STUDY OF RADIAL VIBRATIONS IN AN INFINITELY LONG FLUID-FILLED TRANSVERSELY ISOTROPIC THICK-WALLED HOLLOW COMPOSITE POROELASTIC CYLINDERS

SANDHYARANI BANDARI1*, ANAND RAO JAKKULA1, MALLA REDDY PERATI2

1Department of Mathematics, Osmania University, Hyderabad 500007, India
2Department of Mathematics, Kakatiya University, Warangal 506009, India

[Received 28 November 2017. Accepted 08 October 2018]

ABSTRACT: In this paper, radial vibrations of an infinitely long fluid-filled transversely isotropic thick-walled hollow composite poroelastic cylinder are investigated in the framework of poroelasticity. The cylinder consists of two concentric cylindrical layers namely, core (inner one) and coating (outer one), each of which retains its own distinctive properties. A comparative study has been made between the thick-walled hollow composite poroelastic cylinder and that of fluid-filled one. Frequency is computed against the ratio between the thickness to inner radius of the composite cylinder at various anisotropic ratios. Another comparative study is made between the results of current case and that of isotropic case by making Young’s modulus and Poisson ratio values of isotropic and that of transversely isotropic in the transverse direction equal. Numerical results are depicted graphically and then discussed.

KEY WORDS: poroelasticity, radial vibrations, composite poroelastic cylinder, fluid, anisotropic ratios, frequency, ratio of radii.

LIST OF SYMBOLS

\[(r, \theta, z) \quad \text{cylindrical coordinate system} \]
\[\bar{u}(u_r, 0, 0) \quad \text{solid displacement component} \]
\[\bar{U}(U_r, 0, 0) \quad \text{fluid displacement component} \]
\[\alpha \quad \text{Biot’s effective stress coefficient} \]
\[M_{ij} \quad \text{components of the drained elastic modulus} \]
\[E, E' \quad \text{drained Young’s modulus in the isotropic plane} \]
\[\nu \quad \text{drained Poisson’s ratio in the isotropic plane} \]
\[\sigma_{rr} \quad \text{normal stress components} \]
\[M \quad \text{Biot’s modulus} \]
\[p \quad \text{pore pressure} \]
\[b \quad \text{dissipative coefficient} \]
\[e \quad \text{solid dilatation} \]
\[\varepsilon \quad \text{fluid dilatation} \]
\[\omega \quad \text{frequency} \]
\[\nabla^2 \quad \text{Laplacian operator} \]
\[\rho_{ij} \quad \text{mass coefficients} \]
\[\rho_f \quad \text{density of the fluid} \]
\[r_1 \quad \text{inner radius} \]
\[a \quad \text{interface radius} \]

*Corresponding author e-mail: sandhyarani.bandari@gmail.com
1. INTRODUCTION

In the last few decades, deformation problems and fluid flow in porous media has been of great importance due its applications in the diversified areas. The mathematical model of poroelasticity is very useful in describing the interaction between fluid motion and deformation in the porous solid. Linear isotropic poroelasticity theory was developed by Biot [1]. Employing Biot’s theory of wave propagation in fluid saturated poroelastic solids, radial vibrations of a thick-walled hollow isotropic poroelastic cylinders are investigated [2]. The frequency equations of these vibrations for a permeable and an impermeable surface are derived. Reddy and Tajud-din [3] studied plane strain vibrations of thick-walled hollow poroelastic cylinders and derived extreme limiting cases of plate and solid cylinder. A study of torsional vibrations of an finite poroelastic composite circular solid cylinder made of two different materials is made [4]. In absence of dissipation, analysis of flexural wave propagation in composite poroelastic solid cylinders that are bonded end to end is presented in the paper [5]. In this study [5], it is seen that the nature of surface does not have influence over shear vibrations unlike in the case of extensional vibrations. Radial vibrations of infinitely long poroelastic isotropic composite hollow circular cylinders are studied by Shanker et al. [6]. Authors of this paper derived frequency equations for radial vibrations of poroelastic composite hollow cylinder with rigid core, poroelastic composite solid cylinder, poroelastic composite solid cylinder with rigid casing and of rigid core. Axially symmetric waves in cylindrical bone filled with marrow is investigated under the assumption that bone exhibits isotropic poroelastic behavior [7]. Vibrations in a fluid-loaded poroelastic cylinder surrounded by a fluid are investigated employing Biot’s theory of wave propagation in poroelastic media under plane-strain condition [8]. From the paper [8], it is observed that the shear and dilatational vibrations of the fluid-loaded poroelastic hollow cylinder surrounded by a fluid are uncoupled in the case of axially symmetric vibrations. Analysis of radial vibrations of poroelastic isotropic circular cylindrical shells of infinite extent immersed in an acoustic medium is investigated [9]. In [10], authors investigated axially symmetric vibrations of fluid-filled and empty isotropic poroelastic circular cylindrical shells of infinite extent for different wall-thickness. The analytical solu-
Study of Radial Vibrations in an Infinitely Long Fluid-Filled Transversely ...
isotropic plane \((\rho)\) respectively; \(\rho\) are mass coefficients, \(\alpha\) is Biot’s effective stress coefficients in the isotropic plane \((r=\theta)\) plane, which can be expressed in terms of elastic moduli \(M_{ij}\) and the bulk modulus of solid constituents \((K_s)\). The components of elastic modulus \(M_{ij}\), Biot’s effective stress coefficient \((\alpha)\), Biot’s modulus \((M)\) and the bulk modulus of solid constituents \((K_s)\) can be determined from the following relations \([13]\):

\[
M_{11} = \frac{E(E' - E\nu^2)}{(1 + \nu)(E' - E'\nu - 2E\nu^2)}, \quad M_{12} = \frac{E(E' + E\nu^2)}{(1 + \nu)(E' - E'\nu - 2E\nu^2)},
\]

\[
M_{13} = \frac{E'\nu'}{E' - E'\nu - 2E\nu^2}, \quad K_s = \frac{B(1 + \nu_u)E}{3B(1 - 2\nu)(1 + \nu_u) - 9(\nu_u - \nu)}, \quad \alpha = 1 - \frac{M_{11} + M_{12} + M_{13}}{3K_s}, \quad M = \frac{B^2(1 - 2\nu)(1 + \nu_u)^2E}{9(1 - 2\nu_u)(1 + \nu)(\nu_u - \nu)}.
\]

Here \(E\) and \(\nu\) are drained Young’s modulus and Poisson ratio in the isotropic plane, \(E'\) and \(\nu'\) are similar quantities as that of \(E\) and \(\nu\) pertaining to the transverse direction of the axis of symmetry. For given anisotropic ratios \(N_E = E'/E, N_\nu = \nu'/\nu\) \([13]\), \(E'\) and \(\nu'\) can be determined. Different \(N_E\) and \(N_\nu\) ratios define different degrees of anisotropy. If the substitutions \(E = E', \nu = \nu' (N_E = N_\nu = 1)\) are made, then Eq. \((1)\) will be reduced to Biot’s equations of motion for isotropic solids which are used by many researchers in this domain \([2, 6, 9]\). The solid displacement \(u_r\) and the fluid displacement \(U_r\) in the radial direction are assumed as follows:

\[
\begin{align*}
\dot{u}_r(r, t) &= jf(r)e^{i\omega t}, & jU_r(r, t) = jF(r)e^{i\omega t}, & j = 1, 2.
\end{align*}
\]

In Eq. \((2)\), the prefixes \(j = 1, 2\) are used to denote two layers of composite cylinder. The quantities with prefix 1 refer to the core while 2 refers to the coating, \(\omega\) is the frequency of wave, \(i\) is the complex unity and \(t\) is time. Substituting Eq. \((2)\) in Eqs. \((1)\), then Eqs. \((1)\) become

\[
\begin{align*}
(jM_{11} + jM_{21}\alpha^2)\Delta_j f - j\alpha_j M\Delta_j F &= -\omega^2(jK_{11}jF + jK_{12}jF), \\
-j\alpha_j M\Delta_j f + jM\Delta_j F &= -\omega^2(jK_{12}jF + jK_{22}jF),
\end{align*}
\]

where,

\[
\begin{align*}
\Delta &= \frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{1}{r^2}, \\
jK_{11} &= j\rho_{11} - \frac{ib}{\omega}, & jK_{12} &= j\rho_{12} + \frac{ib}{\omega}, & jK_{22} &= j\rho_{22} - \frac{ib}{\omega}.
\end{align*}
\]
Solving the above equations, we obtain

\[jF = \frac{-jM_j M_{11}}{\omega^2 (jM_j K_{12} - j\alpha_j M_j K_{22})} \Delta_j f - \left(\frac{jM_j K_{11} + j\alpha_j M_j K_{12}}{jM_j K_{12} + j\alpha_j M_j K_{22}} \right) jf. \]

Substitution of \(jF \) into Eq. (3), gives

\[\Delta^2_j f + \omega^2 \left(\frac{jM_{11} + jM_j \alpha^2}{jM_j M_{11}} \right) \Delta_j f \]

\[+ \omega^2 \left(\frac{jK_{11} K_{22} - jK_{12}^2}{jM_j M_{11}} \right) jf = 0, \]

Equation (4) can also be written as

\[\Delta^2_j f + (j\zeta_1^2 + j\zeta_2^2) \Delta_j f + (j\zeta_1 \zeta_2) jf = 0. \]

Equation (5) can also be written as

\[(\Delta + j\zeta_1^2) jf = 0, \quad (\Delta + j\zeta_2^2) jf = 0. \]

Solving Eq. (6), we obtain \(jf \) for \(j\zeta_1 \) and \(j\zeta_2 \). Similarly we can obtain \(jF \). Substituting these in Eq. (2), we obtain the displacement components as follows:

\[ju_r(r, t) = (c_1 j D_{11}(r) + c_2 j D_{12}(r) + c_3 j D_{13}(r) + c_4 j D_{14}(r)) e^{i\omega t}, \]

\[jU_r(r, t) = -(c_1 \delta_1^2 j D_{11}(r) + c_2 \delta_1^2 j D_{12}(r) + c_3 \delta_2^2 j D_{13}(r) + c_4 \delta_2^2 j D_{14}(r)) e^{i\omega t}, \]

where \(c_1, c_2, c_3 \) and \(c_4 \) are arbitrary constants,

\[jD_{11}(r) = J_1(j\xi_1 r), \quad jD_{12}(r) = Y_1(j\xi_1 r), \]

\[jD_{13}(r) = J_1(j\xi_2 r), \quad jD_{14}(r) = Y_1(j\xi_2 r), \]

\(J_n \) and \(Y_n \) are Bessel functions of first and second kind of order \(n \), respectively, and \(\delta_1, \delta_2 (l = 1, 2) \) are

\[j\delta_1^2 = \left((jM_j K_{11} + j\alpha_j M_j K_{12}) - \frac{j\xi_1^2}{\omega^2 (jM_j M_{11})} \right) (jM_j K_{12} + j\alpha_j M_j K_{22})^{-1}, \]

\[j\xi_1 = \frac{(jL_1 + jL_2)^{1/2}}{jL_3}, \quad j\xi_2 = \frac{(jL_1 - jL_2)^{1/2}}{jL_3}, \]

\[jL_1 = \omega^2 ((jM_{11} + x_j M_j \alpha^2) j K_{22} + jM_j K_{11} + 2j\alpha_j M_j K_{12}), \]

\[jL_2 = (\omega^4 ((jM_{11} + jM_j \alpha^2) j K_{22} + jM_j K_{11} + 2j\alpha_j M_j K_{12}) \]

\[- 4\omega^2 jM_j M_{11} ((jK_{11} j K_{22} - jK_{12}^2))^{1/2}, \]

\[jL_3 = (2jM_j M_{11})^{1/2}, \quad \text{for } j = 1, 2. \]
From the stress-displacement relations [13] and the displacement functions in Eq. (7), the following stresses are obtained:

\[j(\sigma_{rr} + s) = (j c_{11} A_{11}(r) + j c_{12} A_{12}(r) + j c_{13} A_{13}(r) + j c_{14} A_{14}(r)) e^{i\omega t}, \]

\[j s = (j c_{21} A_{21}(r) + j c_{22} A_{22}(r) + j c_{23} A_{23}(r) + j c_{24} A_{24}(r)) e^{i\omega t}, \quad \text{for } j = 1, 2. \]

Where,

\[j A_{11}(r) = \frac{-2}{r} (j M_j \delta_1^2 (1 - j \alpha) - \frac{1}{2} (j M_{11} + j M_{12} + 2 j M_j (j \alpha - 1))) J_1(j \xi_1 r) \]

\[+ (j M_j \delta_1^2 (j \alpha - 1) - (j M_{11} + j M_j (j \alpha - 1))) J_2(j \xi_1 r) \]

\[j A_{21}(r) = \frac{-2}{r} (j M_j \delta_1^2 + j M_j M_j) J_1(j \xi_1 r) + (j M_j \delta_1^2 + j M_j M_j) J_2(j \xi_1 r), \]

\[j A_{12}(r), j A_{22}(r) \] are similar expressions as \(j A_{11}(r), j A_{21}(r) \) with \(J_1, J_2 \) replaced by \(Y_1, Y_2 \), respectively. \(j A_{13}(r), j A_{23}(r) \) are similar expressions as \(j A_{11}(r), j A_{21}(r) \) with \(j \xi_1, j \delta_1 \) replaced by \(j \xi_2, j \delta_2 \), respectively. \(j A_{14}(r), j A_{24}(r) \) are similar expressions as \(j A_{11}(r), j A_{21}(r) \) with \(J_1, J_2, j \xi_1, j \delta_1 \) replaced by \(Y_1, Y_2, j \xi_2, j \delta_2 \), respectively.

With regard to the boundary conditions, the inner and outer surface of the composite hollow cylinder are stress free and there is a perfect bonding at the interface. Moreover, pores at the interface assumed to be sealed. These conditions can be expressed mathematically as follows:

\[1 (\sigma_{rr} + s) = 0, \quad 1 s = 0 \quad \text{at } r = r_1, \]

\[2 (\sigma_{rr} + s) - 2 (\sigma_{rr} + s) = 0, \quad 1 s = 2 s = 0, \quad 1 u_2 - 2 u_2 = 0 \quad \text{at } r = a, \]

\[2 (\sigma_{rr} + s) = 0, \quad 2 s = 0 \quad \text{at } r = r_2. \]

From the first and third set of conditions, it is clear that the inner surface \(r = r_1 \) and outer surface \(r = r_2 \) are traction free. From the second set of conditions, it is clear that the effective stress and displacement of inner solid are intact with that of outer solid at the interface. Also, pores are assumed to be sealed. That is, there is no flow across the interface \(r = a \). Equations (7), (9) and (11) gives a homogeneous system of eight equations in eight constants \(j c_1, j c_2, j c_3 \) and \(j c_4 \) \((j = 1, 2) \). A non-zero solution exists if the determinant of the coefficient matrix vanishes, which leads to the following frequency equation:

\[|p_{mn}(r)| = 0, \quad (m, n = 1, 2, 3, \ldots, 8), \]

where
where the elements \(jA_{1l}, jA_{2l}, jD_{1l} \) \((j = 1, 2, l = 1, 2, 3, 4)\) are defined in Eqs. (10) and (8).

3. **THICK-WALLED HOLLOW COMPOSITE POROElastic CYLINDER FILLED WITH FLUID**

In this section, thick-walled hollow composite cylinder is filled with fluid is considered. The example for this model is bone filled with marrow. First, the behaviour of waves in fluid is studied independently from the solid cylinder. The equation of motion of the fluid in the inner cylinder for the case of radial vibrations are [16]

\[
\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} = \frac{1}{c_f^2} \frac{\partial^2 \phi}{\partial t^2}.
\]

In Eq. (13), \(c_f \) is the velocity of the sound in fluid, \(\phi \) is the displacement potential function and satisfies \(\phi = J_0(r\omega/c_f)e^{i\omega t} \). The fluid pressure \(p_f \) and the radial displacement \(D_r \) of the fluid are [16]

\[
p_f = -\rho_f \frac{\partial^2 \phi}{\partial t^2} = -\rho_f \omega^2 J_0(\frac{r\omega}{c_f})e^{i\omega t},
\]

\[
D_r = \frac{\partial \phi}{\partial r} = \frac{\omega}{c_f} J_1(\frac{r\omega}{c_f})e^{i\omega t}.
\]

In Eq. (14), \(\rho_f \) is mass density of the fluid, \(J_0(x) \) and \(J_1(x) \) are the Bessel function of first kind of order 0 and 1, respectively. The boundary conditions for fluid-filled composite poroelastic cylinder are considered as follows:

\[
\begin{align*}
\frac{1}{u_r} (\sigma_{rr} + s) & = \frac{-p_f}{D_r} = 0, \quad 1s = 0 \quad \text{at} \quad r = r_1, \\
1(\sigma_{rr} + s) - 2(\sigma_{rr} + s) & = 0, \quad 1s = 2s = 0, \quad 1u_r - 2u_r = 0 \quad \text{at} \quad r = a, \\
2(\sigma_{rr} + s) & = 0, \quad 2s = 0 \quad \text{at} \quad r = r_2.
\end{align*}
\]
From the first set of conditions, it is clear that the effective stress and displacement of solid are intact with that of fluid at inner surface \(r = r_1 \). From the second set of conditions, it is clear that the effective stress and displacement of inner solid are intact with that of outer solid at the interface. Also, pores are assumed to be sealed. Then, there is no flow across the interface \(r = a \). From the third set of conditions, it is clear that the outer surface \(r = r_2 \) is traction free. Equations (7), (9), (14) and (15) result in a homogeneous system of eight equations in eight constants \(jC_1, jC_2, jC_3 \) and \(jC_4 \) (\(j = 1, 2 \)). For a non-trivial solution, the determinant of the coefficient matrix must be vanished. Accordingly, the frequency equation is obtained and which is given below

\[
|q_{mn}(r)| = 0, \quad (m, n = 1, 2, 3, \ldots, 8),
\]

where

\[
|q_{mn}(r)| = \begin{vmatrix}
A_{11}'(r_1) & A_{12}'(r_1) & A_{13}'(r_1) & A_{14}'(r_1) & 0 & 0 & 0 & 0 \\
A_{21}(r_1) & A_{22}(r_1) & A_{23}(r_1) & A_{24}(r_1) & 0 & 0 & 0 & 0 \\
A_{11}(a) & A_{12}(a) & A_{13}(a) & A_{14}(a) & -2A_{11}(a) & -2A_{12}(a) & -2A_{13}(a) & -2A_{14}(a) \\
A_{21}(a) & A_{22}(a) & A_{23}(a) & A_{24}(a) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2A_{21}(a) & 2A_{22}(a) & 2A_{23}(a) & 2A_{24}(a) \\
0 & 0 & 0 & 0 & 2A_{11}(r_2) & 2A_{12}(r_2) & 2A_{13}(r_2) & 2A_{14}(r_2) \\
0 & 0 & 0 & 0 & 2A_{21}(r_2) & 2A_{22}(r_2) & 2A_{23}(r_2) & 2A_{24}(r_2)
\end{vmatrix},
\]

(16)

\[
\begin{align*}
A_{11}'(r) &= -A_{11}(r)\omega/c_f J_1(\omega/c_f) + \rho f \omega^2 J_0(\omega/c_f) J_1(\xi r), \\
A_{12}'(r) &= -A_{12}(r)\omega/c_f J_1(\omega/c_f) + \rho f \omega^2 J_0(\omega/c_f) Y_1(\xi r), \\
A_{13}'(r) &= -A_{13}(r)\omega/c_f J_1(\omega/c_f) + \rho f \omega^2 J_0(\omega/c_f) J_1(\xi_2 r), \\
A_{14}'(r) &= -A_{14}(r)\omega/c_f J_1(\omega/c_f) + \rho f \omega^2 J_0(\omega/c_f) Y_1(\xi_2 r),
\end{align*}
\]

(17)

and the elements \(jA_{1l}, jA_{2l}, jD_{1l} \) (\(j = 1, 2, l = 1, 2, 3, 4 \)) are defined in Eqs. (10) and (8).

4. Particular Cases

4.1. Transversely Isotropic Thick-Walled Hollow Poroelastic Cylinder Filled With Fluid

When the material constants of both coating and core are equal, the composite poroelastic cylinder results in a thick walled hollow poroelastic cylinder with thickness \(h (= r_2 - r_1) \). Then the frequency equation Eq. (16) reduces to

\[
|E_{mn}(r)| = 0, \quad m, n = 1, 2, 3, 4,
\]

(18)
where
\[
|E_{mn}| = \begin{vmatrix}
1A_{11}'(r_1) & 1A_{12}'(r_1) & 1A_{13}'(r_1) & 1A_{14}'(r_1) \\
1A_{21}(r_1) & 1A_{22}(r_1) & 1A_{23}(r_1) & 1A_{24}(r_1) \\
1A_{11}(r_2) & 1A_{12}(r_2) & 1A_{13}(r_2) & 1A_{14}(r_2) \\
1A_{21}(r_2) & 1A_{22}(r_2) & 1A_{23}(r_2) & 1A_{24}(r_2)
\end{vmatrix}
\]
and the elements \(1A_{il}', 1A_{il}, 1A_{2l} \) \((l = 1, 2, 3, 4)\) are defined in Eq. (10) and (17). This case is discussed in the paper [14].

4.2. Thick-walled hollow composite isotropic poroelastic cylinder filled with fluid

If the substitutions \(E = E', \nu = \nu'\) are made in Eq. (16), then transversely isotropic thick-walled hollow composite cylinder filled with fluid reduces to isotropic thick-walled hollow composite cylinder filled with fluid. In this case, the frequency equation is

\[
|F_{mn}(r)| = 0, \quad m, n = 1, 2, 3, 4, \ldots, 8,
\]
where the elements \(F_{mn}\) are similar to the elements \(q_{mn}\) in Eqs. (16) and (17) with \(E = E', \nu = \nu'\).

4.3. Thick-walled hollow isotropic cylinder filled with fluid

Apart from the above substitutions in Section 4.2., if the material constants of both coating and core are equal then the case of isotropic thick-walled hollow poroelastic cylinder filled with fluid is obtained [9].

4.4. Isotropic thick-walled hollow composite empty cylinder

Apart from the above substitutions in Section 4.2., if \(p_f = 0\) then the case of isotropic thick-walled hollow composite cylinder is obtained [6].

5. Numerical Results

All the frequency equations are investigated in absence of dissipation. If the dissipation coefficient \((b)\) is non-zero, then frequency equations will be complex valued and implicit. Therefore, \(b\) is made to be zero so that frequency equation will be real valued and the roots will be obtained easily that explicitly give frequency. Even if we make \(b\) zero, the problem would be poroelastic in nature as the coefficients \(M_{11}, M_{12}, M_{13}, \alpha\) and \(M\) would not vanish. In this case, mass coefficients \(K_{11}, K_{12}\) and \(K_{13}\) are real. For numerical process, two materials are considered. The composite poroelastic cylinder consists of two cylindrical layers namely core made up of Berea sandstone and the coating made up of shale rock. The material constants for Berea
sandstone and shale rock are taken from the papers [13,17]. The parameter values are computed from the available data in the literature and the values are given in Tables 1 and 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Berea sandstone</th>
<th>Shale rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>14.4 Gpa</td>
<td>1.854 Gpa</td>
</tr>
<tr>
<td>ν</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>B</td>
<td>0.62</td>
<td>0.903</td>
</tr>
<tr>
<td>ν_u</td>
<td>0.33</td>
<td>0.46</td>
</tr>
<tr>
<td>M</td>
<td>12.307 Gpa</td>
<td>8.5602 Gpa</td>
</tr>
<tr>
<td>K_s</td>
<td>37.7823 Gpa</td>
<td>44.60346 Gpa</td>
</tr>
<tr>
<td>ρ_{11}</td>
<td>2407.64 kg/m3</td>
<td>1398.72 kg/m3</td>
</tr>
<tr>
<td>ρ_{12}</td>
<td>-266 kg/m3</td>
<td>-257.28 kg/m3</td>
</tr>
<tr>
<td>ρ_{22}</td>
<td>456 kg/m3</td>
<td>771.84 kg/m3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Water</th>
<th>Kerosene</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_f</td>
<td>1.432×10^3 m/s</td>
<td>1.432×10^3 m/s</td>
</tr>
<tr>
<td>ρ_f</td>
<td>1000 kg/m3</td>
<td>820.1 kg/m3</td>
</tr>
</tbody>
</table>

Employing these values in Eqs. (12), (16), (18) and (19), implicit relation between frequency (ω), ratio of thickness to inner radius (h/r_1) and anisotropic ratios ($N_E = E'/E$, $N_\nu = \nu'/\nu$) is obtained. The frequency is computed against h/r_1 for both thick-walled hollow composite cylinder and fluid filled composite cylinder. The numerical values are presented graphically in Figs. 1–4. Variation of frequency against h/r_1 when the anisotropic ratio $N_E = 1$ at various N_ν values in the case of $g = 2$ is depicted in Fig. 1. Variation of frequency against h/r_1 when the anisotropic ratio when $N_\nu = 1$ at various N_E values in the case of $g = 2$ is depicted in Fig. 2. From Figs. 1–2, it is seen that the frequency values of the fluid-filled composite cylinder are, in general, greater than that of the thick-walled hollow composite cylinder and the values depend on the anisotropic ratios.

For the comparative study, the numerical results of current case and that of isotropic case are presented in Figs. 3 and 4. Fig. 3 depicts the variation of frequency against h/r_1 in the cases of transversely isotropic and isotropic composite cylinder when $g = 2$. For each case, two different fluids water and kerosene filled in the cylinders are considered. From this figure, it is seen that the frequency values of composite cylinder filled with water are, in general, greater than that of composite cylinder filled...
with kerosene in the case of both isotropic and transversely isotropic. Also, it is seen that frequency values of isotropic composite cylinder are, in general, greater than that of transversely isotropic composite cylinder in both the cases of water and kerosene. Fig. 4 depicts the variation of frequency against \(h/r_1 \) in the cases of transversely isotropic and isotropic cylinder for both hollow composite and fluid filled cylinders. In Fig. 4, the notations IHCC, TIHCC, IFFC, TIFFC stand for isotropic hollow composite cylinder, transversely isotropic hollow composite cylinder, isotropic fluid filled
For the comparative study, the numerical results of current case and that of isotropic case are presented in Figs. 3 and 4. Fig. 3 depicts the variation of frequency against \(\frac{1}{r h} \) in the cases of transversely isotropic and isotropic composite cylinder when \(\frac{2}{g} = \frac{2}{g} \). For each case, two different fluids water and kerosene filled in the cylinders are considered. From this figure, it is seen that the frequency values of composite cylinder filled with water are, in general, greater than that of composite cylinder filled with kerosene in the case of both isotropic and transversely isotropic. Also, it is seen that frequency values of isotropic composite cylinder are, in general, greater than that of transversely isotropic composite cylinder in both the cases of water and kerosene. Fig. 4 depicts the variation of frequency against \(\frac{1}{r h} \) in the cases of transversely isotropic and isotropic cylinder for both hollow composite and fluid filled cylinders. In Fig. 4, the notations IHCC, TIHCC, IFFC, TIFFC stand for isotropic hollow composite cylinder, transversely isotropic hollow composite cylinder, isotropic fluid filled cylinder, transversely isotropic fluid filled cylinder, respectively. From Fig. 4, it is observed that frequency values of fluid filled cylinder are greater than that of hollow composite cylinder for both the cases isotropic and transversely isotropic. Also, it is seen that frequency values of transversely isotropic cylinder are, in general, greater than that of isotropic cylinder in both the cases of hollow composite and fluid filled cylinder.

Fig. 3. Variation of frequency with ratio of thickness to inner radius of core \((h/r_1)\) in the case of fluid-filled composite cylinder.

Fig. 4. Variation of frequency with \(h/r_1\) in the cases of isotropic and transversely isotropic cylinders.

Radial vibrations in an infinitely long thick-walled hollow fluid-filled transversely isotropic composite poroelastic cylinder are studied. A comparative study has been made between the composite thick-walled hollow cylinder and the composite cylinder filled with fluid. Frequency as a function of ratio between the thickness to inner radius of the composite cylinder at various anisotropic ratios is obtained. The numerical results are also obtained for the pertinent isotropic case and depicted graphically for the case of comparison. From the figures, one can infer that the dispersive behaviors in thick-walled hollow cylinder and fluid filled cylinder are different in phenomenon. Also, it is seen that the anisotropic ratio effects frequency values in all the cases.

ACKNOWLEDGEMENTS
6. CONCLUSION
Radial vibrations in an infinitely long thick-walled hollow fluid-filled transversely isotropic composite poroelastic cylinder are studied. A comparative study has been made between the composite thick-walled hollow cylinder and the composite cylinder filled with fluid. Frequency as a function of ratio between the thickness to inner radius of the composite cylinder at various anisotropic ratios is obtained. The numerical results are also obtained for the pertinent isotropic case and depicted graphically for the case of comparison. From the figures, one can infer that the dispersive behaviors in thick-walled hollow cylinder and fluid filled cylinder are different in phenomenon. Also, it is seen that the anisotropic ratio effects frequency values in all the cases.

ACKNOWLEDGEMENTS
One of the authors (Sandhyarani Bandari) acknowledges the University Grants Commission (UGC), Government of India for their financial support through Dr. D. S. Kothari Postdoctoral Fellowship with the Grant No. F. 4-2/2006 (BSR)/MA/15-16/0025.

REFERENCES

