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Combining survey and auxiliary data to produce official statistics is gaining interest at federal
agencies and among policy makers due to its efficiency. Recent studies have shown the
practicality of small area estimation modeling approaches in the context of integrating data
from multiple sources to improve estimation at fine levels of aggregation. In this article,
agricultural predictions are constructed using a hierarchical Bayes subarea-level model, fit
to data available from different sources. Auxiliary data are initially used to complement the
survey data and define the prediction space, and then to define covariates for the model.
Finally, not-in-sample predictions are constructed using the model output, and benchmarking
constraints are imposed on the final set of in-sample and not-in-sample predictions. Unlike
most of the studies discussing not-in-sample prediction, this article illustrates a method that
uses the data available from multiple sources to define the prediction space. As a consequence,
the resulting framework provides a larger set of nationwide predictions as candidate for
official statistics, and extrapolation is not of concern. Challenges in developing the methods to
combine different data sources are discussed in the context of planted acreage prediction.

Key words: Administrative data; benchmarking; incomplete data; not-in-sample prediction;
small area estimation.

1. Introduction

Survey summary statistics at disaggregated levels may not be fit for use as official statistics

because the limited amount of information available may result in estimates with high

levels of uncertainty. With an increase in available data from auxiliary sources, an increase

in needs for official statistics at detailed levels of aggregation and a decrease in allocated

budgets, federal agencies have an increased interest in using models in the estimation

process. In this article, we consider novel ways of using administrative data in the process

of constructing official statistics. Specifically, administrative data are used to complement

the survey data and define the set of domains for which predictions are needed. Then,
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models that integrate survey and administrative data are used to construct predictions for

domains with survey sample sizes as small as zero. This work builds on a series of research

studies conducted at the United States Department of Agriculture’s (USDA’s) National

Agricultural Statistics Service (NASS) to innovate the current methods of setting official

statistics for acreage, production and yield at state and substate levels of aggregation. We

consider data collected by the USDA’s NASS using a probability sample and auxiliary

data from other sources, to produce end-of-season county-level and agricultural statistics

district-level predictions for planted acreage, where an agricultural statistics district

(hereafter, denoted by district) is defined as a group of contiguous counties within a state.

Area-level and subarea-level models are excellent reproducible tools that combine

survey data and auxiliary data to produce reliable estimates for areas where survey

estimates are available. In the area-level model, introduced by Fay and Herriot in 1979

(FH), the survey estimates, ûk, are modeled using the sampling model,

ûkjðuk; ŝ
2
k Þ

ind, Nðuk; ŝ
2
k Þ;

where ŝ 2
k are the estimated sampling variances and k (k ¼ 1, : : : , m) is an index for the

small areas. The small area parameters of interest uk are estimated using a linking model,

ukjðb;s
2
u Þ

ind, Nðz 0kb;s
2
u Þ; ð1Þ

where zk are area-level covariates with p components, including an intercept, and ðb;s 2
u Þ

is a vector of nuisance parameters. A rich literature is available for the FH model and its

extensions, using both frequentist and Bayesian methods. In a hierarchical Bayes analysis,

prior distributions are assigned to ðb;s 2
u Þ.

As an extension to the FH model, Fuller and Goyeneche (1998) introduced a subarea-

level model (FG) to account for a grouping structure of the subareas into areas. The survey

estimates at the subarea level, ûij, are modeled using the sampling model,

ûijjðuij; ŝ
2
ij Þ

ind, Nðuij; ŝ
2
ij Þ;

where ŝ 2
ij are the estimated sampling variances, j ( j ¼ 1, : : : , nc

i ) is an index for the

subareas, i (i ¼ 1, : : : , m) is an index for the areas, and nc ¼
Pm

i¼1nc
i is the total number of

subareas. The parameter of interest is the subarea mean uij, which is estimated using a

hierarchical linking model,

uijjðb;s
2
u ; viÞ ind, Nðx 0ijbþ vi;s

2
u Þ;

vijs
2
v

ind, Nð0;s 2
v Þ;

ð2Þ

where xij are subarea-level covariates with p components, including an intercept, and

ðb;s 2
u ;s

2
v Þ is a vector of nuisance parameters. Torabi and Rao (2014) studied the FG

model in a frequentist framework and Kim et al. (2018) extended the linking model in

Torabi and Rao (2014) to allow for a hierarchical level for parameters b and to remove

distributional assumptions in the first hierarchical level. Erciulescu et al. (2018, 2019)

studied the FG model using a hierarchical Bayes framework, adopting prior distributions

for ðb;s 2
u ;s

2
v Þ.
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In the area-level (subarea-level) sampling models, it is assumed that ûkðûijÞ and ŝ 2
k ðŝ

2
ij Þ

are valid estimates available from the survey summary, that is the estimates exist and are in

the parameter space (positive total acreage estimates and positive sampling variances).

However, for the not-in-sample subareas (domains with missing survey data), inference

conducted relies on the linking model’s specification. Given (1), a typical choice of

estimator for the not-in-sample areas is the synthetic estimator z0kb, see Rao and Molina

(2015) for more information on regression synthetic estimation. While one choice for a not-

in-sample subarea estimator, given (2), is the synthetic estimator x 0ijb, a better estimator is

the composite estimator x 0ijbþ vi (note the contribution of both the subarea-level auxiliary

data and the area-level random effect). In a Bayesian approach, the predictions are drawn

from the assumed linking model (1) or (2), for area-level or subarea-level, respectively.

Building on the work of Erciulescu et al. (2019), we combine survey and auxiliary data and

use a subarea-level model to construct planted acreage predictions for a set of counties defined

by the union of all the available data sources. Statistical challenges and breakthroughs in

combining data from multiple sources to produce official statistics are discussed throughout

the paper. In particular, we identify a common geographic level and time point to combine

data from a probability survey with nonprobability data from three administrative sources, the

latter lacking uncertainty measures. As in Erciulescu et al. (2019), we treat the auxiliary data

as fixed and free of error, but details on potential error sources in these data are available in

Erciulescu et al. (2019). Note that Erciulescu et al. (2019) investigated these sources only for

predictive power, and used only one at a time in developing the models (to avoid

multicollinearity problems). Also, the authors tackled prediction for harvested acreage only

for counties with both sample and administrative data available. In this article, we integrate all

the data to identify the set of counties with planting activity for a specific crop (or the

prediction space), in a given crop season, and to construct a covariate with good predictive

power and observations available for all the counties in the prediction space. Challenges in

multistage, nationwide prediction for counties with sample sizes as small as zero (not the case

in Erciulescu et al. 2019) are addressed using hierarchical Bayes subarea-level models.

Modeling strategies are developed to deal with incomplete data and benchmarking

methods are implemented to overcome the challenge of attaining consistency among

predictions at nested levels of aggregation. Whereas Erciulescu et al. (2019) developed

and compared models for direct estimates scaled by the sample sizes, with a hierarchy for

sampling variances and different benchmarking methods, here we adopted the model for

the direct estimates, with fixed sampling variances and the ratio adjustment, as a practical

method with good performance that allows for prediction for subareas with sample sizes of

just one or even zero where suggested by auxiliary information. This outcome was not

possible under the model specification pursued in Erciulescu et al. (2019). Moreover, due

to the extended prediction space, the possible over-adjustment due to benchmarking is less

of a concern for NASS than it was for Erciulescu et al. (2019). As a result, a crop-specific

framework of producing predictions is presented, with the potential to increase the number

of official statistics constructed using current methodology.

In summary, the major contributions of this article are as follows:

. integration of all the available data to define the prediction space, as well as a

covariate with good predictive power;
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. modeling strategies to deal with incomplete administrative data and missing at

random (MAR) assumption;

. not-in-sample prediction;

. reduction in over-adjustment due to benchmarking; and

. increase in the number of official statistics, given a common criterion.

In Section 2, we introduce different data sources and present a method that combines

survey data and administrative data to identify and predict planted acreage for in-sample

and not-in-sample subareas of interest for a certain crop, that is, county-level corn, as in

the case study illustrated here. In Section 3, modeling strategies addressing different

scenarios of available data and the corresponding derived predictors are presented. In

Section 4, we present nationwide prediction results for 2015 corn planted acreage,

including model efficiency and different contributions of administrative data to produce

official statistics. A discussion is provided in Section 5. Additional results on corn,

soybean, sorghum and winter wheat are presented in the Appendix (Section 6).

2. Data for Modeling End-of-Season Crop Acreage

County-level survey estimates may be improved using auxiliary information and small area

model-based procedures, especially for counties with small sample sizes. Estimation

challenges are driven by the needs for multi-stage (county, district, state), nationwide,

estimates, constructed using a small amount of survey data. In this section, we describe the

sources of data considered to produce small area model predictions for end-of-season crop

planted acreage for corn in 2015. Next, we introduce a method that combines survey data and

administrative data to identify the 2015 in-sample and not-in-sample counties of interest for

corn planted acreage prediction. Finally, we investigate the potential for using auxiliary data as

covariates in hierarchical models. The NASS survey data and the auxiliary data available from

other USDA agencies on corn planted acreage are combined at the county level for each state.

2.1. NASS Survey Data

The probability sample of interest in this study is the pooled sample from the quarterly

crops Agricultural Production Surveys (USDA NASS APS 2018) and their supplement,

the County Agricultural Production Surveys (USDA NASS CAPS 2018), and will be

denoted hereafter by CAPS. Due to the updates to the list sampling frame and the survey

questionnaires, and to the year-to-year changes in planting activity, the set of subareas to

be estimated for a given year-commodity combination is not predefined. For example,

each survey response includes information on the entire operation (farm or ranch), and for

all the sampled commodities with activity in the given season. As a result, the number of

known operations in a county may change over time, the number of sampled operations

may vary from year to year, and each of the operations may vary the type of crops grown

annually. See Appendix A in National Academies of Sciences, Engineering, and Medicine

(2017) for more details on NASS’s survey design and data collection.

County-level and district-level survey estimates and associated variance estimates are

available from the NASS’s CAPS summary. The district-level survey data are derived

directly from the county-level survey data and, hence, only the county-level data will be
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used for modeling. The district-level survey data will be used for comparing model

predictions to the survey estimates. In the 2015 crop season, NASS sampled 36 states for

corn. The 36 states were comprised of 2,837 counties, and NASS produced survey

estimates for 2,426 in-sample counties. Survey estimates are not available for the

remaining 411 counties; we refer to these counties as not-in-sample with respect to corn. A

nationwide map of the end-of-season positive county-level planted acreage survey

estimates available for corn in 2015 is shown in Figure 1. The 12 states that were not

sampled for corn in 2015 are represented as blank states with a black dot. The counties

with zero planted acreage predictions and not-in-sample counties for corn in 2015 are

represented in white. Since the range of planted acreages in counties with available sample

data is state-dependent and can vary from tens to hundreds of thousands of acres, the

county-level map in Figure 1 depicts estimates on the log(10) scale. Dark areas correspond

to high acreage intensity regions, in particular the Midwestern corn belt states.

As a result of the NASS survey and publication cycle, state-level planted acreage values

are prepublished and considered as fixed targets in the substate-level estimation process.

The sum of the county-level survey estimates in a state does not necessarily equal the

prepublished state-level value, the latter being the result of an expert assessment of

multiple sources of data (including, but not limited to the survey data). Hence, one of the

challenges encountered is to attain consistency among estimates constructed for nested

levels. To overcome this challenge, we study a benchmarking adjustment applied to the

substate-level predictions, for the county-to-district-to-state agreement to hold. More

details on the benchmarking adjustment we utilize are presented in Subsection 3.3.

The number of counties and districts vary across the states and across commodities. For

2015 corn, the number of counties within districts ranges from 1 to 32, with a median of 8

and the number of districts within state ranges from 3 to 15, with a median of 9. Because

the source of survey data for this study is the survey summary at the county level and

district level, we denote the sample size by the number of positive records used to

construct the survey summary; a positive record refers to a survey record for which

0
1
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4
5
6

log10(acres)

States not sampled
Not sampled for
corn county
estimates in 2015

County−level survey estimates: corn, 2015
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•• ••••
•

•

•

•

•

Fig. 1. Nationwide map of the end-of-season positive county-level planted acreage survey estimates available

for corn in 2015 from the NASS CAPS summary, with all non-zero estimates on the log(10) scale.
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positive acreage was reported. The county sample size differs from state to state and

commodity to commodity. For corn, the county sample sizes range from 1 to 191, with a

median of 18 and the district sample sizes range from 1 to 993, with a median of 206; the

sample size ranges for Illinois are illustrated on the x-axes in Figure 2.

The estimated coefficients of variation (CVs) for the survey estimates increase as the

county sample sizes decrease, and their ranges also differ from state to state and

commodity to commodity. For 2015 corn, the CVs of the county-level survey estimates

range from 0.07% to 107.66%, with a median of 31.94%, and the CVs of the district-level

survey estimates range from 3.27% to 100.70%, with a median of 10.67%. Figure 2 shows

the inverse relationship between the CVs of the 2015 corn county-level planted acreages

survey estimates in Illinois and the corresponding sample sizes. Similar patterns are

observed in other states, and for other commodities.

2.2. Auxiliary Data

We explore auxiliary data, available from three USDA agencies: NASS, the Farm Service

Agency (FSA) and the Risk Management Agency (RMA). FSA administers US farm

programs, such as county-level revenue loss protections (USDA FSA 2019). RMA

oversees the Federal Crop Insurance Corporation, which provides crop insurance to

participating farmers and agricultural entities (USDA RMA 2019). For this, FSA and

RMA collect data from farmers participating in such programs. NASS produces the

Cropland Data Layer (USDA NASS CDL 2018), a crop-specific land cover product that

uses satellite and FSA ground-reference data to classify crop types in the continental

United States (Boryan 2011; USDA NASS 2016a).

The levels and time of availability, and potential sources of error vary by data source

(FSA, RMA, NASS), geography and commodity. Combining data from multiple sources

and assessing its quality and usability is a challenging effort, often not mentioned in small

area studies. For example, the CAPS sample data are collected on farms or ranches that the

County-level survey summary, Illinois
102 counties

District-level survey summary, Illinois
9 districts
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Fig. 2. Plots of CVs of the 2015 survey county-level and district-level estimates of planted acreage of corn in

Illinois against corresponding sample sizes.
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respondents operate and participation in the FSA and RMA programs is popular, but not

compulsory; farmers who choose to participate in either agency’s support programs supply

data to the FSA and RMA administrative offices voluntarily. However, the definition of

farm or ranch and the spatial unit used differ among the three data sources: NASS, FSA

and RMA (National Academies of Sciences, Engineering, and Medicine 2017, 96–97).

Linking data at a fine scale has been of interest to NASS, but final solutions have yet to be

developed. The administrative data of interest for this study are the self-reported corn

planted acreage values supplied to FSA and RMA and the acreage values derived from

pixels classified as corn, aggregated at the county level and comprising the nonprobability

sample data under consideration.

Quantifying the quality of nonprobability sample data has been of interest to many

government agencies, but conclusive studies have yet to be published. Parsons (1996) evaluated

the quality of FSA acreage totals with respect to coverage. Kennedy et al. (2016) evaluated

nonprobability surveys and assumed that the nonprobability samples were drawn as simple

random samples from the population and constructed pseudo-weights when constructing

domain estimates and associated measures of uncertainty. While we acknowledge potential

error sources in the aggregated data, in this study we will assume the nonprobability county-

level values from FSA, RMA and CDL as fixed and free of error. In Table 1, we report a

summary of the number of counties with data available on corn planted acreage in 2015 from at

least one source. Note that the sets of counties with data available from either of the four sources

are not mutually exclusive, as depicted in the Venn diagram in Figure 3. After accounting for

the 2,726 counties with corn planted acreage identified from the CDL, additional planted

acreage activity is identified in only 22 (¼ 11 þ 3 þ 6 þ 0 þ 1 þ 1 þ 0) counties from

the CAPS, FSA and RMA (see Figure 3). Hence, our goal is to construct 2015 corn predictions

for the total of 2,748 counties. The number of counties with corn planting activity differs across

years, states, commodities and data sources.

The county-level quantity of interest is the total planted acreage and the values available

from the three sources (FSA, RMA, CDL) of auxiliary data are measurements of the same

county-level quantity, that is corn total planted acreage. It is known that all three sources

may suffer from downward biases (see Cruze et al. 2019 for a literature review of

geography and remote sensing studies). As an attempt to avoid the possible downward bias

and obtain a covariate with good predictive power for total county-level acreage, we

combine the three sources to construct one set of values indicating the maximum number

of available corn planted acreages, reported by volunteers or remotely classified. Let

Admin PL denote the constructed variable as such. If all FSA, RMA and CDL values are

available, then the maximum value is considered. If only two of the values are available,

Table 1. Counties, in sampled states, with corn planting activity, 2015.

Data source (USDA) Number of counties

NASS CAPS 2426

FSA 2398
RMA 2230
NASS CDL 2726
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the maximum value is considered. If only one of the values is available, then that value

is considered. To investigate the additional contributions of the CDL data, we will also

consider an Admin PL variable, as derived from FSA and RMA data only, and present

results in Section 4.

2.3. Borrow Information from Multiple Data Sources

As expected, nationwide analysis indicates strong linear relationships between the survey

estimates and the administrative data for all the 36 states. For each sampled state, a simple

regression model was fit to the survey estimates, using intercept and FSA, RMA, CDL or

Admin PL as predictor. Summaries of R2 values and estimated slope coefficients b̂, for all

the states, are reported in Table 2 (25%, 50%, 75% quantiles).

In Figure 4 we display the linear fit between the survey estimates and the derived

administrative values, Admin PL, and in Figure 5 we display the linear fits between the

survey estimates and the values available from each of the three auxiliary sources, FSA,

RMA and CDL, respectively. As a result of this analysis, Admin PL will be included as a

covariate in the model described in the next section.

3. Modeling Strategies

The proposed model for a given state is a subarea-level model, where the area represents

the district, the subarea represents the county and the subarea-level survey variances are

treated as fixed and known. Of interest is prediction of planted acreage at the county and

district levels. Prediction is conducted state by state and commodity by commodity, for all

counties within states identified to have planted acreage activity in the given crop season.

3.1. Hierarchical Bayes Model

Let i ¼ 1, : : : , m be an index for the m districts in the state under consideration;

j ¼ 1, : : : , nc
i , be an index for the nc

i counties in district i; and nij be the sample size of

the j th county in the ith district. The total number of counties in the state is
Pm

i¼1nc
i ¼ nc

and the state sample size is
Pm

i¼1

Pnc
i

j¼1nij ¼ n.

Let ûij be the (total planted acreage) survey estimate for county i in district j and ŝ 2
ij be

the corresponding estimated survey variance. For now, assume that county-level covariate

NASS
CAPS

NASS
CDL

RMAFSA

11 238

2181

99

1

6

1301

0

451

310

3 1

Fig. 3. Counties, in sampled states, with corn planting activity, 2015.
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values xij are available; a discussion on the availability of such covariates is provided later.

Illustrated for one state, one commodity and one parameter, the hierarchical Bayes

subarea-level model is

ûijjðuij; ŝ
2
ij ; viÞ ind, Nðuij; ŝ

2
ij Þ; ð3Þ

uijjðvi;b;s
2
u Þ

ind, Nðx 0ijbþ vi;s
2
u Þ; ð4Þ

vijs
2
v

ind, Nð0;s 2
v Þ: ð5Þ

The parameters ðb;s 2
u ;s

2
v Þ are assumed independent a priori, for which noninforma-

tive, proper priors are adopted. The least squares estimates of b are obtained from fitting

a simple linear model for the county-level survey estimates against the county-level

auxiliary information, and then used as fixed and known parameters in the prior

distribution for b. In particular, we adopt a multivariate normal prior distribution for b,

with mean and variance denoted by the least squares estimate for the mean and the least

squares estimate for the variance, multiplied by 103, respectively. By assigning a large

Survey vs combined administrative data, Illinois
102 counties

Admin PL

Survey Estimate=2177+0.915*Admin PL

R2 = 0.85
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 e
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Fig. 4. Plot of survey estimates against derived administrative data values of planted acreage of corn

(maximum value from available administrative sources) overlaid with best simple linear regression line.
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Fig. 5. Plots of survey estimates against administrative data values of planted acreage of corn available from

the FSA, RMA, and CDL, respectively, overlaid with data-specific best simple linear regression lines.
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prior variance, we adopt a diffuse prior for b. The prior distributions for the model

variance components s 2
u and s 2

v are Uniform(0, 108) and Uniform(0, 108), respectively.

The model (3, 4, 5) borrows information from all the counties in a district and from all

the districts in the state, while combining auxiliary information available at the subarea

level, xij. The result model predictions are composite predictions, denoted by the weighted

average of the subarea survey estimate and the best fitted values, after accounting for the

area effect. That is, for a county j, in district i, the posterior mean is a predictor composed

of the county-level survey estimator and a composite predictor of county-level synthetic

predictor and a district-level effect predictor. The derivation is provided below.

Combining (3) and (4) using Bayes’ theorem, we obtain the distribution of uij given the

data and the nuisance parameters,

uijjðvi;b;s
2
u ;s

2
v ; ûij; ŝ

2
ij Þ

ind, Nðgijûij þ ð1 2 gijÞðx
0
ijbþ viÞ; ð1 2 gijÞs

2
u Þ; ð6Þ

where gij ¼
s 2

u

ŝ 2
ijþs

2
u

.

Integrating out uij from (3) and (4), we obtain the conditional distribution of ûij,

ûijjðvi;b;s
2
u ;s

2
v ; ŝ

2
ij Þ

ind, Nðx 0ijbþ vi; ŝ
2
ijs

2
u Þ: ð7Þ

Now, combining (5) with (7) using Bayes’ theorem again, we obtain the conditional

distribution of vi,

vijðb;s
2
u ;s

2
v ; ûi; ŝ

2
i Þ

ind, Nðgiðû
�g
i 2�x

g 0

i bÞ; ð1 2 giÞs
2
v Þ; ð8Þ

where gi: ¼
Pnc

i

j¼1gij, gi ¼
s 2

u

s 2
vþs

2
u ðgi:Þ

21, û
�g
i ¼ ðgi:Þ

21
Pnc

i

j¼1gijûij, �x
g
i ¼ ðgi:Þ

21
Pnc

i

j¼1gijxij, ûi

the vector of ûijs and ŝ 2
i is the vector of ŝ 2

ij s.

By the conditional mean formula in (6) and (8), it follows that the posterior mean of uij,

given the data and the nuisance parameters, is

Eðuijjb;s
2
u ;s

2
v ; ûij; ŝ

2
ij Þ ¼ x0ij

~bþ ~giðû
�~g
i 2 �x~

g 0

i
~bÞ þ ~gij ûij 2 x 0ij

~b 2 ~giðû
�~g
i 2 �x~

g 0

i
~bÞ

� �

; ð9Þ

where ~gij ¼
~s 2
u

~s 2
uþŝ

2
u

, ~gi: ¼
Pnc

i

j¼1 ~gij, ~gi ¼
~s 2
v

~s 2
vþŝ

2
u ð ~gi:Þ

21, û�
~g
i ¼ ð ~gi:Þ

21
Pnc

i

j¼1 ~gijûij, �x~
g
i ¼ ð ~gi:Þ

21

Pnc
i

j¼1 ~gijxij, and ~vi ¼ ~giðû
�~g
i 2 �x~

g 0

i
~bÞ. The estimated variance parameters ŝ 2

u and ŝ 2
v are

constructed as the posterior means for these parameters, that is Eðs 2
u jûij; ŝ

2
ij ;b;s

2
v ; uijÞ and

Eðs 2
v jûij; ŝ

2
ij ;b;s

2
u ; uijÞ, respectively.

Note that the posterior mean can be further rewritten as

~uij ¼ x0ij
~bþ ~giðû

�~g
i 2 �x~

g 0

i
~bÞ þ ~gij ûij 2 x 0ij

~b 2 ~giðû
�~g
i 2 �x~

g 0

i
~bÞ

� �

¼ ~gijûij þ ð1 2 ~gijÞ x 0ij
~bþ ~vi

n o
: ð10Þ

Using Equation (10), note the district-level contribution to the county-level not-in-

sample predictions, vi; for an area-level model, this term would be missing in Equation

(10). On the other hand, Equation (10) may be rewritten as

~uij ¼ ~gijûij þ ð1 2 ~gijÞ x
0
ij
~bþ ð1 2 ~gijÞ ~giðû

�~g
i 2 �x~

g 0

i
~bÞ; ð11Þ
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where ~gij, ~gi:, ~gi, û
�~g
i and �x~

g 0

i are defined as for (10). The subarea-level and area-level

components to the subarea-level posterior mean are clearly identified in Equation (11).

A discussion on the choice of county-level covariate values xij is provided in the next

subsection, as it depends on the availability of the data. When available, the county-level

covariate values, xij, are Admin PL values constructed as described above, and the model is

denoted by M. For comparison, a model with no covariates and a model with Admin PL

constructed using only the FSA and the RMA data are also fit, and denoted by M0 and M1,

respectively. In addition, the comparison of models M and M1 may be of interest to the agency

because the current NASS process of setting official statistics uses FSA and RMA data, but it

does not use CDL data directly; see Cruze et al. (2019) for a detailed description of the process.

3.2. Incomplete Data

Complete sets of data are needed to define the counties with corn planted acreage activity

and for model defined in (3), (4), and (5) to be fitted. One other challenge in combining

data from multiple sources is the incomplete availability of the data. For this, we develop

modeling strategies to account for three cases of available information for a given county j,

in district i:

1. ðûij; ŝ
2
ij Þ are available, but xij is missing,

2. ðûij; ŝ
2
ij ; xijÞ are available, and

3. ðûij; ŝ
2
ij Þ are missing, but xij is available.

The counties for which data are missing in all of the data sources considered, ðûij; ŝ
2
ij ; xijÞ,

are excluded from the prediction set, because there is not enough evidence to conclude that

planting activity took place for the specific crop, in the specific crop season. Not-in-sample

predictions for these additional counties may be constructed using the methods for the third

case above, after imputing covariate values xij (for example, using the average values

available for other counties in the same division or state). However, not having any data to

indicate county-level planting activity may lead to severe extrapolation and under-

adjustments in the benchmarking step. For the cases with missing data in some of the

sources, but available in others, we assume the missing at random (MAR) mechanism.

The first step in the modeling strategies is to impute the missing covariate values xij, for

county j in district i, where survey estimates ðûij; ŝ
2
ij Þ are available. For this, we use the xij

values available for the most similar counties in the state. Similarity is defined using the

absolute-value norm applied to the available survey estimates,

xij ˆ xij 0 j j
0 ¼ arg mink jûik 2 ûijj

� �
;

over all counties k with survey and auxiliary data available. The resulting set of counties nc

with survey and auxiliary data ðûij; ŝ
2
ij ; xijÞ available denotes all the counties with corn

planting activity for the study.

After imputation, the models are fit to the nc counties for which ðûij; ŝ
2
ij ; xijÞ are

available, using R JAGS (see Plummer et al. 2018), and posterior distributions are

constructed using MCMC simulation. To estimate the nuisance parameters and the

parameters of interest for the county-level total acreages, we use 3 chains, each of 10,000

Monte Carlo samples, 1,000 burn-in samples and thinned every nine samples.
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Convergence diagnostics are conducted for selected states. The convergence is monitored

using trace plots, the multiple potential scale reduction factors (values less than 1.1) and

the Geweke test of stationarity for each chain (Gelman and Rubin 1992; Geweke 1992).

Also, once the simulated chains have mixed, we construct the effective number of

independent simulation draws to monitor simulation accuracy.

Using the chains of iterates obtained from the model fit, we construct posterior

summaries from the posterior distributions of the nuisance parameters br, ðs 2
u Þ

r, ðs 2
v Þ

r, the

county-level parameters of interest u r
ij and district-level parameters of interest

u r
i :¼

Pnc
i

j¼1u
r
ij, where r ¼ 1, : : : , R, and R denotes the total MCMC iterates, after burn-

in and thinning, equal to 3,000 in the application study.

In the last step in the modeling strategies, the model output from the complete data fit is

used to predict for counties where ðûij; ŝ
2
ij Þ is missing but xij is available. For this,

ur
ij

n o

r¼1; : : : ; R
are drawn from the linking model (4, 5),

u r
ijjðv

t
i;b

r; ðs 2
u Þ

rÞ ind, Nðx 0ijb
r þ vr

i ; ðs
2
u Þ

rÞ:

3.3. Consistency Among Nested Levels

As discussed in the Section 1, NASS publishes the state-level value of corn planted

acreage before estimation is conducted at the substate levels. To overcome the challenge

of attaining consistency among predictions constructed for nested levels, we consider

an external benchmarking adjustment that is timely and practically usable. A detailed

discussion of classic benchmarking adjustments is given in Rao and Molina (2015).

Studies on different benchmarking adjustments to crop acreage prediction are discussed in

Erciulescu et al. (2019). In this section, we illustrate a benchmarking adjustment applied to

the model predictions constructed under the different data availability cases, so that the

county-level predictions aggregate to the district-level predictions and the district-level

predictions aggregate to the prepublished state-level value.

Raking provides a suitable benchmarking adjustment to ensure consistency of substate

predictions with state targets. For this study, we use the extension of the classic ratio

adjustment given in Erciulescu et al. (2019), and we apply the constraint at the (MCMC)

iteration level. This type of benchmarking adjustment is not adopted as part of the prior

information or the model, but it facilitates its application to the set of in-sample and not-in-

sample counties, in a small amount of time. For this, let the state-level target be denoted by

a. Then the relation

Xnc*

i; j

~u
B

ij ¼ a; ð12Þ

needs to be satisfied, where nc* is the total number of counties in the state and ~u
B

ij is the

final model prediction for county j and district i. Note that nc* ¼ nc þ ðnc* 2 ncÞ, where nc

is the number of in-sample counties and ðnc* 2 ncÞ is the number of not-in-sample

counties. The ratio adjustment is applied at the MCMC iteration level as follows

uB
ij;r :¼ uij;r £ a £

Xm

k¼1

Xn
c*
k

l¼1

ukl;r

0

@

1

A

21

; ð13Þ
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where uB
ij;r is the benchmarking-adjusted iteration, for r ¼ 1, : : : , R. Final county-level

and district-level posterior summaries are constructed using the county-level iterates uB
ij;r

and district-level iterates uB
i;r :¼

Pnc*
i

j¼1u
B
ij;r. For example, the resulting posterior means

(variances) are constructed as Monte Carlo means (variances) of iterates. The county-level

and district-level posterior means satisfy the multi-level benchmaking to state-level target

a; note that nc*
i is the total number of counties in district i.

From (13), note the importance of correctly specifying the set of counties to be

estimated, since a smaller (larger) than the truth number of counties would result in an

over-adjustment (under-adjustment) in the predictions.

4. Results

In this section, nationwide prediction results are presented for 2015 corn planted acreage,

including a comparison of different models, model efficiency and different contributions

of administrative data, serving towards the production of official statistics.

4.1. Model Comparison

Planted acreage data from the four sources summarized in Table 1 are used to define the set of

counties to be estimated. For models fit and prediction, we define the set of counties with

complete data after implementing the first step in the modeling strategies enumerated in

Subsection 3.2. As previously mentioned, we consider three models for comparison: M0, the

model fit to the survey data and no covariate; M1, the model fit to the survey data with one

covariate derived from FSA and RMA data (directly and imputed, when applicable); and M,

the model fit to the survey data with one covariate derived from FSA, RMA and CDL data
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Fig. 6. Deviance information criterion (DIC) for models M0, M1, and M, by state.
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(directly and imputed, when applicable). Note that the survey data modeled in all M0, M1 and

M is the same, only the covariate data differ. Also note that various data sources are combined

to construct one covariate (models M1 and M), therefore avoiding multicollinearity issues (as

is the case when multiple covariates would correspond to the data sources).

The goodness of fit for models M0, M1 and M, fit state by state, is evaluated using the

Deviance Information Criterion (DIC) and results are presented in Figure 6. The x-axis in

Figure 6 illustrates the two-digit Federal Information Processing Standards (FIPS) codes

for the 36 states, sampled for corn in 2015. Model comparison is conducted for each state,

and not between states. The goodness of fit increases when auxiliary information is

incorporated in the model, the best fit being when the Admin PL is defined using FSA,

RMA and CDL. Models M1 and M result in similar performance; however, there are other

benefits of using the CDL, as discussed in Section 5.

Models M0, M1 and M are further compared with respect to the contribution of

auxiliary data to the final model predictions. Three-number summaries (25%, 50%, 75%

quantiles) of the estimated factors ~gij (%) and ~gi (%) defined for (10), are constructed over

all the 36 states for which the models are fit and illustrated in Tables 3 and 4. Again, model

predictions constructed using M1 and M have similar features. The auxiliary data and their

relationship with the survey estimates receive larger weights in the final predictions under

model M compared to model M0.

4.2. Increased Number of County-Level Estimates

Of great interest is the contribution of administrative data to increasing the number of

county-level estimates. A nationwide map of the 2015 corn positive planted acreage county-

level model predictions on the log10 scale, using model M, is illustrated in Figure 7. Model

predictions are produced for 2,627 counties, of which 2,420 are in-sample counties and 207

are not-in-sample counties. Additionally, 121 model predictions were set to zero, because

they corresponded to negative model predictions. Darker areas correspond to higher intensity

regions. Not-in-sample predictions are mostly produced for counties located in non-major

corn producing states and with small acreage amounts (the maximum not-in-sample model

Table 3. Summary of estimated factors ~gij (%).

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Model M0 None 60.66 85.69 98.01
Model M1 FSA and RMA 2.67 11.41 44.92
Model M FSA, RMA and CDL 2.42 10.25 40.94

Table 4. Summary of estimated factors ~gi (%).

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Model M0 None 85.37 92.25 95.48
Model M1 FSA and RMA 46.04 62.13 77.36
Model M FSA, RMA and CDL 47.90 66.35 82.54
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prediction is approximately 60% the median of the in-sample model predictions) and large

CVs. In contrast, recall that survey estimates are available for 2,426 counties, as illustrated in

Figure 1, and under model M1, 2,486 model predictions are produced.

4.3. Model Efficiency

Model efficiency comparisons are conducted for the set of counties where both a survey

estimate and a model prediction are available. Compared to the survey estimates, the SEs

and CVs of the model predictions are lower for most counties and districts. In Figure 8, we

illustrate the reduction in CVs for the 2015 county-level estimates of corn planted acreage

in Illinois, under model M.

In Tables 5 and 7, we illustrate nationwide results (25%, 50%, 75% quantiles),

comparing the county-level survey SEs (CVs) to the model SEs (CVs) for models M1 and

M. In Tables 6 and 8 we illustrate nationwide results (25%, 50%, 75% quantiles),
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Fig. 7. Nationwide map of model-M, positive, predictions of county-level planted acreage of corn in 2015, on

the log10 scale; 121 negatively-valued model predictions are set to zero.
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Fig. 8. Plots of CVs of survey estimates and model-M predictions of planted acreage of corn in 2015 against
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Journal of Official Statistics78



comparing the district-level survey SEs (CVs) to the model SEs (CVs) for models M1 and

M. Comparing a model’s performance versus a survey’s performance based on precision

(relative precision), we observe an increase in precision/relative precision in the range

34–70% (32–72%) in most of the county-level SE (CV) and in the range 27–57%

(48–54%) in most of the district-level SE (CV), with slight improvement at the county

level for model M versus model M1. We do not see an overall increase in precision at the

district level for model M versus model M1 because the districts are composed of both in-

sample and not-in-sample counties, and more predictions for not-in-sample counties are

constructed under the two different models (M and M1, respectively).

The three-number summaries in Tables 5–8 do not reflect the relative efficiency at the

domain (county or district) level. So, we report additional results in Figure 9, in the first

row for 2,420 counties with positive survey estimates and model predictions, and in the

second row for the corresponding 272 districts (which may include additional model

predictions); counties or districts with relative efficiency values greater than 3 are removed

to facilitate visualization. The relative SE (CV) is the ratio of the model prediction

standard error (coefficient of variation) to the survey estimate standard error (coefficient

of variation). Values larger than one for the county-level relative SE are due to the

benchmarking adjustments and values larger than one for the district-level relative SE are

due to the not-in-sample predictions and to the benchmarking adjustments.

5. Discussion

In this article, we illustrated the contributions of administrative data to produce

agricultural official statistics. The methodology developed was illustrated using corn

planted acreage, and the results for 2015 were presented. As an external validation

exercise, models with specification M1 were fit to data from other years (2014, 2015, and

2016), and for commodities (corn, soybean, and sorghum). Blending survey and

administrative data, we produce model county-level and district-level predictions for a set

of counties predefined using in-sample data available from the survey summary and

not-in-sample data available from administrative sources. The number of positive model

Table 5. Summaries of standard errors of county-level survey estimates and model predictions (acres)

Counties with available survey estimates.

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 640.90 2719.00 9494.00
Model M1 FSA, RMA 429.40 1233.00 2850.00
Model M FSA, RMA and CDL 429.30 1166.00 2839.00

Table 6. Summaries of standard errors of district-level survey estimates and model predictions (acres).

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 4681.00 12220.00 36400.00
Model M1 FSA, RMA 2597.00 6121.00 15200.00
Model M FSA, RMA and CDL 2958.00 6470.00 15310.00
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predictions is larger than the number of available survey estimates. As another external

validation exercise, we compared the model predictions and the corresponding official

values, for the counties and districts where both were available, using metrics such as

median absolute difference, median absolute relative difference and credible interval

coverage. In general, results indicated close agreement between the model predictions and

the official values (constructed under the current NASS process).

Our first contribution is a novel use of administrative data to determine the set of subareas

with crop-specific planting activity. We encourage similar investigations for other small

area estimation applications where small domain characteristics are diverse within the large

domains and not-in-sample predictions are of interest, such as agricultural applications

(i.e., county-level cash rental rate estimation makes sense only for counties where at least

one cash rental contract exists), health applications (i.e., youth smoking prevalence

estimation make sense only for domains where at least one youth smoker actually exists) or

education applications (i.e., estimation of Native American children aged 5–17 in poverty

makes sense only for domains where at least one Native American child aged 5–17 lives).

In order to construct the prediction space, we assume that the data sources considered

exhaust the information available on planting activities, for a specific crop, in a specific

year. However, exploration of additional sources of data is of interest. When available,

such additional information (state-specific, commodity-specific and time-specific) may be

used to redefine the set of subareas for which model predictions are to be constructed and

to redefine the set of covariates. Also, we acknowledge, but have to ignore the possible

errors in administrative planting acreage values. One extension to deal with the possible

downward bias in FSA, RMA, and CDL would be to adjust the model to

ûijjuij; kij
ind, Nðkijuij; ŝ

2
ij Þ;

kij
ind, Uniformð1; a0Þ; uijjvi;b;s

2
u

ind, Nðx 0ijbþ vi;s
2
u Þ;

vijs
2
v

ind, Nð0;s 2
v Þ;

with the same priors adopted for the parameters ðb;s 2
u ;s

2
v Þ, a multiplicative offset kij and

a prespecified constant a0, say between 1 and 1.1.

Table 7. Summaries of CVs (%) of county-level survey estimates and model predictions

Counties with available survey estimates.

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 21.08 31.91 55.42
Model M1 FSA, RMA 5.97 12.60 38.74
Model M FSA, RMA and CDL 5.90 11.84 37.92

Table 8. Summaries of CV(%) of district-level survey estimates and model predictions.

Approach Covariate ADMIN PL
1st

Quantile Median
3rd

Quantile

Survey 7.03 10.50 16.04
Model M1 FSA, RMA 3.19 4.58 8.19
Model M FSA, RMA and CDL 3.22 4.73 8.50
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For the methodology illustrated, we presented the implicit subarea-level weights associated

with the different components of the final prediction. The contribution of administrative data

to final predictions was evaluated using the parameter gij. Model specifications, using a

covariate derived from FSA and RMA data alone (M1), or from FSA, RMA and CDL data

(M) are compared. Model M is slightly more efficient than model M1; however, it is important

to note that, under model M1, 110 county-level Admin PL values were imputed, while under

model M, only 11 county-level Admin PL values were imputed. Alternative strategies for

imputation of missing auxiliary values are of interest for future research.

As a consequence of the model specification, in particular the normality assumption in the

linking model, predictions are set to zero in some counties because the posterior means were

negative. While we acknowledge that other choices of distributions may be considered, for

example lognormal (or preferably generalized gamma distribution, lognormal being a special

case), we recognize the simplicity of the current specification, especially with respect to

prediction and benchmarking at multiple levels of interest. Under a non-normal distribution,

the model predictions would need to be back-transformed. This additional operation would

have to be performed at the lowest level of aggregation (for our application, the county), and

followed by benchmarking adjustments and aggregations to higher levels of interest.

The models were applied separately, for each state, in order to follow with the current

NASS process of constructing official statistics; results are communicated to each state

individually, and final dissemination follows. One may extend the model to using a three-fold

model by including an additional random effect corresponding to the states, and by using the
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nation-wide data. On the other hand, careful validation may be conducted at the state-level

and specific auxiliary data, in addition to the ones considered here, may be incorporated.

Increasing the number of counties with planted acreage predictions is another important

contribution. For corn in 2015, the largest number of not-in-sample predictions happens to

be in Texas: 42 out of 184 counties, accounting for approximately 0.7% of the total planted

acreage. See the Appendix (Section 6) for additional results on soybean, sorghum and

winter wheat. Hence, benchmarking only the set of counties where survey estimates are

available would have resulted in over-adjusting the predictions. While the proportion of

total acreage accounted for by the not-in-sample counties is small, the predictions play an

important role in setting predictions for other variables of interest, such as harvested

acreage, production and yield.

Finally, a major contribution of this paper is the operational framework presented, as it

applies to any small area estimation application, from data preparation and challenges in

dealing with specific features and incompleteness, to constructing a pool of predictions as

candidates for official statistics. Addressing challenges associated with the publication

process is an ongoing area of interest. The current NASS publication standard is based on the

survey summary and on relative properties of the final estimates (the official statistics

determined by NASS), for acreage and production; see the National Academies of Sciences,

Engineering, and Medicine (2017, 117) for more details. For this application study, we

investigate a hypothetical CV-based assessment, consistent with the publication standards

at other government agencies (Marker 2015 reported CV-based assessments used by various

government agencies). Using a 30% threshold for the county-level CVs across the nation

leads to 1,694 candidate county-level planted acreage predictions for publication of corn in

2015; see Figure 10 in the Appendix (Section 6). In contrast, in 2015, NASS published

estimates of corn for 1,433 counties, which are available in NASS QuickStats (USDA NASS

2016b). Moreover, in Equation (10), we provided the closed-form expression for the model

predictions. Since they are composite predictions of various sources, the nationwide set of

model predictions is a candidate for official publication. However, the challenge in

constructing fit-for-use official statistics is the need for a publication standard that would

permit publication of model predictions. While the current publication standard may be

adopted for the model predictions, it would not make use of other properties of the model

predictions, such as standard errors or credible intervals. The current NASS publication

standard is being revised; see Cruze et al. (2018) for recent research on this topic.

6. Appendix: Increased Number of Reliable Estimates for Other Commodities

For corn and soybean in 2015, the largest numbers of not-in-sample predictions are,

respectively, 42 and 70 out of 184 and 122 counties, accounting for approximately,

respectively, 0.7% and 11.83% of the total planted acreage in Texas. The largest numbers

of not-in-sample predictions for sorghum and winter wheat in 2015 are, respectively, 28

and 38 out of 73 and 154 counties, accounting for approximately, respectively, 5.23% and

12.47% of the total planted acreage in Mississippi and Georgia, respectively.

The county-level maps in Figures 10–13 depict positive survey (CAPS) estimates,

official values and model (M) predictions on the log10 scale, for corn, soybean, sorghum

and winter wheat, respectively. Dark areas correspond to high intensity regions.
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  2,627 model predictions; 1,694 have CVs ≤ 30%

 –  Texas: largest number of not-in-sample predictions, 42 out of 184 counties,
     accounting for     0.7% of planted acreage in the state

 –  121 zero predictions

Fig. 10. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of corn in 2015, on the log10 scale.
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–  Texas: largest number of not-in-sample predictions, 70 out of 122 counties,
    accounting for    11.83% of planted acreage in the state
–  173 zero predictions

• 2,224 model predictions; 1,472 have CVs ≤ 30%

• 1,306 official values

• 2,012 survey estimates; 1,046 have CVs ≤ 30%

Fig. 11. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of soybean in 2015, on the log10 scale.
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County-level model predictions: sorghum, 2015

            –  Mississippi: largest number of not-in-sample predictions, 28 out of 73 counties,
     accounting for      5.23% of planted acreage in the state

 –  89 zero predictions

• 218 official values

• 922 model predictions; 390 have CVs ≤ 30%
• 754 survey estimates; 135 have CVs ≤ 30%

Fig. 12. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of sorghum in 2015, on the log10 scale.
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Country-level model predictions: winter wheat, 2015

• 1,049 official values

–  64 zero predictions

• 2,191 survey estimates; 697 have CVs ≤ 30%

• 2,417 model predictions; 1,321 have CVs ≤ 30%

–  Georgia: largest number of not-in-sample predictions, 38 out of 154 counties,
    accounting for     12.47% of planted acreage in the state

Fig. 13. Nationwide maps of survey estimates, official values, and model-M predictions of county-level planted

acreage of winter wheat in 2015, on the log10 scale.
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