

knowledge that almost no living organisms inhabit monotonous envi-

ronments or seek out situations that have no sensory stimuli.56 Even 

organisms that do inhabit “dark rooms” such as caves seek out sensory 

stimuli by making use of other mechanisms, such as proprioception and 

echolocation. But this is not the primary claim of predictive processing; 

predictive processing is based upon the free energy principle.

According to the free energy principle, living organisms have a bio-

logical imperative to minimize prediction error.57 This follows from the 

55  Friston et al., 2012, 2.

56  One exception may be Troglophiles and Troglobites (animals that complete their 
entire life cycle inside a cave environment). Troglophiles can also survive in above ground 
habitats unlike Troglobites who are often transparent (or white) and completely blind 
(Chapman, 1982).

57  Friston, 2011; Friston et al., 2012.
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principle embedded in the free energy formulation: avoid surprises and 

you will last longer.58 Seeking out monotonous environments that contain 

the least amount of surprises enables the organism to keep prediction 

error to the minimum.59 One would then expect that the predictive pro-

cessing account proposes that it would make sense for organisms to 

seek out and stay in a dark room. As a result, the predictive processing 

account will also be committed to the view that organisms can success-

fully minimize surprise by blocking out sensory information and seeking 

out a monotonous environment, free from surprise. Such an environment 

would result in the organism being in the ultimate stable state with near 

perfect predictions.60 This view is peculiar and empirically false; all living 

organisms with cognitive capacities do not seek out dark, monotonous 

corners to inhabit; the view is also nonsensical from an evolutionary and 

biological point of view.

What is required of Friston’s account is to provide an account of free 

energy minimization, where organisms have an imperative to minimize 

surprise, but also supports the view that animals do not simply seek 

out a nice dark corner and stay in it.61 In the following sections, I look 

at Friston’s response to the dark room problem and his attempt to ex-

plain what is meant by the dark room metaphor. Thereafter, I examine 

Clark’s response to Friston’s account and also critically examine Clark’s 

response to the dark room problem. Clark and Friston’s responses to 

the objection have important diff erences but they both off er solutions to 

the consequences of the free energy principle. Their responses exem-

plify two general solutions that can be off ered in response to the dark 

room problem. First, Friston refutes the reductio ad absurdum argument 

and supports the view that the consequences of minimizing prediction 

error are not as absurd as they seem. Second, Clark proposes that the 

consequences of the account do not follow and he provides additional 

considerations regarding prediction and expectation of surprising ac-

tivity in changing and challenging environments.

58  Friston et al., 2012, 2.

59  Ibid., 2.

60  Clark, 2013, 186.

61  Ibid., 193.
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6.1. Friston’s response to the dark room problem

Friston responds to the dark room problem by saying that dark room 

agents do, in fact, exist and that we need to look no further than Troglo-

philes for such examples.62 In other words, Friston refutes the reductio 

ad absurdum argument by saying that the free energy minimization 

principle and its consequences do not reduce to absurdity because some 

organisms do seek out monotonous environments that are free from 

sensory stimuli. Hence what Friston means when he off ers the dark room 

metaphor is not that all living organisms should seek out a dark corner 

to stay in, instead organisms should avoid surprise which is measured 

in relation to an organism’s model of the world.63 He goes on to say that 

solutions to minimize prediction error “…will be unique to each conspe-

ci" c and its econiche”.64 For example, what is surprising to Troglophiles 
may not be surprising to primates and vice versa. According to Friston, 
living organisms have a biological imperative to reduce surprise - both 
on a short term and long term basis.

It is not obvious (though Friston might disagree) that the sole biological 
imperative of living organisms is to minimize surprise because all organ-
isms with cognitive capacities do not seek out and inhabit monotonous 
environments. In other words, Friston’s account cannot be accepted as 
a general account of cognition because not all organisms seek out mo-
notonous environments. To illustrate the criticism of Friston’s account 
more clearly: the account is not an attempt to make a prediction about 
some animals that inhabit dark caves; it makes the claim that all living 
organisms function to minimize prediction error. But animals do not seek 
out monotonous environments, and instead participate in challenge and 
exploration to satisfy needs and drives. Animals are reward-seeking and 
participate in activities that have positive outcomes and tend to avoid 
activities with negative outcomes - learning about the consequences of 
actions often calls for challenge, exploration and exposure to surprise, 
even if just initially. Friston disagrees; he claims that “…valuable states 
are unsurprising…” and since the agent has already learned about the 

62  Friston et al., 2012, 2.

63  Ibid., 2012, 1.

64  Ibid., 2012, 2.
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valuable states and updated its predictions, those states are already 

available in the agent’s environment.65 Rewarding activities are valuable 

to the welfare and survival of animals because evolution favours organ-

isms that are effi  cient and successful in their behaviour as response to 

the environment.

Friston’s response to the dark room problem suggests that the con-

sequences of the free energy minimization principle is not as bad as it 

seems and he attempts to rescue the account by off ering an example 

of organisms that do in fact inhabit dark environments free from sen-

sory stimuli. It seems as though Friston misses the point of the objec-

tion because he comes up with rationalisations for some organisms but 

that’s not what is required. What Friston’s account promises is a general 

account of cognition that makes predictions about the function of cog-

nition and a rationalisation that can be generalised, but the promise is 

not delivered. In the next section, I discuss Clark’s response to the dark 

room problem. Clark also refutes the reductio ad absurdum objection 

to the dark room problem; he argues against the consequences and 

suggests that the free energy account does not run into the dark room 

problem because animals should not, and will not, seek out monotonous 

environments free from sensory stimuli because they expect to engage 

in change, challenge and exploration.66

6.2. Clark’s response to the dark room problem

Clark’s response is diff erent to Friston’s in that Friston con# rms that 

the consequences follow the free energy account but he plays down the 

signi# cance of the consequences; Clark, instead, claims that the con-

sequences do not follow. Clark proposes that animals do not seek out 

monotonous environments free from surprise because animals expect 

change and exploration. In other words, in response to the dark room 

problem, Clark acknowledges that living organisms live in diff erent and 

changing environments and proposes that organisms that live in chang-

ing and challenging environments will not seek out monotonous envi-

ronments because they have expectations about change and exploration 

65  Friston, 2009.

66  Clark, 2013, 193.
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and furthermore expect to act out sophisticated strategies and perform 

cognitively complex actions.67 The potoo bird, for example, has adapted 

to a complex environment such as the Amazon rainforest. The potoo’s 

actions re! ect the complexity of the environment in that it has adapted 

to mimic its environment in order to blend in and protect itself from 

predators. The potoo’s feeding and reproductive behaviours are strategic 

and unique to its environment. The notion behind this is that organisms 

adapt to their environments and minimize surprise in relation to their 

environments, i.e. organisms in complex environments have adapted 

to complex environments and organisms in monotonous environments 

have adapted to such conditions. From this follows that the world models 

and priors an agent holds in! uence that which is surprising to an agent, 

and the agent’s prior expectations, and that which determines surprise, 

are speci" c to diff erent species and are unique to the individual.68 Clark’s 

argument implies that animals are models of their environment and their 

predictions are formed to be compatible with the environments they 

inhabit. Implied in this claim is that when an animal adapts to its envi-

ronment, it learns and updates its priors. Clark supports the view that 

perception and action are primarily driven by the need to minimize free 

energy. From an evolutionary approach, this is limiting; adaptive " tness 

depends not only on minimizing free energy but also on reproduction 

and drive satisfaction - these activities are effi  ciently performed when the 

value of the outcomes are learned. Reproduction and drive satisfaction 

requires risky and changing behaviour, and associating the reward or 

punishment of an outcome with an action enables animals to discriminate 

between, and prioritize, actions. A serious concern raised against the 

predictive processing account is that the appeal to incentive and reward 

to explain behaviour is largely replaced by constructs of prediction and 

expectation.69 Clark acknowledges the concern by asking whether the 

predictive processing account of cognition omits much of “…what really 

67  Clark, 2013, 193.

68  Friston et al., 2012, 3.

69  Clark, 2013, 200.
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matters for adaptive success: things like boredom, curiosity, play ex-

ploration, foraging and the thrill of the hunt?”.70

Clark responds to the dark room problem by saying that “…change, 

motion, exploration and search are themselves predicted - and poised 

to enslave action and perception accordingly”.71 He supports the notion 

that search and exploration are key features of life72 and that animals 

explore the environment to feed and reproduce because without ex-

ploration, the animal will perish and the species will die out. Clark’s 

response to the dark room problem suggests that animals that have 

expectations about change and exploration will ! nd monotonous en-

vironments surprising. To illustrate this informally, the animal will be 

surprised by its own hunger and lack of activity, and will be prompted 

to explore the environment. Clark’s response is adequate, as far it goes, 

in that exploring the environment is advantageous because the animal 

can feed, reproduce and ! nd information about the environment but 

notably missing from Clark’s response is an account of action selection 

and motivation. Clark does not propose that animals are motivated to 

satisfy hunger or to reproduce and neglects discussion on incentive and 

reward; instead Clark proposes that an animal is motivated to explore 

and ! nd information so as to not be surprised by its own inactivity. For 

example, an animal in a dark room will eventually get thirsty; it has 

two general options, relevant to this discussion, to reduce the unstable 

state of being thirsty. First, it can seek a waterhole or food and quench 

its thirst but this would involve surprise and exploration. Second, it can 

update its prior and expect thirst but this means the animal will perish. 

Without paying consideration to motivation and reward, Clark’s account 

supports the latter (absurd) option. Therefore, the lack of discussion on 

incentive or reward in Clark’s account is not suitable to an evolutionary 

or biological account of behaviour because it provides no insight into 

motivation to act and how to discriminate between strategies.

According to evolutionary accounts of action and cognition, action is 

the result of both external states of the environment and a motivation 

70  Ibid., 193.

71  Ibid., 193.

72  Friston et al., 2012, 1.
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to change or attain a particular state in the environment.73 Clark’s study 

of predictive processing off ers no account of the motivation that living 

organisms have to seek change, initiate motion and engage in explo-

ration.74 Without such an account, the neural and biological strategy 

stays the same - reduce surprise.75 Clark’s response (that change and 

exploration is expected) is therefore not satisfactory because it lacks an 

account of a mechanism for selecting actions that, not only promotes 

" tness, but that enables discrimination between actions and supports the 
notion of seeking reward. Such a mechanism of motivation is required 
especially in an environment that delivers signals, which are noisy and 
somewhat unreliable as well as functionally ambiguous.76

7. Neuroeconomic model of motivation

Clark responds to the dark room problem by asserting that the con-
sequences of accepting the free energy minimization principle do not 
follow and that the account does not reduce to absurdity because animals 
expect change and exploration and therefore do not seek out monot-
onous environments. The response given by Clark does not " t what is 
known about evolution and biology because it is suggested by evolution-
ary models of cognition that animals seek reward and Clark’s account 
neglects any discussion on reward and motivation. Reward-seeking is a 
fundamental property of behaviour and have been recognized as such 
by many models of cognition.77,78 Importantly, reward values are not 
merely attached to the outcomes of actions but are predictions that are 
updated by making use of experience.79 By introducing the notion of 
value to Clark’s predictive processing account, I do not refute his account 

73  Sterelny, 2003, 79.

74  Huebner, 2012.

75  Friston et al., 2012, 5.

76  Sterelny, 2003, 81.

77  Barron, Søvik and Cornish, 2010.

78  Notably, Sherrington, 1906; Tinbergen, 1951; and Lorenz, 1965; and more recently 
Arias-Carrión, Ó., & Pöppel, E., 2007; Dickinson, A. & Balleine, B., 2002; Glimcher, P. W., 
& Sparks, D. L., 1992; and Glimcher, P. W., Dorris, M. C., & Bayer, H. M., 2005.

79  Spurrett, 2012.
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but off er an improvement of the account because if Clark’s account had 

taken into consideration the problem of action selection, and the role of 

value in action selection, the account would not run into the dark room 

problem.

Neuroeconomics is aimed at providing models of decision making by 

relating economics, psychology and neuroscience.80 The goal of neuro-

economics (according to some) is to ground economic theory in neuro-

science; this can be achieved through studying the economic theoretical 

framework and conducting experiments in neuroscience. Finding neu-

roscienti" c evidence that can describe choice behaviour will also enable 
us to make predictions about behaviour and decision making. Many tra-
ditional models used to describe action and behaviour are rooted in the 
classical view that behaviour is a re# ex or response to the environment. 
This view has been supported, and studied, by many scholars, partic-
ularly behaviourists, such as Skinner and Pavlov. The starting point of 
developing the theory of decision making, proposed in this dissertation, 
is the notion that behaviour is not merely a re# ex or response to the 
environment but that behaviour is a result of taking into consideration 
the expected outcome of the selected action or choice and then selecting 
the action with the highest expected reward. Experiments by Glimcher & 
Sparks (1992), Schall & Hanes (1993), Basso & Wurtz (1997) and Platt & 
Glimcher (1999) are some of the many experiments that show that the 
processes that connect sensory and motor systems involve processes 
other than classical re# ex mechanisms. What Glimcher off ers is a solu-
tion to the action selection problem that also provides an account of the 
neural architecture and mechanisms involved in action selection and 
decision making. The approach proposed by Platt & Glimcher (1999) has 
two classes of input: current sensory data and stored representations.81 
From this follows that, decision making, according Glimcher’s approach, 
involves a combination of current sensory data and the agent’s best 
estimate of the outcome of an action. This view diff ers from Clark’s in 
that the estimates of the outcome of an action are combined with a loss 

80  Glimcher, 2011, 35.

81  Platt & Glimcher, 1999, 233.
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function that speci! es the value of all possible losses or gains;82 these 

are represented in the brain and in" uence decision making.

Glimcher supports the view that animals act to maximize a utility func-
tion and goes on to say that utility has a neural correlate, which he calls 
subjective utility.83 Subjective utility is represented in the brain and an 
important element in action selection. The view that the value of an 
outcome is represented in the brain has been supported and tested by 
many scholars; of particular interest are the experiments done by Platt & 
Glimcher (1999), Kable & Glimcher (2007), Schultz (1998), and McClure et 

al. (2004). The scope of this paper does not allow for discussion of all the 
mentioned experiments but Schultz’s experiment in the late nineties is 
of particular interest. Jacques Mirenowicz and Wolfram Schultz developed 
an experiment to study the activity of single dopamine neurons. The 
experiment involved monkeys participating in a Pavlovian conditioning 
task.84 The purpose of the experiment was to explore the relation be-
tween dopamine neurons, reward and reward prediction. Dopaminergic 
neurons in certain brain areas, such as the ventral tegmental area, have 
a ! ring pro! le that corresponds to reward prediction error.85 In Mireno-
wicz and Schultz’s experiment, thirsty monkeys were placed in front of 
a spout. At random intervals, a tone was produced; the tone functioned 
as a conditioned stimulus (CS). After a short delay, a drop of juice was 
dripped from the spout; this was the reward (R). The objective of the 
experiment was to study the relationship between spikes in ! ring rates 
of dopamine neurons during the presence of the conditioned stimulus 
and during the delivery of reward. Dopamine neurons in monkeys have a 
baseline ! ring rate of three to ! ve spikes per second. Initially, the ! ring 
rate of dopamine neurons remained constant when the tone (CS) was 
produced and increased when the juice (R) was dripped from the spout.86

After a few trials, the frequency of dopamine neuron activation in-
creased at the time the tone was presented (CS) and returned to baseline 

82  Platt & Glimcher, 1999, 233.

83  Glimcher, 2011, 136.

84  Ibid., 301.

85  Shea, 2012, 6.

86  Glimcher, 2011, 301.
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when the juice (R) was delivered. This indicates that the ! ring rates of 
dopamine neurons decreases in response to the reward and increased 
in response to the conditioned stimulus. If the juice (R) was delivered 
without the experimenter producing a tone (CS), the dopamine neurons 
responded to the reward which indicated that the reward had not lost 
its ability to activate dopamine neurons. In the ! nal experiment, the 
tone (CS) was produced but the juice (R) was not delivered. The ! nding 
was that dopamine neuron activationdropped below baseline at the time 
of expected reward in the trials when the tone was produced but the 
juice was not delivered.87 The experiments conducted by Mirenowicz 
and Schultz illustrate that reward predictability plays an important role 
in dopamine neuron activation. If the reward is predicted by the pres-
ence of a conditioned stimulus, dopamine neurons have a higher ! ring 
rate at the time of conditioned stimulus presentation than at the time of 
reward presentation. If the reward is not predicted, dopamine activation 
occurs at the time the reward is presented. Dopamine neurons report 
“…rewards according to the diff erence between the occurrence and the 

prediction of reward…”.88

Predicted rewards can be innate or learned. We learn to associate cer-

tain rewards with stimuli when the system reduces reward prediction 

error. Reward prediction error occurs when the reward is not fully pre-

dicted by the conditioned stimulus.89 The process can be described as 

follows: the system processes an event, predictions are generated, and 

the diff erence between the prediction and actual event is computed.90 

The system makes use of prediction errors to optimize performance 

and predictions. This illustrates that the process of updating reward 

predictions is the same process as updating prediction error in Clark’s 

predictive processing account. There is strong evidence that reward pre-

diction error plays a role in learning and guides decision making in many 

87  Glimcher, 2011, 302.

88  Schultz, 1998, 7.

89  Ibid. ,11.

90  Ibid., 12.
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species.91 From this follows the inference that evolution has set up living 
systems to maximize the delivery of reward to the agent.92

8. Conclusion

The action selection problem asks the question, how does an agent 
select a particular action at a particular time? In this paper, I proposed 
that the action selection problem can be approached in two ways. The 
! rst approach asks the question, why are actions selected? The second 
asks, how are actions selected and involves discussion of the architec-
ture, mechanisms and processes involved in cognition. In response to the 
second approach, I proposed Clark’s action oriented predictive process-
ing account - a novel approach to the predictive processing account. The 
predictive processing account proposes that the brain is bidirectional and 
hierarchical in nature and that the brain performs Bayesian inference to 
select predictions of the causes of stimuli. The account also makes and 
important claim about the function of the brain. It proposes that the main 
function of the brain is to reduce prediction error. Prediction error is the 
discrepancy that arises as a result of the interaction between top-down 
and bottom-up information. One way in which prediction error can be 
reduced is by seeking out a surprise-free environment and staying there. 
This solution is biologically absurd because animals that do not explore 
the environment will perish.

Clark’s general account of cognition lacks an account that explains 
how animals discriminate between strategies of action and how certain 
actions can be better or worse. It also lacks discussion on the motivations 
that prompt behaviour and does not off er an account of how the values 

of actions are represented. This is not to say that it is always necessary 

for the value of an outcome to be represented; motivation can be based 

on various internal drives and sensations.93 This means, for example, 

that water will have a higher value to a thirsty animal than to a satiat-

ed animal. Animals with robust and # exible cognitive mechanisms are 

91  Shea, 2012, 17.

92  Ibid., 20.

93  Sterelny, 2003, 79.
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able to update their goals according to the value of a reward.94 Animals 
with simple response systems may act only on sensations and internal 
drives.95 The predictive processing account is largely correct about the 
mechanisms involved in perception and action but the account requires 
a theory of value because learning, motivation and decision making are 
all processes that require valuation96 and are important elements in the 
story of cognition. This means that although selecting the action that 
minimizes prediction error may ful! ll an agent’s expectations, adaptive 
! tness is dependent on more than just minimization of prediction error. 
A living organism increases the probability of adaptive ! tness through 
generating effi  cient responses to the environment; this requires taking 

into account the value of the outcome of an action and the cost of acting 

to attain the outcome.97 Evolutionary accounts of action provide insight 

into how cognition has evolved to enable animals to select actions that 

are effi  cient by taking into account the value of the outcome of an ac-

tion and the cost of acting to attain the outcome. Though this insight is 

valuable, also required is an account of the mechanisms and architecture 

involved in the process of complex cognition because the action selection 

problem constitutes the effi  ciency problem and the architecture problem.

The response given by Clark does not ! t what is known about evolution 

and biology because it is suggested by evolutionary models of cognition 

that animals seek reward and Clark’s account neglects any discussion 

on reward and motivation. Reward-seeking is a fundamental property 

of behaviour and have been recognized as such by many models of 

cognition.98 Importantly, reward values are not merely attached to the 

outcomes of actions but are predictions that are updated by making use 

of experience.99 

By introducing the notion of value to Clark’s predictive processing 

account, I do not refute his account but off er an improvement of the 

94  Huebner, 2012.

95  Sterelny, 2003, 79.

96  Huebner, 2012.

97  Ibid.

98  Barron, Søvik and Cornish, 2010.

99  Spurrett, 2012.
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account because if Clark’s account had taken into consideration the 
problem of action selection, and the role of value in action selection, the 
account would not run into the dark room problem. Finally, I proposed 
a neuroeconomic account of value and illustrated the compatibility of 
the model by making use of Schultz’s experiment providing strong ev-
idence that reward prediction error plays a role in learning and guides 
decision-making in many species.100 
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