FAILURE MECHANISMS OF BRITTLE ROCKS UNDER UNIAXIAL COMPRESSION

TAOYING LIU¹.²*, PING CAO¹

¹School of Resources & Safety Engineering, Central South University, Changsha, Hunan, 410083, China
²Ma’anshan Institute of Mining Research, Ma’anshan, Anhui, 243004, China

[Received 09 August 2016. Accepted 26 June 2017]

ABSTRACT: The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

KEY WORDS: Brittle rocks, crack coalescence mechanism, wing crack, rock fracture mechanics, uniaxial compression.

LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>uniaxial compression (MPa);</td>
</tr>
<tr>
<td>ψ</td>
<td>angle between σ and the crack face;</td>
</tr>
<tr>
<td>θ</td>
<td>cracking angle of wing crack;</td>
</tr>
<tr>
<td>β</td>
<td>inclination angle of main crack;</td>
</tr>
<tr>
<td>ρ</td>
<td>inclination angle of rock bridge;</td>
</tr>
<tr>
<td>σₙₑ, τₑₑ</td>
<td>normal and shear stress on crack plane (MPa);</td>
</tr>
<tr>
<td>K_I</td>
<td>mode I stress intensity factor (MPa m¹/²);</td>
</tr>
<tr>
<td>K_II</td>
<td>mode II stress intensity factor (MPa m¹/²);</td>
</tr>
<tr>
<td>K_IC</td>
<td>mode I fracture toughness (MPa m¹/²);</td>
</tr>
<tr>
<td>l</td>
<td>extension of wing crack (m);</td>
</tr>
<tr>
<td>L</td>
<td>equivalent crack length (L = l/a);</td>
</tr>
<tr>
<td>l_{ty}</td>
<td>influence coefficient;</td>
</tr>
</tbody>
</table>

*Corresponding author e-mail: liutaoying_csu@163.com
1. INTRODUCTION

Rock material is typically inhomogeneous, containing defects such as joints, faults and micro cracks or other defects. The existence of discontinuities in the rock usually has two effects (Bobet 1997 [4]; Dyskin et al 2003 [7]; Park and Bobet 2010 [14]): (1) they decrease the strength and stiffness of the rock; and (2) they are a source of initiation of new discontinuities, which in turn may propagate and link with other cracks and further decrease the strength and the stiffness of the rock, which is significant to predict unstable failure properties of jointed rock mass engineering. Meanwhile, the crack initiation from micro-cracks progressing to a completely damaged rock mass is a process of evolution and an accumulation of rock mass damage from fractures connecting existing cracks. Rock bridge fracture among multi-crack is one of the important reasons for rock mass failure. If the crack distribution near a rock bridge is known, it is the prerequisite to predict or refrain the failure of this kind of rock mass that the patterns, mechanism of failure and loading conditions are foreknown.

The extension of cracks depends on the properties of cracks such as size, location, orientation and loading condition, a thorough understanding of the cracking processes, emanating from exiting flaws, will benefit geological engineering design and implementation, including rock slope or foundation stability analysis, tunnel design, and fluid flow prediction in rock masses. Due to the difficulties of using authentic rock materials in-situ tests, the laboratory loading test of rock-like materials was an effective research method and used widely. A vast number of scholars have made great effort to developing crack propagation theories (Kemeny and Cook 1987 [10]; Lajtai 1998 [12]; Hoekand Martin 2014 [8]; Cao et al 2015 [5]) or developing techniques to study coalescence process of cracks, existed in a rock mass under external loads (Tang and Kou 1998 [17]; Wong and Einstein 2009 [19]; Zhang and Wong 2013 [22]), or studying the relationship between micro damage development and macro deformation of rock under uniaxial compression (Kemeny 1991 [11]; Zhou and Zhang 2008 [24]; Yang et al 2012 [21]). Especially with the use of the high speed video technology, scanning electron microscopy (SEM) and computed tomography (CT) scan technique, the progressive failure mechanisms have been observed in detail. Similarly, various numerical studies using different techniques have been successfully used in modelling such progressive failure mechanism. Significant advances have been made in understanding the failure process of brittle rock. It is currently recognized that damage initiates primarily in the form of extensile micro-cracks, that originate from local stress concentrations. The mechanism of frictional sliding on pre-existing cracks is generally recognized as the primary stress concentrator, that produces wing crack growth under the compressive stress field. Meanwhile, by introducing rock fracture mechanics, it is possible to provide a fundamental basis in researching crack propagation and coalescence mechanism.
In this paper, the compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was performed on the servo control uniaxial loading tester. The influences of the geometry of pre-existing cracks on the failure processes were analyzed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws in rock specimens in compression. Based on previous studies and the rock fracture mechanics criterion, this paper proposes mechanical models of the failure rock mass. Then combined with the stress-strain curves, the gradual fracture and damage evolution of the rock mass was studied on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. This paper is an attempt at studying the failure model and crack coalescence mechanism of brittle rocks under uniaxial compression. The results obtained were of significance in studying the failure mechanism of fractured rock mass.

2. LABORATORY EXPERIMENT OF BRITTLE ROCK

Cement mortar specimens were used in this study, based on the similar mechanical properties with natural rock masses. The rock-like materials were composited of a mixture of water, white cement, and silica sand. The external measurement of specimens was 200 mm × 150 mm × 30 mm, and the prefabricated transfixion fissures were made by pulling out an embedded metal inserts (0.4 mm thickness) in the pre-cured period; and the length of fissures was 20 mm. The two flaws are located at the center of the specimen and the inclination measured from horizontal are separately: $\beta = 25^\circ, \beta = 45^\circ, \beta = 60^\circ, \beta = 75^\circ$, and the inclination angle of rock bridge α are separately: $\alpha = 25^\circ, \alpha = 45^\circ, \alpha = 60^\circ, \alpha = 75^\circ$, where $\alpha \geq \beta$, b is the rock bridge with a length of 40 mm, the details of specimens are shown in Fig. 1.

Fig. 1. Physical test specimen.
Table 1. Mechanical parameters of rock-like materials under uniaxial compression

<table>
<thead>
<tr>
<th>Density (g/cm³)</th>
<th>Modulus of elastic compressive strength (MPa)</th>
<th>Uniaxial compressive strength (MPa)</th>
<th>Uniaxial tensile strength (MPa)</th>
<th>Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.019</td>
<td>2.272e3</td>
<td>22.52</td>
<td>2.75</td>
<td>0.2251</td>
</tr>
</tbody>
</table>
3. **WING CRACK INITIATION AND PROPAGATION**

3.1. **CRACK INITIATION**

The underground rock usually exists in a compression stress state, and a lot of testing results and theoretical calculation prove that cracks expand approximately in the direction parallel to the maximum principal stress under the action of stress (Ashby and Hallam 1986 [1]; Cao and Pu 2012 [6]), as shown in Fig. 4.

Firstly, this paper assumes the rock mass is categorized as crisp flexible, meet
the theory of linear-elastic fracture mechanics. The fractured rock mass is under uniaxial compression σ, and the angle between the crack face and vertical stress σ is ψ. Based on the theory of materials mechanics, the normal stress σ_{ne} and the shear driving force τ_{ne} appear in following formulas (Li 1999 [13]) (Here the compressive stress is positive).

\begin{align}
\sigma_{ne} &= \sigma \sin^2 \psi \\
\tau_{ne} &= \sigma \sin \psi \cos \psi.
\end{align}

To establish the crack tip, as the origin in the polar coordinates system (r, θ), σ_θ, can be expressed as (Zheng 2000 [23]):

$$\sigma_\theta = \frac{3}{2} \frac{\tau_{eff} \sqrt{\pi a}}{\sqrt{2\pi r}} \sin \theta \cos \frac{\theta}{2}.$$

According to the maximum circumferential stress criterion, the initial crack extends along the direction of the maximum normal stress. Thus, the cracking angle $\theta = 70.5$ can be obtained from (Ashby and Sammis1990 [2]):

$$\frac{\partial \sigma_\theta}{\partial \theta} = 0.$$

Then, the stress intensity factor at the wing crack initiation can be concluded as (Zheng 2000 [23]):

$$K_I = \frac{2}{\sqrt{3}} \tau_{ne} \sqrt{\pi a}.$$

When $K_I = K_{IC}$ in Eq. (3), the rock began to crack, where K_{IC} is the fracture toughness.

3.2. Wing Crack Propagation

A lot of engineering cases and experiment results show that rock ruptures owing to cracks propagation, growth and integration. Many researches show, that cracks kink to the mode-I fracture under compressive-shear stresses state. When $K_I > K_{IC}$, wing crack initiates then propagates at the tip of the main crack and the stress intensity factor of wing crack varies with the propagation of wing crack. Based on fracture mechanics (Xie 1993 [20]), the stress intensity factor at the wing crack tip can be simplified into the superposition of the two stress intensity factors, as shown in Figs. 5(a) and 5(b).

$$K_I = K_I^{(1)} + K_I^{(2)}.$$
The two wing cracks at the two tips of the pre-existing crack are linked to form an isolation crack with a length of 2\(l\). Under the action of the axial compression \(\sigma\), this isolation crack generates the stress intensity factor \(K_I^{(1)}\). Simultaneously, the component \(K_I^{(2)}\) is due to the effective shear stress induced by the axial compression. For the purpose of calculating \(K_I^{(2)}\), the influence of the wing crack on the main crack is considered, and the influence coefficient \(l_{ty}\) is introduced. Then the pre-existing main crack can be calculated as \(2al_{ty}\), the direction of which is the same as that one of the original crack.

In Eq. (6), \(K_I^{(1)}\) is determined by the following equations:

\[
\sigma_n' = \frac{1}{2}[\sigma + \sigma \cos 2(\theta + \beta)],
\]

\[
K_I^{(1)} = -\sigma_n' \sqrt{\pi l} = -\frac{1}{2}[\sigma + \sigma \cos 2(\theta + \beta)] \sqrt{\pi l}.
\]

The stress intensity factor of the equivalent straight crack, induced by the effective shear stress is given by (Baud et al 1996 [3]).

\[
K_{II} = 2\tau_{ne} \sqrt{\frac{al_{ty}}{\pi}} \sin^{-1} \left(\frac{1}{l_{ty}} \right).
\]
When the shear force reaches the critical value, the cracks begin to expand. Then, the tension wing crack forms at the tip of the main crack, and a certain angle θ emerges between wing crack surface and the original crack surface. Then, the stress intensity factor $K_I(\theta)$ produced by stress σ_θ in the direction of θ is (Baud et al. 1996 [3])

$$K_I(\theta) = \frac{3}{2} K_{II} \sin \theta \cos \frac{\theta}{2}.$$

Referring to Eq. (5), the equivalent stress intensity factor $K^{(2)}_I$ in the θ direction at the crack tip is calculated as

$$K^{(2)}_I = 3\tau_{ne} \sqrt{\frac{a_{ly}}{\pi}} \sin^{-1} \left(\frac{1}{l_{ty}} \right) \sin \theta \cos \frac{\theta}{2}.$$

Thus, the stress intensity factor K_I at the tip of the wing crack can be expressed as

$$K_I = 3\tau_{ne} \sqrt{\frac{a_{ly}}{\pi}} \sin^{-1} \left(\frac{1}{l_{ty}} \right) \sin \theta \cos \frac{\theta}{2} - \frac{1}{2} |\sigma + \sigma \cos 2(\theta + \beta)| \sqrt{\frac{\pi l}{\pi}}.$$

The influence coefficient l_{ty} is the function of the wing crack length l, the wing crack azimuth θ, and the main crack length a in the equation. Subsequently, the revised Horri and Nemati–Nasser wing crack model is introduced (Horri and Nemati1986 [9])

$$K_I = \frac{2a\tau_{ne} \sin \theta}{\sqrt{\pi(l + 0.27a)}} - \sigma'_n \sqrt{\pi l}.$$

Comparing Eq. (12) with Eq. (13), we will get

$$3\tau_{ne} \sqrt{\frac{a_{ly}}{\pi}} \sin^{-1} \left(\frac{a}{a_{ly}} \right) \sin \theta \cos \frac{\theta}{2} = \frac{2a\tau_{ne} \sin \theta}{\sqrt{\pi(l + 0.27a)}}.$$

As $l \to 0$, then we get

$$l_{ty} = \frac{0.667}{\cos^2(0.5\theta)}.$$

As $l \to \infty$, then we get

$$l_{ty} = 1 + \frac{9l \cos^2 \frac{\theta}{2}}{4a}.$$
To meet the two conditions, the impact factor l_{ty} of the wing crack can be set as

$$l_{ty} = \left[1 + \frac{9l}{4a} \cos^2 \left(\frac{\theta}{2}\right) \right] \left(1 - e^{-l/a}\right) + 0.667 \sec^2 \left(\frac{\theta}{2}\right) e^{-l/a}.$$

The wing crack model is definite in physical meaning, and it can simulate the whole range of variation of wing crack length from extremely short to very long. Figure 6 shows the relationship between the stress intensity factor K_I at the crack tip and the equivalent crack propagation length L ($L = l/a$) under different axial compression. It is clear to see, that when axial compression is low, the wing crack expansion is stable. The stress intensity factor at the wing crack decrease with the equivalent crack length L. When $K_I < K_{IC}$ in Eq. (10), the wing crack will stop cracking. However, the stress intensity factor at the wing crack becomes greater with the increase of σ, the expansion of the wing crack becomes unstable under high axial compression.

In this experiment, it is found that the wing crack propagation failure model happened when the prefabricated crack angle is at a low value (25°). The wing cracks will expand approximately in the direction parallel to the maximum principal stress. For some specimens in this failure process, there are wing cracks appeared in both of the flaws, but which will not connect to each other until the failure of those specimens, as show in Fig. 7a. For some other specimens, there are wing cracks occurred only at one flaw, and the other flaw will keep stable until those specimens have damaged, as show in Fig. 7b. Further investigation revealed that this wing crack propagation

Fig. 6. Variation of K_I at the wing cracks tip with equivalent cracks propagation.
failure model usually happened when the inclination angle of rock bridge is $\beta < 45^\circ$, it is because when the inclination angle of rock bridge β at a low value, the effective shear stress on the crack is not big enough to develop shear cracks parallel to the main crack, but will produce wing cracks and driving its propagation. According to Eq. (12), when the wing crack extends to a critical length to the top of the specimen, the specimen begins to fail.

4. Wing Crack Connection Model and Damage Criteria

As wing crack expands, the interaction of the cracks results in the continuous degradation of the macroscopic mechanical properties of the rock mass. Crack propagation, beginning with wing cracks, initiated along micro-cracks progressing to the complete damage of the rock mass, encompasses the evolution and accumulation of the rock mass damage, as well as the process of cracking the connection between cracks. By researching the characteristics of micro cracks formed at the crack tip, there are many failure modes divided (Steif 1984 [16]; Wong 1997 [18]; Pu 2010 [15]): wing crack propagation failure, wing cracks coalescence failure, wing crack connect to main crack failure, Secondary surface crack damage failure, wing crack connect to secondary surface crack failure, etc. In this experiment, according to the stress state along the failure crack surface, the gradual damage process of cracks generally has three forms (as show in Table 2): (1) the axial transfixion failure, (2) the tension-shear combined fracture failure, and (3) the wing crack shear connection failure. Based on the rock fracture mechanics criterion and the stress-strain curves during the failure process, the rock bridge cutting penetration damage mechanical
Table 2. The rock bridge fracture failure models under axial compression

<table>
<thead>
<tr>
<th>Inclination angle of rock bridge [deg]</th>
<th>Inclination angle of rock bridge α [deg]</th>
<th>Failure models</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 25$</td>
<td>25</td>
<td>Wing crack propagation failure</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Tension-shear combined failure</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Tension-shear combined failure</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>Tension-shear combined failure</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Axial transfixion failure</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>Wing crack shear connection failure</td>
</tr>
<tr>
<td>$\beta = 45$</td>
<td>45</td>
<td>Tension-shear combined failure</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Tension-shear combined failure</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>Tension-shear combined failure</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Axial transfixion failure</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>Wing crack shear connection failure</td>
</tr>
<tr>
<td>$\beta = 60$</td>
<td>60</td>
<td>Tension-shear combined failure</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>Wing crack shear connection failure</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Axial transfixion failure</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>Wing crack shear connection failure</td>
</tr>
<tr>
<td>$\beta = 75$</td>
<td>75</td>
<td>Wing crack shear connection failure</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Axial transfixion failure</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>Wing crack shear connection failure</td>
</tr>
</tbody>
</table>

models are established with different fracture transfixion failure modes under axial pressure.

4.1. THE AXIAL TRANSFIXION FAILURE

Whenever the wing crack extends stably or unstably, the tension wing crack connects the main crack in another row, as shown in Fig. 8. This kind of failure usually happened when the rock bridge approximately in the direction parallel to the maximum principal stress. When $\alpha = 90^\circ$, the rock bridge is right at the tensile stress path, driven by relative sliding fracture surface, which produces wing cracks at the crack tip. During the failure process, there are tension wing cracks appeared at both of the two main crack tips, then connected with the increase of the external loading. Although the rock bridge area failed during the wing crack propagation, there remains bearing capacity for the specimen, mainly withstood by the unbroken structure of the specimens, therefore its failure process is moderate.

For the stress and strain curves in this damage process, as show in Fig. 9, there are no obvious signs of damage failure to the specimen, when micro cracks appeared at
Fig. 8. The transfixion pattern of wing cracks under axial transfixion failure mode.

the crack tip. The specimen reaches its peak value when the stress and strain curves

Fig. 9. The stress-strain curve under axial transfixion failure mode.
curved slightly, and the curve has an obvious decrease after the post-peak. Once the wing crack appears, it propagates fast along the direction of maximum compressive stress. In the later failure process, there is only small amount of granular material shall resist the load, so the residual strength of the specimen is low for this failure model.

For the axial transfixion failure, when the wing crack reaches the critical length $l_{1c} = b$ it happened wing crack propagation failure, and when $l_{1c} = b/2$ it happened wing crack connection failure. According to Eq. (12), taking the stress intensity at the crack tip as the criterion when the wing crack reaches the critical length, this paper establishes the failure criteria

$$K_I = 3\tau_{ne} \sqrt{\frac{\pi l_{1y}}{a}} \sin^{-1}\left(\frac{1}{l_{1y}}\right) \sin \theta \cos \frac{\theta}{2} - \frac{1}{2} \left[\sigma + \sigma \cos 2(\theta + \beta)\right] \sqrt{\pi l_{1c}}.$$

When $K_I(L_{1C}) \geq K_{1C}$, axial transfixion failure occurs in the rock bridge.

4.2. TENSION-SHEAR COMBINED FRACTURE FAILURE

This failure mode lies between the axial transfixion failure model and the wing crack shear connection failure model. As shown in Fig. 10, with the expansion of the wing crack under axial pressure, damage resistant capacity of the rock bridge is increasingly weakened. When the wing crack expands to a certain degree wing crack stops propagating on reaching some length, the rock bridge at the crack tip between the adjacent wing cracks fractured by the shear stress. Consequently, the crack is joined and connected in the shear direction, and shear damage occurs on the rock mass.

Fig. 10. The transfixion pattern of wing cracks under the tension-shear combined failure mode.
Fig. 11. The stress-strain curve under tension-shear combined failure mode.

For the stress and the strain curves in this damage process, as shown in Fig. 11, the curve slope decreases obviously before wing crack initiating, it is because the wing crack appears relatively slower, that it did not cause larger relative sliding on the prefabricated crack surface, during its extension process. When the shear planes, produced by the shearing force begin to slide relatively, the particle body friction, playing the role of increasing resistance, makes this kind of specimen leaving with a larger residual stress. Such specimens have a good plastic deformation capacity as there is friction among the rock bridge.

Among these elements, as shown in Fig. 12, AB is 1/2 the length of the bottom crack, EF is 1/2 the length of the upper crack, CD is the rock bridge, BC and DE are the opened wing cracks, produced by the effective shear driving force of the main crack AB and EF, θ is the angle between rock bridge, and the maximum principal stresses σ_{CD} and τ_{CD} are the normal stress and shear stress, that acted on the rock bridge, respectively.

For the element shown in Fig. 12, we can obtain the mechanics balance as

$$
\sum F_x = 0, \quad \sum F_y = 0,
$$

(19)
Fig. 12. Tension-shear combined failure characteristics of rock bridge: (a) analysis of rock bridge stress; (b) rock bridge failure characteristics.

\[
\begin{align*}
2a(\tau_{ne} \sin \psi + \sigma_{ne} \cos \psi) + 2r_2(\tau_{CD} \sin \theta + \sigma_{n}^{CD} \cos \theta) &= 0, \\
2r_1 \sigma + 2a(\tau_{ne} \cos \psi - \sigma_{ne} \sin \psi) + 2r_2(\tau_{CD} \cos \theta - \sigma_{n}^{CD} \sin \theta) &= 0,
\end{align*}
\]

where

\[
\begin{align*}
\ r_1 &= a \sin \psi + \frac{1}{2} \sqrt{d^2 + h^2} \sin \theta_0, \\
\ r_2 &= \frac{\sqrt{d^2 + h^2} \cos \theta_0 - 2l}{2 \cos \theta}, \\
\ \theta_0 &= \psi - \arcsin \frac{d}{h},
\end{align*}
\]

Finally, we can obtain

\[
\begin{align*}
\tau_{CD} &= \frac{2A_2 \tan \theta - 2B_2}{(b \cos \theta_0 - 2l)(1 + \tan^2 \theta)}, \\
\sigma_{CD} &= \frac{2A_2 + 2B_2 \tan \theta}{(b \cos \theta_0 - 2l)(1 + \tan^2 \theta)}, \\
\begin{align*}
A_2 &= -a(\tau_{ne} \sin \psi + \sigma_{ne} \cos \psi) \\
B_2 &= r_1 \sigma + a(\tau_{ne} \cos \psi - \sigma_{ne} \sin \psi)
\end{align*}
\]
From Eqs (22) and (23), the strained condition of the rock bridge is relevant to rock bridge inclination θ, and the wing crack length l, etc. As the wing crack propagation length increases gradually, the shear strength between the rock bridge weakens continuously until the rock bridge connected completely, causing the destruction of the rock mass element. Assuming that the rock bridge shear damage meets the Mohr–Coulomb strength criterion, the conditions for the damage are:

\[
\tau_{CD} - c - \sigma_{CD} \tan \varphi \geq 0.
\]

Putting Eqs (22) and (23) into Eq. (25), the following is obtained:

\[
\left(\frac{1}{2} b \cos \theta_0 - l\right) c \tan^2 \theta + (B_2 \tan \varphi - A_2) \tan \theta + A_2 \tan \varphi + B_2 + \frac{1}{2} bc \cos \theta_0.
\]

When the angle θ meets the rock bridge shear failure condition, the wing crack propagation length reaches a critical value l_{2c}. The angle θ between the rock bridge and σ_1 also reached critical values.

\[
\theta_c = \arctan \frac{A_2 - B_2 \tan \varphi + \sqrt{\Delta}}{\left(\sqrt{d^2 + h^2 \cos \theta_0} - 2l_{2c}\right) c}.
\]

From the geometric relations showed in Fig. 12

\[
\tan \theta_c = \frac{b \sin \theta_0}{b \cos \theta_0 - 2l_{2c}}.
\]

Combining Eq. (27) with Eq. (28), the critical length of the wing crack can be obtained.

\[
l_{2c} = \frac{A_3}{2c} = \sqrt{\frac{A_3^2 - 4cB_3}{2c}},
\]

\[
A_3 = -a(tau_{ne} \sin \psi + \sigma_{ne} \cos \psi) \tan \varphi + B_2 + \frac{1}{2} b 2c \cos \theta_0
\]

\[
B_3 = \frac{1}{4} bc + \frac{1}{2} b \left[(-a \tau_{ne} \sin \psi - a \sigma_{ne} \cos \psi)(\cos \theta_0 \tan \varphi - \sin \theta_0) + B_2(\sin \theta_0 \tan \varphi + \cos \theta_0)\right]
\]

At the same time, according to Eq. (12), the stress intensity factor at the wing crack tip as the wing branch reaching the critical length is obtained.

\[
K_I = 3 \tau_{ne} \sqrt{\frac{a l_{tg}}{\pi}} \sin^{-1} \left(\frac{1}{l_{tg}}\right) \sin \theta \cos \frac{\theta}{2} = \frac{1}{2} [\sigma + \sigma \cos 2(\theta + \beta)] \sqrt{\pi l_{2c}}.
\]
4.3. **WING CRACK SHEAR CONNECTION FAILURE**

When the inclination angle of the rock bridge α is at a relative high value, wing crack shear connection failure model is the most common. Compared with the rock bridge tension damage, the wing crack emerges first. Then, it connects with another main crack to form a connected macro-fracture zone, as shown in Fig. 13.

For the stress and strain curves in this damage process, as show in Fig. 14, the curve is similar to that of the Tension-shear combined fracture failure model and due to the friction on the rough transfixion surface, making this kind of specimen has a larger residual stress. As shown in Fig. 15, BC is the wing cracks, CD is the rock bridge. The mechanics of the element are analyzed and combined with the balance equation to obtain

\[
\begin{aligned}
-2a(\tau_{ne}\sin\psi + \sigma_{ne}\cos\psi) - r_3(\tau_{CD}\sin\theta + \sigma_{nCD}\cos\theta) &= 0, \\
2r_1\sigma + 2a(\tau_{ne}\cos\psi - \sigma_{ne}\sin\psi) + r_3(\tau_{CD}\cos\theta - \sigma_{nCD}\sin\theta) &= 0, \\
\end{aligned}
\]

where

\[
r_3 = \frac{b\cos\theta_0 - l}{\cos\theta}.
\]

Finally, we can obtain

\[
\tau_{CD} = \frac{2A_4\tan\theta - 2B_2}{(b\cos\theta_0 - l)(1 + \tan^2\theta)},
\]

![Fig. 13. The transfixion pattern of wing cracks under the wing crack shear connection failure mode.](images/fig13.png)
Fig. 14. The stress-strain curve under wing crack shear connection failure mode.

Fig. 15. Wing crack shear connection failure characteristics of rock bridge: (a) analysis of rock bridge stress; (b) rock bridge failure characteristics.
\[\sigma_{CD} = \frac{2A_1 + 2B_2 \tan \theta}{(b \cos \theta_0 - l)(1 + \tan^2 \theta)} \]

\[\begin{align*}
A_1 &= -a(\tau_{ne} \sin \psi + \sigma_{ne} \cos \psi) \\
B_2 &= r_1 \sigma + a(\tau_{ne} \cos \psi - \sigma_{ne} \sin \psi)
\end{align*} \]

Assuming that the rock bridge shear damage meets the Mohr–Coulomb strength criterion, the conditions for the damage are:

\[\tau_{CD} - c - \sigma_{CD} \tan \varphi \geq 0. \]

Putting Eqs (34) and (35) into Eq. (37), the following is obtained:

\[\frac{1}{2}(b \cos \theta_0 - l)c \tan^2 \theta + (B_2 \tan \varphi - A_4) \tan \theta + A_4 \tan \varphi + B_2 + \frac{1}{2}c(b \cos \theta_0 - l) \leq 0. \]

When angle \(\theta \) meets the rock bridge shear failure condition, the wing crack propagation length reaches a critical value \(l_{3c} \). The angle \(\theta \) between the rock bridge and \(\sigma_1 \) also reached critical values.

\[\theta_c = \arctan \frac{A_4 - B_2 \tan \varphi + \sqrt{A}}{(b \cos \theta_0 - l_{3c})c}. \]

From the geometric relations shown in Fig. 15

\[\tan \theta_c = \frac{b \sin \theta_0}{b \cos \theta_0 - l_{3c}}. \]

Combining Eq. (38) with Eq. (39), the critical length of the wing crack can be obtained.

\[l_{3c} = A_5 = \frac{\sqrt{A_5^2 - 4B_3c}}{2c}, \]

\[\begin{align*}
A_5 &= -a(\tau_{ue} \sin \psi + \sigma_{ue} \cos \psi) \tan \varphi + B_2 + bc \cos \theta_0 \\
B_3 &= \frac{1}{2}bc + \frac{1}{2}b \left[a(-\tau_{ne} \sin \psi - \sigma_{ne} \cos \psi)(\cos \theta_0 \tan \varphi - \sin \theta_0) + B_2(\sin \theta_0 \tan \varphi + \cos \theta_0) \right]
\end{align*} \]

At the same time, according to Eq. (12), the stress intensity factor at the crack tip when the wing crack reaches the critical length is obtained.

\[K_I = 3\tau_{ne} \sqrt{\frac{al_{tg}}{\pi}} \sin^{-1} \left(\frac{1}{l_{tg}} \right) \sin \varphi = \frac{1}{2}[(\sigma + \sigma \cos 2(\theta + \beta)] \sqrt{\pi l_{3c}}. \]
To sum up, the strength criterion for the fracture damage occurring on the fractured rock mass under uniaxial compression is established. When the rock bridge fractured, the critical length of the wing crack is not only relevant to the rock features and the far field stress, but it is also influenced by the geometric location of the crack.

5. Conclusions

The compression test on rock-like specimens with two pre-existing transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period, was carried out on the servo control uniaxial loading tester. The failure evolution mechanism of the rock sample was analysed, combined with the stress-strain curves when axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the rock bridge under axial compression. The cracking phenomena and the crack patterns observed experimentally have served as valuable references for the theoretical work. The results are as follows:

(1) It was found that under uniaxial compression, according to the different geometry of pre-existing cracks, the specimen with two precast crack will occur wing crack failure or rock bridge fracturing failure. The determinant for different failure modes is the effective shear driving relative sliding on the surface. When fracture specimens with prefabricated crack occurs coalesce failure, according to the failure mechanism of the rock bridge, axial transfixion failure, wing crack shear connection failure, and tension-shear combined failure are classified.

(2) Inclination angle of the rock bridge is the main factor influencing the characteristics of the rock bridge: the specimen is given priority to axial transfixion failure when the inclination angle of rock bridge nearly parallel to the direction of maximum principal stress, given priority to wing crack shear connection failure, when the inclination angle of rock bridge α is at a relative high value, and given priority to tension-shear combined failure in the transition state. Basing on the rock fracture mechanics, the rock bridge’s cutting penetration damage mechanical models of the compression shear rock mass are established for three different fracture transfixion failure modes.

(3) For the intact specimens, the strength curve has an significant decrease, after the post-peak and leaving with a low residual strength, it has the mechanics characteristic of brittle material. Comparing to the stress-strain curves of intact specimens, as a result of the existence of friction enhancement effect on the transfixion failure surface, the prefabricated crack specimen with different failure models will not completely lose its bearing capacity in an instant after the peak strength, it has the mechanics characteristic of elastic-plastic material. The results obtained were of significance in studying the failure mechanism of fractured rock mass.
ACKNOWLEDGMENT

This paper gets its funding from Project (51174228, 51274249, 51304240, 51474249) supported by National Natural Science Foundation of China; The authors wish to acknowledge these supports.

REFERENCES

