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Carefully designed probability-based sample surveys can be prohibitively expensive to
conduct. As such, many survey organizations have shifted away from using expensive
probability samples in favor of less expensive, but possibly less accurate, nonprobability web
samples. However, their lower costs and abundant availability make them a potentially useful
supplement to traditional probability-based samples. We examine this notion by proposing
a method of supplementing small probability samples with nonprobability samples using
Bayesian inference. We consider two semi-conjugate informative prior distributions for linear
regression coefficients based on nonprobability samples, one accounting for the distance
between maximum likelihood coefficients derived from parallel probability and non-
probability samples, and the second depending on the variability and size of the nonprobability
sample. The method is evaluated in comparison with a reference prior through simulations
and a real-data application involving multiple probability and nonprobability surveys fielded
simultaneously using the same questionnaire. We show that the method reduces the variance
and mean-squared error (MSE) of coefficient estimates and model-based predictions relative
to probability-only samples. Using actual and assumed cost data we also show that the method
can yield substantial cost savings (up to 55%) for a fixed MSE.

Key words: Bayesian inference; quota sampling; German Internet Panel; GESIS Panel; web
surveys.

1. Introduction

1.1. Background

Scientific surveys based on random, probability-based samples are ubiquitously used in

the social sciences to study and describe large populations. They provide a critical source

of quantifiable information used by governments and policy-makers to make informed

decisions. However, probability-based surveys are increasingly expensive to carry out due

to declining response rates and costly intervention strategies (Tourangeau and Plewes

2013). Consequently, many survey organizations have shifted away from probability-

based samples in favor of cheaper nonprobability samples usually drawn from volunteer

web panels. This shift in practice has prompted significant controversy and skepticism
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over the representativeness and overall utility of nonprobability samples (Baker et al.

2013). While probability-based surveys have their own concerns regarding representa-

tiveness (Gelman et al. 2016; Wang et al. 2015), comparison studies generally show (with

same exceptions: see, for example Kennedy et al. 2016) that they produce more accurate

population estimates than nonprobability surveys when evaluated against benchmark data

(Yeager et al. 2011; Blom et al. 2017; Malhotra and Krosnick 2007; Chang and Krosnick

2009; Dutwin and Buskirk 2017; Pennay et al. 2018; Erens et al. 2014; Callegaro et al.

2014; MacInnis et al. 2018). Hence, the field of survey research is in a situation where

probability-based samples are preferred from an error perspective, while nonprobability

samples are preferred from a cost perspective.

Given the advantages of both sampling schemes, it makes sense to devise a strategy to

combine them in a way that is beneficial from both a cost and error perspective. In some

ways, survey organizations already attempt to make use of both sample types, either by

drawing a nonprobability sample whose units closely match units from a reference

probability sample prior to data collection (Rivers 2007; Rivers and Bailey 2009;

Ansolabehere and Rivers 2013), or by devising post-survey weights that adjust the

composition of a nonprobability sample survey towards that of a reference probability

survey (Lee 2006; Lee and Valliant 2009; Valliant and Dever 2011). While both

approaches are cost-effective and have been shown to increase the accuracy of estimates

derived from nonprobability surveys, they have some important limitations. Firstly, they

assume that the matching/adjustment variables fully explain the underlying selection

mechanism that leads to inclusion in the nonprobability sample – a questionable and

usually untestable assumption in practice (Mercer et al. 2017). Secondly, the target

variable of interest is usually not present in the reference probability survey data, and

therefore, these data are usually discarded after the matching/adjustment procedure. The

intended analysis is then based solely on the nonprobability survey data, which lacks

important properties of randomization theory, including the ability to measure the

uncertainty of sample-based estimates.

Instead of forgoing probability-based survey data collection entirely, an alternative

approach is to field the same questionnaire in a parallel probability and nonprobability

sample and analyze the collected data jointly. For example, Elliott and Haviland (2007)

describe a methodology that supplements a traditional probability sample with a web-

based convenience sample. They evaluate a composite estimator influenced by Rao (2003)

that is a linear combination of a probability and convenience sample, with each sample

weighted according to a bias function. The estimator, under certain conditions, yields a

smaller mean-squared error (MSE) compared to the probability-only sample. In related

work, Elliott (2013) proposes a method of devising pseudo-weights for a nonprobability

sample based on probabilities of selection estimated using a parallel probability sample.

Both samples can then be combined and analyzed with case weights as if the units were

drawn from the same population frame. The method is shown to reduce bias and MSE

relative to a probability-only sample.

DiSogra et al. (2012) introduce an idea referred to as “blended calibration” in which

available probability sample cases are supplemented with parallel nonprobability opt-in

panel cases. The two-step procedure relies on, firstly, weighting the probability sample to

known population benchmarks using a raking or poststratification procedure. In the second
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step, the weighted probability and unweighted opt-in cases are combined and the

combined sample is calibrated to the probability-only sample on a selection of survey

variables common to both samples. The method yields smaller bias and MSE compared

to more traditional approaches of analyzing probability and nonprobability samples

separately and jointly. Fahimi et al. (2014) extend the approach by considering a more

effective range of differentiator variables to use in the calibration step.

A practical limitation of the above studies is that they require relatively large probability

sample sizes. Elliott and Haviland (2007) recommend a probability sample size of at least

1,000–10,000 cases alongside a convenience sample size in the thousands, and Elliott

(2013) uses a probability sample size of 50,000 in the simulation study. Blended

calibration also requires a relatively large probability sample size in order to minimize the

variability in the probability-based survey benchmarks.

Any data integration strategy that requires fielding a large probability sample is likely to

be met with opposition, as such sample sizes are prohibitively expensive for most survey

budgets. An alternative, and more budget-friendly, strategy is to draw and field a small

probability sample and combine it with a parallel nonprobability sample. On the face of it,

the usefulness of deliberately fielding a small probability sample is not intuitively clear.

Estimates derived from small probability samples, while inferentially valid, are subject to

large variability and are insufficient as a standalone source of population information.

Furthermore, a small probability sample is too sparse to be used as a reference sample for

sample matching and post-survey adjustment procedures. A natural question, therefore, is

whether there exists any scenario in which combining a small probability sample with a

nonprobability sample could be beneficial from both a cost and error perspective.

1.2. Bayesian Inference

We address this question from a Bayesian inferential viewpoint. Bayesian inference offers

an attractive system of estimation that allows combining sparse scientific data, such as

those from probability-based samples, with less scientific and less reliable but potentially

abundant and cheap information, such as those derived from nonprobability sources

(Gelman et al. 2013). There are several advantages of using Bayesian inference in the

context of combining small probability samples with nonprobability samples. First, the

Bayesian framework allows for estimating complex models and quantifying measures of

uncertainty, which can be problematic when analyzing nonprobability data under

traditional estimation frameworks. Second, unlike sample matching and post-survey

adjustment procedures, the Bayesian framework allows for the analysis of probability-

based sample units through the likelihood function and is principally structured to give

priority to these units in the posterior estimations as the probability sample size increases.

Put differently, as additional probability sample units are observed, the “prior”

information brought in through the nonprobability data becomes less relevant in the

estimations, and increasing weight is given to the probability units. And third, because the

probability-based likelihood borrows information from the informative nonprobability-

based prior, the resulting posterior estimates are expected to be more efficient, that is, have

less uncertainty, compared to estimates derived from small probability-only samples. This

result could yield potential cost savings if large reductions in uncertainty are achieved and
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the marginal cost of interviewing a nonprobability sample unit is lower than that of a

probability sample unit – a plausible scenario in practice.

However, a disadvantage of applying the Bayesian framework in the aforementioned

context is the deliberate incorporation of (potentially) biased data into the estimation

process. In contrast to sample matching and post-survey adjustment, which takes an error-

prone nonprobability sample and skews it towards a presumably less error-prone

probability reference sample, the Bayesian approach that we describe does the opposite.

That is, the method takes a probability sample and deliberately skews it towards a

nonprobability sample reflected in the prior. The posterior estimates are therefore likely to

have more bias than corresponding probability-only estimates. This effect is likely to

be most pronounced for small probability samples where the prior will have peak influence

on the posterior estimates. On the other hand, the expected reduction in variability due to

the supplementary use of nonprobability data may offset any increase in bias, resulting in

an estimator that yields a smaller mean-squared error.

1.3. Research Aims

In this article, we investigate whether supplementing a probability sample with

nonprobability sample priors can produce more efficient survey estimates under varying

probability sample sizes. We consider three specifications of the prior distribution for a

target analysis of regression coefficients and model-based predictions: (i) a reference prior

that allows for the probability sample to dominate the posterior, (ii) an informative prior that

decreases the weight of the nonprobability sample with increasing distance between the

maximum likelihood coefficient estimates derived from the probability and nonprobability

samples, thus, “protecting” against bias in the latter, and (iii) an informative prior whose

weight depends on the variability and size of the nonprobability sample and is able to

dominate the posterior. Further, we examine the extent to which varying levels of bias in the

nonprobability sample affect the mean-squared error (MSE) of the posterior estimates. To

achieve these aims, we carry out a simulation study and real-data application involving two

nationally-representative, probability-based surveys and eight nonprobability web surveys

fielded in parallel using the same questionnaire. Through the application, we also assess

whether the method is likely to yield cost savings for a fixed MSE.

The balance of this article is organized into five sections. Section 2 describes the

proposed methodology for combining probability and nonprobability samples under a

Bayesian framework. Section 3 presents the simulation study examining the bias-variance

tradeoff of the method for various bias and sample size parameters. Sections 4 and 5

describe the real-data application and evaluation. Lastly, Section 6 provides a general

discussion of the results, their implications for survey practice, and possible research

extensions.

2. Methodology

2.1. Modeling Approach

As introduced in Subsection 1.2, in Bayesian inference (for details, see Gelman et al.

2013), the likelihood distribution is multiplied by a prior distribution, and inferences are
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typically summarized by random draws from this product, that is, the posterior

distribution. On the one hand, Bayesian inference can utilize prior distributions that “allow

data to speak for themselves,” that is, to have a negligible influence on the posterior draws.

These priors are known as noninformative or weakly informative. On the other hand,

informative priors can be used to add information about model parameters. This may be

desirable in situations where parameters cannot be identified, or due to a small number of

available observations. In this section we present three models, of which two use

informative prior distributions constructed from a single nonprobability sample.

Consider an n £ 1 response vector y ¼ ð y1; : : : ; ynÞ
T of observations collected from a

probability-based survey. The parameter of interest is the expectation of y, denoted by m.

We assume that y is continuous and normally distributed:

y , Nðm;s2Þ;

where s 2 is the unknown variance of y. The simple model can be expanded to account for

covariates if the researcher’s substantive interest lies in interpreting their effect on the

outcome variable, or in making model-based predictions of the outcome. We focus on

these two scenarios. The covariates can be incorporated by using a linear regression with

an n £ p design matrix X ¼ ½x1; : : : ; xp�, which leads to

y , NðXb;s2IÞ;

where b ¼ ðb1; : : : ;bpÞ
0 is a column vector of length p and I is the n £ n identity matrix.

We note that this model does not explicitly reflect the survey design. In our forthcoming

application, we include survey weights as a covariate in the proposed modeling approach.

Adapting the proposed approach to include additional survey design features (e.g.,

stratification, clustering) is a topic we leave for future work.

A semi-conjugate prior distribution for a single regression coefficient, bj, for j ¼

1; : : : ; p is

bj , N bj0;s
2
bj0

� �
; ð1Þ

with fixed location and variance hyperparameters, bj0 and s 2
bj0

, respectively. The semi-

conjugacy (or conditional conjugacy) results from the fact that the variance in (1) does not

depend on s 2 (Gelman et al. 2013, 130). We consider three specifications of these

hyperparameters.

In Model 1 we assume a weakly informative parameterization of the priors, that is;

bj0 ¼ 0; s 2
bj0
¼ 106:

This specification allows the model parameters to be estimated directly from the

probability data. Therefore, we treat this model as a reference to compare the two other

specifications in which we introduce information from the nonprobability samples.

In Model 2 we introduce an informative prior by utilizing information from a

single nonprobability sample. First, we define b̂
P

j and b̂
NP

j to be the maximum likelihood

(ML) estimators of the regression coefficients using the probability (P) and nonprobability

(NP) survey data, respectively. These ML estimates are equivalent to the means of the

posterior distributions of these parameters under the linear regression model using

Sakshaug et al.: Supplementing Small Probability Samples 657



noninformative Jeffrey’s priors. We implicitly assume a simple random sampling design

for the nonprobability data. Next, we set the hyperparameter bj0 equal to the estimated

regression coefficient derived from the nonprobability survey, b̂
NP

j . For the variance

hyperparameter s 2
bj0

we consider the Euclidean distance between the ML regression

coefficients estimated in the probability survey and in the nonprobability survey.

Specifically, we consider the square of the distance as the variance hyperparameter in (1):

s 2
bj0
¼ d 2 b̂

P

j ; b̂
NP

j

� �
¼ b̂

P

j 2 b̂
NP

j

� �2

; ;j:

Therefore, the prior for the regression coefficient in Model 2 can be written as:

bj , N b̂
NP

j ; d 2 b̂
P

j ; b̂
NP

j

� �� �
ð2Þ

This method of setting the hyperparameter for the regression coefficient implies that the

standard deviation, sbj0, is equal to the difference between the probability- and

nonprobability-based ML estimates and does not depend on the size of the nonprobability

sample. This, on the one hand, ensures some variability around the mean while keeping the

uncertainty relatively small. If the distance d is large, the prior is wider and allows the small

probability sample to influence the posterior. The smaller the distance between the two ML

estimates, the tighter the prior distribution and, thus, larger potential gains in reducing

posterior variance. A potential limitation of this approach is that if the distance is zero, that is,

the corresponding probability and nonprobability estimates are equal, then the

hyperparameter will be set to zero and shrink the location parameter bj to a fixed value

being b̂
NP

j . However, in practice, such an event has virtually zero probability.When the

distance is extremely small, it may severely reduce the variance of the posterior distribution

for the parameter, especially when the probability sample size is very small. The next model

we consider is free from this shortcoming.

By using the probability-based estimator to construct the prior distribution, the question of

using data twice arises. We address this issue by pointing out that the ML estimator from the

probability sample (a measure of central tendency) is used to inform the variance, rather than

the mean. Further, we use the information from the probability data only in relative

comparison to the nonprobability sample. Hence, any potential shrinkage in posterior

variance depends on the combination of both data sets, rather than the probability data alone.

In Model 3 we use a bootstrap procedure instead of the squared distance to derive

information about the variance hyperparameter in (1). The bootstrap method has been used

in many contexts and was originally proposed by Efron (1979). The general approach is to

draw random subsamples with replacement from the full sample a large number of times

and estimate the statistic of interest in each subsample before combining them using a

bootstrap estimator. We implement the procedure by drawing 1,000 bootstrap samples

from the nonprobability survey data, estimating the regression coefficient in each of them,

and then calculating the variance ŝ BNP
bj

� �2

across all regression coefficients. We then set

the variance hyperparameter in (1) to the estimated variance and the prior distribution for
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the regression coefficient in Model 3:

bj , N b̂
NP

j ; ŝ BNP
bj

� �2
� �

; ð3Þ

with mean being the ML coefficient calculated using the nonprobability sample (the mean

of all bootstrapped coefficients will converge to it). This approach is an alternative to

calculating the uncertainty around the nonprobability-based regression coefficient and

ensures it is always positive. The method is limited in a sense that the hyperparameter

relies on the bootstrapped nonprobability sample which may propagate its unrepresenta-

tiveness and homogeneity, especially when very large nonprobability sample sizes are

used, again leading to a false sense of certainty about the regression coefficient. However,

analogous to the distance approach, this effect is reduced the larger the size of the

probability sample.

For the variance of the regression model, s 2, we first transform it to a precision, that is,

inverse variance (s22), and sets22 , Gðr;mÞwhereGð�;�Þ denotes a Gamma distribution

with hyperparameters r being a shape and m being a rate. In our application, we set these

hyperparameters to be r ¼ m ¼ 1023. This specification for the precision parameter is

approximately noninformative and gives preference to the data (Gelman et al. 2013, 128). It

remains the same for Models 1 through 3, which ensures comparability of the results.

3. Simulated Data Inference

In this section, we demonstrate how the proposed methods work under various

assumptions regarding bias and sample size introduced through simulated data. First, we

investigate the effect of bias on the regression coefficients of the model (part A of the

simulation), and second, we analyze to what extent the bias affects model-based

predictions of the outcome variable (part B).

The analysis was implemented in OpenBUGS (Spiegelhalter et al. 2007) and R (R Core

Team 2016) using the library r2openbugs (Sturtz et al. 2005). We also use MCMCpack

to summarize the results of the simulations, boot package for bootstrapping, as well as

ggmcmc and lattice packages for visualization. In the simulations, the posterior

distributions were obtained using three MCMC chains with samples of 2,000 each and 500

burn-in samples which ensured convergence of all chains.

To generate the data, we first assume the true values of the parameters in a linear

regression model with intercept b1 ¼ 5, two parameters b2 ¼ 0.5 and b3 ¼ 1, and

standard deviation of the outcome being sy ¼ 5. Predictors x1 and x2 have means 0 and 5,

respectively, standard deviations 4 and 0.5, and are correlated with correlation r ¼ 0.1.

These assumptions yield the mean response being �y ¼ 10.

To introduce bias, we multiply the true parameter b3 ¼ 1 by 0.5, 1 (i.e., unbiased

sample), 1.5, 2, 2.5, and 3 when generating the nonprobability samples (part A of

simulation). For testing the effect of bias in nonprobability samples on the predicted

outcomes (part B), we generate a predictive posterior distribution for a fixed probability

test sample of size 500 using coefficients generated in part A. Bias introduced in this way

is quite significant. For instance, when coefficient b3 is doubled, the expected outcome
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increases to 15. These scenarios are relatively extreme to real-life applications, but aim to

demonstrate the limits of the proposed methods.

In the simulation we assume three nonprobability sample sizes NPS [ {1000, 10000,

50000} and probability sample sizes PS [ {50, 100, 150, 200, 250, 300, 350, 400, 450,

500, 600, 700, 800, 900, 1000}. In each simulation, for each PS we generate 100 sets of

data with each combination of bias level and NPS. In total, it yields 27,000 data sets.

3.1. Model Evaluation

First, we evaluate the performance of the three modelling approaches by calculating the

bias, variance, and mean-squared error (MSE; the sum of variance and squared bias) of the

posterior means of the coefficients estimated using Models 1, 2 and 3. This permits an

assessment of the effect of bias in nonprobability-based informative priors on all of the

model coefficients.

Second, to evaluate model-based predictions, we split the probability survey data

randomly into two parts: a training set (denoted by y) and a test set (~y). We then use the

training set to fit the models specified in Subsection 2.1. Next, we predict the outcome

variable in the test set ~y. We do so by applying posterior distributions of model parameters

estimated using y to the covariates in the test set. The resulting distributions are called

posterior predictive distributions, that is, posteriors for each data point.

Next, to evaluate the error properties of the predictions for the three models, we

calculate the bias, variance, and MSE of the means, denoted by ~y�, of the posterior

predictive distributions for ~y. In the simulation, we define the MSE as:

MSEð~y�Þ ¼ E

�
ð~y� 2 ~yÞ2

�
;

which can be decomposed into variance and bias MSEð~y�Þ ¼ Bias2ð~y�Þ þ Varð~y�Þ.

We compute the bias as the difference between the mean of the posterior means, ~y�, and

the mean of the test sample outcome ~y, i.e., Biasð~y�Þ ¼ 1
n

P
~y� 2 1

n
S~y whereas Varð~y�Þ is the

unbiased estimator of the variance of ~y�.

We calculate the bias, variance, and MSE of the posterior predictive means for the

three models described in Subsection 2.1 under different probability sample size

scenarios. To accomplish this, we run the models on training sets ranging in size from 50

to 600 cases with intervals of 50, and from 600 to 1,000 with intervals of 100. The samples

are constructed cumulatively so that the same cases used in the smaller samples are also

included in the larger samples.

3.2. Results

Having generated the artificial probability and nonprobability samples for each size and

level of bias as described in the previous section, we applied the three modelling

approaches (Model 1, 2, and 3) as described in Subsection 2.1 to produce posterior

distributions of model parameters and predictive distributions for the test sample in

simulation part B. We then compare the effect of bias introduced in the nonprobability

sample on bias, variance, and MSE of the coefficients and means of the posterior
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predictive distributions as defined in Subsection 3.1. The bias, variance, and MSE are

averaged over 100 simulated data sets.

3.2.1. Part A: Regression Coefficients

Figure 1 presents the bias, variance, and MSE for the three coefficients, where b3 has been

generated with bias in the nonprobability (NP) sample. First, we observe that Model 2 does

not lead to bias in the coefficients and performs similarly to Model 1, which relies on

weakly-informative priors without information from the NP samples. It also leads to

improvements in variance (middle panel of Figure 1) and MSE (lower panel). For Model 3,

we observe larger improvements in variance compared to Models 1 and 2. However, in the

presence of bias, the MSE tends to be dominated by it. This results from the fact that the
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Fig. 1. Effect of bias in nonprobability samples on regression coefficient. Note: Regression parameters are in

columns; measures in rows, where top row is bias (difference between the posterior mean from the model and the

true coefficient), middle row is variance, and bottom row is mean-squared error (MSE), averaged over 100

simulations. Each panel shows the combination of three nonprobability sample sizes (NPS) and six levels of bias

introduced to b3 in nonprobability sample (bias:1 denotes unbiased coefficient, i.e., b3 £ 1), with probability

sample size on the x-axis.
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prior in Model 3 relies on the size and variability of the NP sample and does not protect

against bias present in it.

More precisely, in Model 3 the positive bias in the posterior mean of b3 (top right panel)

is increasing with the introduced bias (difference between posterior mean of the coefficient

and the true coefficient) and it is more persistent with larger nonprobability sample sizes

(NPS). This is offset by the negative bias in the intercept b1 as the regression equation needs

to be consistent with the expectation of the outcome in the probability sample, E[y ] ¼ 10.

However, for large NPS (10,000 or 50,000), the prior for b1 is relatively tight and it

dominates the posterior of b1 for small probability sample sizes (PS), which subsequently

leads to bias in the predictions of the outcome (see Figure 2 and the following Subsection

3.2.2). With an increase in PS, the posterior becomes more and more dominated by the

unbiased probability sample, which first increases the bias in the posterior of b1 and

decreases in b3 (e.g., NPS ¼ 10,000 and bias ¼ 3 in top left and right panel of Figure 1) to

gradually decrease bias in both coefficients (e.g., NPS ¼ 1,000 and bias ¼ 2.5) and output

predictions (left panel in Figure 2). Coefficient b2 remains unaffected by bias.

3.2.2. Part B: Model-Based Predictions

Figure 2 shows the effect of bias introduced in the nonprobability samples on the

predictive ability of the models when priors are based on those samples. We average over

means of posterior predictive distributions (referred to as predictions for brevity) for 500

generated outcome data points. In all comparisons, we utilize the true generated outcome.

In Figure 2 we observe that Model 2, compared with the weakly informative Model 1

without input from nonprobability samples, yields mostly unbiased predictions. For Model

3, as indicated in the previous section, the bias in predictions changes with the size of bias in

b3. A large bias in the coefficient yields larger prediction bias, larger variance, and larger

MSE. Also, for larger nonprobability sample sizes (NPS), the bias persists for larger

probability sample sizes (PS). However, for a moderate bias (b3 multiplied by 0.5 to 1.5),

Model 2 and Model 3 show a reduction in the prediction variance and MSE (presented on

log scale) compared with Model 1 and for nonprobability sample sizes of 1,000 and 10,000.
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Fig. 2. Effect of bias in nonprobabiliy samples on predicted outcome. Note: Left panel shows bias (difference
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shows a combination of four levels of bias in b3 (Beta:1 denotes no bias, i.e., b3 £ 1) and three nonprobability
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For NPS ¼ 50,000 and larger amounts of bias, reductions in variance and MSE are observed

only for Model 2 and they are relatively small compared with Model 1 predictions.

4. Real-Data Application

To demonstrate the proposed methods on actual survey data, we make use of two

probability-based surveys: the German Internet Panel (GIP) and the GESIS Panel, and eight

nonprobability surveys. Each survey implemented the same questionnaire to respondents

during overlapping field periods. Relevant details of the surveys are provided below.

We demonstrate the proposed Bayesian method on two continuous outcome measures:

an additive index of a subset of Big Five (BIG-5; Digman 1990; Goldberg 1993)

personality items and an additive index of a subset of Need for Cognition (NFC; Cacioppo

and Petty 1982) scale items. The Big Five index included four items related to “trust of

people”, “artistic interests”, “finding fault in others”, and having an “active imagination”

with each item using a 5-point response scale from “strongly disagree” to “strongly agree.”

The distribution of additive values approximately followed a normal distribution. The

NFC index included four items about “knowing answers without understanding their

rationale”, “being confronted with tricky tasks to solve”, “preferring to solve complex to

simple problems”, and “thinking only because one has to.” Each item used a 7-point

response scale from “strongly disagree” to “strongly agree.” A square-root transformation

was applied to the index to achieve approximate normality.

4.1. German Internet Panel

The GIP is an ongoing individual-level longitudinal online survey, which is designed to be

representative of the population aged 16–75 in Germany. It is the central data collection

project of the Collaborative Research Center 884 “Political Economy of Reforms” funded

by the German Research Foundation (DFG). In 2012 and 2014, the GIP recruited sample

members by means of a 3-stage stratified probability area sample and face-to-face

recruitment interviews. At the first sampling stage, a random sample of areas was drawn

from a database of 52,947 areas in Germany, each containing approximately equal

numbers of households. Within each PSU, listers recorded every household along a

predefined random route. Subsequently, a random sample of households to be interviewed

drawn. All age-eligible members of sampled households were invited to become online

panelists (Blom et al. 2015). The GIP covers individuals without computer and/or internet

access by equipping them with the necessary devices (Blom et al. 2016a; Herzing and

Blom 2019). The first recruitment process, which took place in 2012, yielded a recruitment

rate of 18.5% (also based on Response Rate 2; AAPOR 2016) and in the second

recruitment process in 2014 a recruitment rate of 20.5% (also based on AAPOR Response

Rate 2) was achieved. Every two months, all panel members are invited to take part in an

online survey of about 20–25 minutes on various social, economic, and political topics.

The questionnaire module used in the present study was implemented 1–31 March 2015.

Out of 4,989 original panel members, 3,426 completed the survey for a completion rate of

68.7%. Despite the low recruitment rate, the representativeness of the GIP compares well

to other probability-based surveys in Germany (Blom et al. 2017).

Sakshaug et al.: Supplementing Small Probability Samples 663



4.2. GESIS Panel

Like the GIP, the GESIS Panel is an ongoing individual-level probability-based

longitudinal survey. It is designed to be representative of the German-speaking population

aged between 18 and 70 years, permanently residing in Germany. The sample was drawn

from municipal population registers using a stratified multistage sampling procedure. All

sample members who were interviewed with face-to-face recruitment interviews were

asked to participate in the panel. The recruitment process, which took place in 2013/14,

yielded a panel registration rate of 28.4% (based on Response Rate 1; AAPOR, 2016).

Subsequent interviews are conducted on a bi-monthly basis using a mix of mail and web

data collection. Mail questionnaires are sent to participants who are unable or unwilling to

complete the interview online. Interviews are divided into two parts: a 15-minute

interview on modules submitted by external researchers and a five-minute interview

devoted to longitudinal core study topics developed by GESIS. The core study covers a

range of topics, including values, political behavior, well-being, and usage of information

technology. The questionnaire module we use was approved by the GESIS Panel team and

fielded 18 February–14 April 2015. Out of 6,210 original panel members, 3,822

completed the interview (61.5%). More details of the GESIS Panel methodology can be

found in Bosnjak et al. (2017), where they show the representativeness of the panel to be

similar to other probability-based surveys in Germany (see also Blom et al. 2016b).

4.3. Nonprobability Surveys

The eight nonprobability web surveys were conducted by different commercial vendors.

The vendors were recruited through a call for tender published in November 2014. The

tender call sought to implement a ten-minute questionnaire on a sample of approximately

1,000 respondents in three waves of data collection. Initial data collection was to take

place in March 2015 with two follow-up surveys in September 2015 and March 2016. The

primary stipulation was that the sample should be representative of the general population

aged 18–70 years living in Germany. Exactly how representativeness was to be achieved

(e.g., quota sampling) was left to the discretion of each vendor. Out of 17 bids, seven

commercial vendors were commissioned based on technical requirements and budgetary

considerations. An eighth commercial vendor, upon learning about the study goals of the

project, voluntarily offered to participate without compensation. Further details of each

nonprobability survey, including cost information, is provided in Table 1. To maintain

confidentiality, we do not identify the commercial vendors by name and simply refer to the

nonprobability surveys by number, that is, Survey 1, Survey 2, and so on. The actual cost

of the commercial surveys (excluding the gratis survey) ranged from EUR 5,392.97 to

EUR 10,676.44. The average cost per respondent therefore ranged from EUR 5.40 to

EUR 10.29. We do not have cost information for the GIP and GESIS Panel surveys.

4.4. Comparison of Outcome Variables Between Surveys

Here, we examine the extent to which the outcome variables differ within and between

the probability and nonprobability surveys. Figure 3 displays estimated means and 95%
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confidence intervals (CIs) for the BIG-5 (left panel) and NFC (right panel) outcome

variables in the GIP and GESIS Panel surveys.

The figures show very little difference between the GIP and GESIS Panel estimates of

BIG-5 and NFC. Both probability surveys yield mean estimates that overlap by their

respective confidence intervals. Larger differences are apparent between the probability

and nonprobability surveys. For the BIG-5 variable, all nonprobability surveys yield mean

estimates that fall outside of the GIP and GESIS Panel confidence intervals. All but one

of the nonprobability-based means is lower than the GIP and GESIS Panel means.

Differences between the nonprobability surveys are less pronounced, as most of the

estimates are relatively homogeneous and lie within a close range. For the NFC variable,

the nonprobability mean estimates are larger than the corresponding GIP and GESIS Panel

estimates. All but two of the nonprobability surveys yield mean estimates that lie outside

of the GIP and GESIS Panel CIs. Analogous to the BIG-5 estimates, most of the

nonprobability NFC estimates are similar to each other. In summary, it is apparent that

differences in the means exist between the probability and nonprobability surveys, but

differences are less apparent between the nonprobability surveys.

4.5. Comparison of Regression Coefficients Between Surveys

Next, we compare the ML estimates of regression coefficients of BIG-5 and NFC obtained

from the probability and nonprobability surveys. Control variables include age (four

categories), sex (binary), marital status (three categories), occupation (four categories),

secondary education certificate (three categories), region of residence (binary), internet

access (binary), and housing tenure (binary). We also include a survey weight variable,

Table 1. List of probability and nonprobability surveys.

Survey
No.
respondents

Quota
variables Fieldwork period

Total cost
(in Euros)

Average cost
per respondent
(in Euros)

GIP 3,426 N/A 1st–31st March 2015 Unavailable Unavailable
GESIS 3,822 N/A 18th February–14th

April 2015
Unavailable Unavailable

1 1,012 Age, gender,
region,
education

1st–31st March 2015 0 (pro bono) N/A

2 1,000 Age, gender,
region

5th–18th March 2015 5,392.97 5.40

3 999 Age, gender,
region

2nd–11th March 2015 5,618.57 5.63

4 1,000 Age, region 1st–18th March 2015 7,061.11 7.07
5 994 Age, gender,

region
2nd–16th March 2015 7,411.00 7.46

6 1,002 Age, gender,
region,
education

25th March–1st
April 2015

7,636.22 7.62

7 1,000 Age, gender,
region

3rd–9th March 2015 8,380.46 8.39

8 1,038 Age, gender,
region

5th–11th March 2015 10,676.44 10.29
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which was produced to reduce bias through a raking adjustment to population benchmarks

(Blom et al. 2017), as a covariate in the regression. For the regression analysis of the

GESIS Panel and the nonprobability surveys, we use the same independent variables,

minus region and the survey weight, which were both unavailable.

Figure 4 shows the regression coefficients and 95% CIs from the BIG-5 model estimated

from the GIP Panel with corresponding coefficients estimated from the nonprobability

surveys. The conclusions for the GESIS Panel (not shown) are virtually the same. Overall,

there is a close correspondence between the probability and nonprobability coefficients

across the models. Very few of the nonprobability estimates lie outside of the CI ranges of

the probability estimates. The results contrast with the results presented in Subsection 4.4,

where differences in the outcome variable between the probability and nonprobability

surveys were more pronounced. Our finding that regression coefficients are less affected

by bias than univariate estimates in nonprobability samples is consistent with other work

(Ansolabehere and Schaffner 2014; Pasek 2016).

5. Application Results

5.1. Evaluation and Efficiency

In this section, we evaluate the performance of the three modelling approaches on the GIP

and GESIS Panel data by using the model-based predictions as described in Subsection

3.1. Splitting the probability survey data into training and test sets in the applicaton is done

for evaluation purposes only and takes advantage of the abundant number of probability
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Fig. 3. Means and 95% confidence intervals for BIG-5 (left panel and Need for Cognition (NFC) (right panel)

on the probability (GIP and GESIS Panel) and eight nonprobability (NP) surveys.
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cases we have at our disposal. In practice, we envision the practitioner would only have

access to a small probability sample and therefore this evaluation step would not be

feasible. We then use the training set to fit the models specified in Subsection 2.1.

After excluding cases with missing data and assigning 1,000 cases from the probability

survey to the training set, the remaining cases are assigned to the test set. For the BIG-5

outcome, the test set includes 1,924 and 2,150 cases for the GIP and GESIS Panel surveys,

respectively. For the NFC outcome, the respective sample sizes are 1,891 and 2,088 cases.

The nonprobability sample sizes are not altered.

In the application, we use MSEð~y�Þ ¼ E ~y� 2 ~y�
IS

adj

� �2
� �

, where ~y�
IS

adj are the model-adjusted,

in-sample (superscript IS) predictions in the test set of the probability survey. These

predictions are adjusted by (i) applying the regression model with the same covariates as in

Models 1, 2, and 3 exclusively to the test set, with noninformative Jeffrey’s priors, and

then (ii) computing posterior predictive means and using them as ~y�
IS

adj. By using the

adjusted predictions rather than the original observations, we account for the fact that our

model may be unrealistic and explain only a small part of data variability. An important

distinction between ~y� and ~y�
IS

adj is that the former are out-of-sample predictions made by

using one of the three specifications of models described in Subsection 2.1 on the training

set, whereas the latter are in-sample predictions informed exclusively by the withheld test

set. Analogously, the bias here is the difference between the mean of the posterior means,

~y�, and the mean of the model-adjusted predictions ~y�
IS

adj, that is, Biasð~y�Þ ¼ 1
n

P
~y� 2 1

n

P
~y�

IS

adj

(cf. Subsection 3.1).
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Finally, to assess the efficiency of the two models informed by the nonprobability data

(Models 2 and 3) relative to the reference model (Model 1), which is based on only

weakly-informative priors, we examine the ratio of the variances of the posterior

predictive means:

e Var ~y�Model1

� 	
;Var ~y�Model2

� 	� 	
¼

Var ~y�Model2

� 	

Var ~y�Model1

� 	 ;

e Var ~y�Model1

� 	
;Var ~y�Model3

� 	� 	
¼

Var ~y�Model3

� 	

Var ~y�Model1

� 	 :

Analogously, we examine the ratio of the MSEs of the posterior predictive means. If the

value of any ratio is less than 1, then the informative model is more efficient than the

reference model. Conversely, if the ratio is equal to or greater than 1 then the informative

models do not produce efficiency gains over the reference model.

5.2. Variance, Bias, and MSE

This section presents the results of the three modeling approaches (Model 1, 2, and 3)

implemented on the GIP and GESIS Panel surveys. The variance, bias, and MSE as defined

above are computed for the posterior predictive means (hereinafter referred to simply as the

mean estimates) of the two outcome variables produced under each model. The entire

procedure of splitting the probability data into training and test sets was conducted 100

times to produce 100 estimates of variance, bias, and MSE for each probability sample size.

The forthcoming results report the averages of these 100 repetitions. Each of the models

was fitted using the independent variables described in Subsection 4.4.

The posterior characteristics were computed, as in Section 3, using three MCMC chains

with samples of 1,000 and a 100 iteration burn-in sample. This ensured convergence of all

chains used for creating the posterior distributions. We investigated the convergence using

a larger number of iterations and found that the results were robust with respect to the

number of iterations used.

Results for the BIG-5 and NFC means are shown for both GIP and GESIS Panel data in

Figure 5. For brevity, we show the results using only one nonprobability survey, NP ¼ 5,

the middle-priced of the seven paid-for nonprobability surveys. Similar results (not

shown) were found when the other nonprobability surveys were used.

Models 2 and 3 yield very similar variance estimates and are virtually indistinguishable

in the figures. For the smallest probability sample sizes, both models yield substantially

smaller variance estimates compared to the reference model (Model 1). Maximum

variance efficiency is achieved with a probability sample size of 50, while efficiency gains

tend to diminish as the sample size increases. All three models converge to variance

equivalency at about n ¼ 500. What is most striking is that the variance estimates

produced under Models 2 and 3 for the smallest sample sizes are approximately equivalent

to the variance estimates produced under the reference model for the largest probability

sample size of 1,000. In other words, a probability sample size of only 50 cases with a

supplement of 1,000 nonprobability cases achieves roughly the same variance as a much

larger probability sample size of 1,000 does on its own.
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Concerning bias, as expected, the majority of plots show a slightly larger bias in

Models 2 and 3 relative to the reference model for the smallest probability sample

sizes, where the nonprobability-based priors have their strongest influence on the

posterior estimations. In general, however, the magnitude of the bias is quite small,

which is consistent with the results of the comparison of regression coefficients in

Subsection 4.5.

In terms of MSE, the figures reveal that for small probability sample sizes Models 2 and

3 yield MSE values that are substantially smaller than those of the reference model. These

MSE reductions persist at a decreasing rate until the probability sample size reaches about

500, at which point the values from all three models converge. The results clearly indicate

that any increase in bias due to using the nonprobability-based priors is offset by the

reduction in variance. Analogous to the variance results, the MSE values under Models 2

and 3 remain similarly small across the sample size spectrum. The practical implication is

that the same MSE achieved through a large probability sample can be roughly achieved

by supplementing a very small probability sample (e.g., 50–100 cases) with a larger

nonprobability sample.

5.3. Model Efficiency and Cost Implications

In the final analysis, we summarize the MSE/variance efficiencies achieved through

Models 2 and 3 and examine whether they would have likely resulted in a cost saving

compared to Model 1 for a given MSE. Figure 6 presents efficiency ratios of MSE and

variance for mean estimates of BIG-5 (upper panel) and NFC (lower panel) for the GIP

and GESIS Panel surveys. The ratios are averaged across all eight nonprobability surveys

(with equal weight given) to provide an overall summary measure of model efficiencies.
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Four observations can be made from Figure 6: (i) as observed in the previous

analyses, MSE/variance efficiency gains are largest for the smallest probability sample

sizes. For example, Models 2 and 3 reduce MSE and variance by more than 80%, on

average, compared to Model 1 for the smallest sample size of 50. Even when the

sample size is doubled to 100 cases, MSE/variance reductions of at least 70% are

observed; (ii) the BIG-5 variable experiences larger efficiency gains than the NFC

variable, and both variables yield slightly larger efficiency gains in the GIP than in the

GESIS Panel; (iii) gains in variance efficiency are only slightly larger than gains in

MSE efficiency, which indicates that the bias due to utilizing nonprobability-based

priors is marginal compared to the corresponding variance reduction; and (iv) Models 2

and 3 yield very similar gains in MSE and variance efficiency with slightly larger gains

achieved under Model 2.

To demonstrate the cost implications (and potential cost savings) of the different

models, we utilize actual cost data for the nonprobability surveys (see Table 1) and

hypothetical cost data for the probability-based GIP survey. For the GIP survey, we

assume a cost per respondent of 22 euros, which is roughly 2 and 4 times larger

than the most and least expensive nonprobability surveys (excluding the gratis

survey), respectively. Using these data, we perform a crude estimation of the expected

cost of performing a probability-only survey (under Model 1) that would achieve the

same MSE that was actually achieved under Model 3 – the more conservative of the

two models utilizing nonprobability-based priors. We then compare the estimated
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Model 1 costs with the actual and estimated costs of Model 3 for the fixed MSE. The

analysis is conducted in two steps. First, a linear regression model of GIP costs (log-

transformed) on MSE (and MSE squared) is fitted using the Model 1 MSE results.

Next, we plug-in the MSE values achieved under Model 3 into the fitted model to

estimate the (back-transformed) cost of collecting a probability-only sample. Lastly, we

calculate differences between the estimated Model 1 costs and the actual/estimated

Model 3 costs for each realized MSE and compute the expected cost savings (in

percentages) under Model 3.

Tables 2 and 3 show the estimated cost differences between Model 1 and Model 3 for

the BIG-5 and NFC outcomes, respectively. The cost differences are shown for the five

smallest probability sample sizes (50, 100, 150, 200, and 250). Regarding the BIG-5

outcome, cost savings are evident for each sample size. In general, the largest cost savings

occur for the smallest sample size of 50, followed by 100, and so on, which is consistent

with the MSE reductions observed in the previous analyses. However, there is large

variation in the amount of cost savings across the seven (paid-for) nonprobability surveys.

For example, when the two least expensive nonprobability surveys (surveys 2 and 3) are

used to construct the priors then estimated cost savings of about 55% and 52% are

achieved, respectively, for the BIG-5 outcome with a probability sample size of 50. The

other, more expensive, nonprobability surveys yield cost savings ranging from about 7%

to 29% for the same sample size. For larger probability sample sizes of 100 and 150, the

range of cost savings for the BIG-5 outcome is slightly reduced to between 12% and 51%,

and 8% to 47%, respectively, across all nonprobability surveys. Beyond 150 probability

cases, the two least expensive nonprobability surveys continue to achieve significant cost

savings (greater than 30%), but as for the more expensive nonprobability surveys, the cost

savings are more modest (less than 15%).

Cost savings for the NFC outcome are much less pronounced. Only nonprobability

survey 6 yields a modest cost savings (about 21%) for a probability sample size of 50. The

remaining nonprobability surveys produce cost savings of less than 8% for the same

sample size, and some surveys achieve no cost savings at all. With a probability sample

size greater than 150 cases, the majority of nonprobability surveys yield no cost savings.

Thus, the cost-effectiveness of Model 3 appears to be sensitive to the probability sample

size, differences in per respondent costs between the probability and nonprobability

surveys, and the outcome variable of interest.

6. Discussion

This study demonstrated a novel method of using Bayesian inference to supplement small-

and modest-sized probability samples with nonprobability samples in a way that can

improve the cost and error properties of survey estimates. Specifically, we proposed

two ways of constructing informative nonprobability-based priors. We then showed that

using these priors to inform estimates derived from small probability samples yields

substantially lower mean-squared errors (MSEs) compared to estimates derived from

probability-only samples. Moreover, applying these informative priors to small

probability samples (e.g., 50 or 100 cases) through a real-data application yielded

estimates that were approximately as efficient as estimates based on much larger
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probability-only samples (e.g., 1,000 cases). Reductions in MSE were primarily driven by

large reductions in variability which completely offset any increases in bias. By using

simulated data, we also demonstrated general applicability of the method and its

mechanism for various sample sizes and levels of bias in the nonprobability samples.

Using actual cost data for several nonprobability surveys and a plausible assumed cost

for a probability survey, we showed that the method can lead to large expected cost

savings (up to 55% in our application) compared to a probability-only sample for a given

MSE. However, the extent of cost savings depended on the outcome variable of interest

and the nonprobability sample costs which varied across the survey vendors used. The

largest cost savings tended to occur when the per-respondent costs were about four times

greater in the probability survey than in the nonprobability survey.

At a time when many survey researchers are shifting away (or abandoning altogether)

probability samples and embracing less-expensive nonprobability samples despite their

known caveats, our results suggest that it is possible to retain the benefits of both

sampling approaches in a way that is beneficial from both a cost and error perspective.

The proposed method is ideally suited for tight survey budgets in which only a small

probability sample (e.g., 50–100 cases) can be afforded alongside a larger nonprobability

sample. The finding that the method can yield estimates that are just as efficient as

estimates derived from very large probability samples is a particularly attractive feature

for survey practice.

However, there are potential issues with the Bayesian method that should be

considered. First, it is possible that some nonprobability samples may contain large

biases that, when utilized as prior distributions, could negate reductions in variability and

yield larger MSEs compared to probability-only samples. We did not face this issue in

our application, as the estimated regression coefficients used in our models were not

substantially different between the probability and nonprobability surveys. When using

simulated data, we found that if the interest is in the size of the effect (regression

coefficient), the combination of probability and nonprobability samples yields reductions

in variance and MSE of that effect with minimal amount of bias. However, using

nonprobability-based priors for model-based predictions or imputation of a missing

outcome variable may not produce desired improvements if bias in the nonprobability

sample is substantial (in our simulation study a bias of around 50% of the outcome

variable). Thus, it would be prudent for the researcher to adjust the nonprobability

sample data in advance of constructing priors to minimize bias at the outset, especially if

prediction is the ultimate objective.

A further issue with the Bayesian approach is the vast number of modeling

specifications and prior configurations that one could employ. We deliberately kept the

modeling and prior specification as basic as possible. This sometimes required choosing

simplicity over complexity in order to facilitate implementation and minimize

computation time. Further refinements of the modeling approach could be developed to

account for more complex data structures, such as categorical outcome variables. In

addition, adapting the modeling approach to incorporate complex sample design features

(e.g., stratum, cluster indicators) is an area for future work.

In conclusion, we find that augmenting a probability sample with a nonprobability

sample under a Bayesian framework can produce survey estimates with smaller MSE and
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potentially large cost savings relative to probability-only samples. The proposed method,

which turns the usual approach of treating a probability sample as an unbiased prior for a

nonprobability sample “on its head” as one reviewer put it, could be a useful import to

survey practice where cost-saving measures and error-reduction tools are in high demand.

However, despite the advantages of the method, survey organizations using nonprobability

samples may still be skeptical to the idea of fielding a small probability sample survey

in parallel when the nonprobability sample will likely dominate the inference. Here, we

would contend that adopting a system of estimation that accounts for both sampling

streams, yet incentivizes probability-based observations and allows for the direct

quantification of uncertainty in survey estimates is a more defensible strategy than one that

renounces probability sampling entirely along with all of its attractive theoretical

properties. Moreover, the idea of enhancing a small, but carefully designed, probability

sample with abundant but potentially error-prone data is not a new idea and is a widely

accepted strategy in small area applications where sparse probability samples are routinely

supplemented with alternative data sources to improve the cost and error properties of

population estimates (Marchetti et al. 2016; Porter et al. 2014; Briggs et al. 2007;

Schmertmann et al. 2013).
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