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Supplementing Small Probability Samples with
Nonprobability Samples: A Bayesian Approach

Joseph W. Sakshaug', Arkadiusz Wisniowski®, Diego Andres Perez Ruiz?,
and Annelies G. Blom®

Carefully designed probability-based sample surveys can be prohibitively expensive to
conduct. As such, many survey organizations have shifted away from using expensive
probability samples in favor of less expensive, but possibly less accurate, nonprobability web
samples. However, their lower costs and abundant availability make them a potentially useful
supplement to traditional probability-based samples. We examine this notion by proposing
a method of supplementing small probability samples with nonprobability samples using
Bayesian inference. We consider two semi-conjugate informative prior distributions for linear
regression coefficients based on nonprobability samples, one accounting for the distance
between maximum likelihood coefficients derived from parallel probability and non-
probability samples, and the second depending on the variability and size of the nonprobability
sample. The method is evaluated in comparison with a reference prior through simulations
and a real-data application involving multiple probability and nonprobability surveys fielded
simultaneously using the same questionnaire. We show that the method reduces the variance
and mean-squared error (MSE) of coefficient estimates and model-based predictions relative
to probability-only samples. Using actual and assumed cost data we also show that the method
can yield substantial cost savings (up to 55%) for a fixed MSE.

Key words: Bayesian inference; quota sampling; German Internet Panel; GESIS Panel; web
surveys.

1. Introduction

1.1. Background

Scientific surveys based on random, probability-based samples are ubiquitously used in
the social sciences to study and describe large populations. They provide a critical source
of quantifiable information used by governments and policy-makers to make informed
decisions. However, probability-based surveys are increasingly expensive to carry out due
to declining response rates and costly intervention strategies (Tourangeau and Plewes
2013). Consequently, many survey organizations have shifted away from probability-
based samples in favor of cheaper nonprobability samples usually drawn from volunteer
web panels. This shift in practice has prompted significant controversy and skepticism
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over the representativeness and overall utility of nonprobability samples (Baker et al.
2013). While probability-based surveys have their own concerns regarding representa-
tiveness (Gelman et al. 2016; Wang et al. 2015), comparison studies generally show (with
same exceptions: see, for example Kennedy et al. 2016) that they produce more accurate
population estimates than nonprobability surveys when evaluated against benchmark data
(Yeager et al. 2011; Blom et al. 2017; Malhotra and Krosnick 2007; Chang and Krosnick
2009; Dutwin and Buskirk 2017; Pennay et al. 2018; Erens et al. 2014; Callegaro et al.
2014; Maclnnis et al. 2018). Hence, the field of survey research is in a situation where
probability-based samples are preferred from an error perspective, while nonprobability
samples are preferred from a cost perspective.

Given the advantages of both sampling schemes, it makes sense to devise a strategy to
combine them in a way that is beneficial from both a cost and error perspective. In some
ways, survey organizations already attempt to make use of both sample types, either by
drawing a nonprobability sample whose units closely match units from a reference
probability sample prior to data collection (Rivers 2007; Rivers and Bailey 2009;
Ansolabehere and Rivers 2013), or by devising post-survey weights that adjust the
composition of a nonprobability sample survey towards that of a reference probability
survey (Lee 2006; Lee and Valliant 2009; Valliant and Dever 2011). While both
approaches are cost-effective and have been shown to increase the accuracy of estimates
derived from nonprobability surveys, they have some important limitations. Firstly, they
assume that the matching/adjustment variables fully explain the underlying selection
mechanism that leads to inclusion in the nonprobability sample — a questionable and
usually untestable assumption in practice (Mercer et al. 2017). Secondly, the target
variable of interest is usually not present in the reference probability survey data, and
therefore, these data are usually discarded after the matching/adjustment procedure. The
intended analysis is then based solely on the nonprobability survey data, which lacks
important properties of randomization theory, including the ability to measure the
uncertainty of sample-based estimates.

Instead of forgoing probability-based survey data collection entirely, an alternative
approach is to field the same questionnaire in a parallel probability and nonprobability
sample and analyze the collected data jointly. For example, Elliott and Haviland (2007)
describe a methodology that supplements a traditional probability sample with a web-
based convenience sample. They evaluate a composite estimator influenced by Rao (2003)
that is a linear combination of a probability and convenience sample, with each sample
weighted according to a bias function. The estimator, under certain conditions, yields a
smaller mean-squared error (MSE) compared to the probability-only sample. In related
work, Elliott (2013) proposes a method of devising pseudo-weights for a nonprobability
sample based on probabilities of selection estimated using a parallel probability sample.
Both samples can then be combined and analyzed with case weights as if the units were
drawn from the same population frame. The method is shown to reduce bias and MSE
relative to a probability-only sample.

DiSogra et al. (2012) introduce an idea referred to as “blended calibration” in which
available probability sample cases are supplemented with parallel nonprobability opt-in
panel cases. The two-step procedure relies on, firstly, weighting the probability sample to
known population benchmarks using a raking or poststratification procedure. In the second
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step, the weighted probability and unweighted opt-in cases are combined and the
combined sample is calibrated to the probability-only sample on a selection of survey
variables common to both samples. The method yields smaller bias and MSE compared
to more traditional approaches of analyzing probability and nonprobability samples
separately and jointly. Fahimi et al. (2014) extend the approach by considering a more
effective range of differentiator variables to use in the calibration step.

A practical limitation of the above studies is that they require relatively large probability
sample sizes. Elliott and Haviland (2007) recommend a probability sample size of at least
1,000-10,000 cases alongside a convenience sample size in the thousands, and Elliott
(2013) uses a probability sample size of 50,000 in the simulation study. Blended
calibration also requires a relatively large probability sample size in order to minimize the
variability in the probability-based survey benchmarks.

Any data integration strategy that requires fielding a large probability sample is likely to
be met with opposition, as such sample sizes are prohibitively expensive for most survey
budgets. An alternative, and more budget-friendly, strategy is to draw and field a small
probability sample and combine it with a parallel nonprobability sample. On the face of it,
the usefulness of deliberately fielding a small probability sample is not intuitively clear.
Estimates derived from small probability samples, while inferentially valid, are subject to
large variability and are insufficient as a standalone source of population information.
Furthermore, a small probability sample is too sparse to be used as a reference sample for
sample matching and post-survey adjustment procedures. A natural question, therefore, is
whether there exists any scenario in which combining a small probability sample with a
nonprobability sample could be beneficial from both a cost and error perspective.

1.2.  Bayesian Inference

We address this question from a Bayesian inferential viewpoint. Bayesian inference offers
an attractive system of estimation that allows combining sparse scientific data, such as
those from probability-based samples, with less scientific and less reliable but potentially
abundant and cheap information, such as those derived from nonprobability sources
(Gelman et al. 2013). There are several advantages of using Bayesian inference in the
context of combining small probability samples with nonprobability samples. First, the
Bayesian framework allows for estimating complex models and quantifying measures of
uncertainty, which can be problematic when analyzing nonprobability data under
traditional estimation frameworks. Second, unlike sample matching and post-survey
adjustment procedures, the Bayesian framework allows for the analysis of probability-
based sample units through the likelihood function and is principally structured to give
priority to these units in the posterior estimations as the probability sample size increases.
Put differently, as additional probability sample units are observed, the “prior”
information brought in through the nonprobability data becomes less relevant in the
estimations, and increasing weight is given to the probability units. And third, because the
probability-based likelihood borrows information from the informative nonprobability-
based prior, the resulting posterior estimates are expected to be more efficient, that is, have
less uncertainty, compared to estimates derived from small probability-only samples. This
result could yield potential cost savings if large reductions in uncertainty are achieved and
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the marginal cost of interviewing a nonprobability sample unit is lower than that of a
probability sample unit — a plausible scenario in practice.

However, a disadvantage of applying the Bayesian framework in the aforementioned
context is the deliberate incorporation of (potentially) biased data into the estimation
process. In contrast to sample matching and post-survey adjustment, which takes an error-
prone nonprobability sample and skews it towards a presumably less error-prone
probability reference sample, the Bayesian approach that we describe does the opposite.
That is, the method takes a probability sample and deliberately skews it towards a
nonprobability sample reflected in the prior. The posterior estimates are therefore likely to
have more bias than corresponding probability-only estimates. This effect is likely to
be most pronounced for small probability samples where the prior will have peak influence
on the posterior estimates. On the other hand, the expected reduction in variability due to
the supplementary use of nonprobability data may offset any increase in bias, resulting in
an estimator that yields a smaller mean-squared error.

1.3.  Research Aims

In this article, we investigate whether supplementing a probability sample with
nonprobability sample priors can produce more efficient survey estimates under varying
probability sample sizes. We consider three specifications of the prior distribution for a
target analysis of regression coefficients and model-based predictions: (i) a reference prior
that allows for the probability sample to dominate the posterior, (ii) an informative prior that
decreases the weight of the nonprobability sample with increasing distance between the
maximum likelihood coefficient estimates derived from the probability and nonprobability
samples, thus, “protecting” against bias in the latter, and (iii) an informative prior whose
weight depends on the variability and size of the nonprobability sample and is able to
dominate the posterior. Further, we examine the extent to which varying levels of bias in the
nonprobability sample affect the mean-squared error (MSE) of the posterior estimates. To
achieve these aims, we carry out a simulation study and real-data application involving two
nationally-representative, probability-based surveys and eight nonprobability web surveys
fielded in parallel using the same questionnaire. Through the application, we also assess
whether the method is likely to yield cost savings for a fixed MSE.

The balance of this article is organized into five sections. Section 2 describes the
proposed methodology for combining probability and nonprobability samples under a
Bayesian framework. Section 3 presents the simulation study examining the bias-variance
tradeoff of the method for various bias and sample size parameters. Sections 4 and 5
describe the real-data application and evaluation. Lastly, Section 6 provides a general
discussion of the results, their implications for survey practice, and possible research
extensions.

2. Methodology

2.1. Modeling Approach

As introduced in Subsection 1.2, in Bayesian inference (for details, see Gelman et al.
2013), the likelihood distribution is multiplied by a prior distribution, and inferences are
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typically summarized by random draws from this product, that is, the posterior
distribution. On the one hand, Bayesian inference can utilize prior distributions that “allow
data to speak for themselves,” that is, to have a negligible influence on the posterior draws.
These priors are known as noninformative or weakly informative. On the other hand,
informative priors can be used to add information about model parameters. This may be
desirable in situations where parameters cannot be identified, or due to a small number of
available observations. In this section we present three models, of which fwo use
informative prior distributions constructed from a single nonprobability sample.

Consider an n X 1 response vector y = (yy, . . .,y,)! of observations collected from a
probability-based survey. The parameter of interest is the expectation of y, denoted by w.
We assume that y is continuous and normally distributed:

y ~ N(u, o),

where o 2 is the unknown variance of y. The simple model can be expanded to account for
covariates if the researcher’s substantive interest lies in interpreting their effect on the
outcome variable, or in making model-based predictions of the outcome. We focus on
these two scenarios. The covariates can be incorporated by using a linear regression with

an n X p design matrix X = [X, . . .,X,], which leads to
y ~ N(XB, oD,
where B = (Bi, . . ., B) is a column vector of length p and I is the n X n identity matrix.

We note that this model does not explicitly reflect the survey design. In our forthcoming
application, we include survey weights as a covariate in the proposed modeling approach.
Adapting the proposed approach to include additional survey design features (e.g.,
stratification, clustering) is a topic we leave for future work.

A semi-conjugate prior distribution for a single regression coefficient, §;, for j =
1,...,pis

B/~N<Bjo7052j0), (1

with fixed location and variance hyperparameters, ;, and ‘7[%0’ respectively. The semi-
conjugacy (or conditional conjugacy) results from the fact that the variance in (1) does not
depend on o2 (Gelman et al. 2013, 130). We consider three specifications of these
hyperparameters.

In Model 1 we assume a weakly informative parameterization of the priors, that is;

Bo=0, ag,=10"

This specification allows the model parameters to be estimated directly from the
probability data. Therefore, we treat this model as a reference to compare the two other
specifications in which we introduce information from the nonprobability samples.

In Model 2 we introduce an informative Iprlor b]%/ utilizing information from a
single nonprobability sample. First, we define 8; and ;" to be the maximum likelihood
(ML) estimators of the regression coefficients using the probablhty (P) and nonprobability
(NP) survey data, respectively. These ML estimates are equivalent to the means of the
posterior distributions of these parameters under the linear regression model using
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noninformative Jeffrey’s priors. We implicitly assume a simple random sampling design
for the nonprobability data. Next, we set the hyperparameter S, equal to the estimated
regression coefficient derived from the nonprobability survey, B} . For the variance
hyperparameter 0’[3,-0 we consider the Euclidean distance between the ML regression
coefficients estimated in the probability survey and in the nonprobability survey.

Specifically, we consider the square of the distance as the variance hyperparameter in (1):
2 (AP ANP\ (4P NP2 .
Tgo =d (BJ’BJ ) - ('Bi — B ) ;i
Therefore, the prior for the regression coefficient in Model 2 can be written as:
ANP AP ANP
B~N(8"a(8.8")) @)

This method of setting the hyperparameter for the regression coefficient implies that the
standard deviation, opo, is equal to the difference between the probability- and
nonprobability-based ML estimates and does not depend on the size of the nonprobability
sample. This, on the one hand, ensures some variability around the mean while keeping the
uncertainty relatively small. If the distance d is large, the prior is wider and allows the small
probability sample to influence the posterior. The smaller the distance between the two ML
estimates, the tighter the prior distribution and, thus, larger potential gains in reducing
posterior variance. A potential limitation of this approach is that if the distance is zero, that is,
the corresponding probability and nonprobability estimates are equal, then the
hyperparameter will be set to zero and shrink the location parameter §; to a fixed value
being ﬁj . However, in practice, such an event has virtually zero probability.When the
distance is extremely small, it may severely reduce the variance of the posterior distribution
for the parameter, especially when the probability sample size is very small. The next model
we consider is free from this shortcoming.

By using the probability-based estimator to construct the prior distribution, the question of
using data twice arises. We address this issue by pointing out that the ML estimator from the
probability sample (a measure of central tendency) is used to inform the variance, rather than
the mean. Further, we use the information from the probability data only in relative
comparison to the nonprobability sample. Hence, any potential shrinkage in posterior
variance depends on the combination of both data sets, rather than the probability data alone.

In Model 3 we use a bootstrap procedure instead of the squared distance to derive
information about the variance hyperparameter in (1). The bootstrap method has been used
in many contexts and was originally proposed by Efron (1979). The general approach is to
draw random subsamples with replacement from the full sample a large number of times
and estimate the statistic of interest in each subsample before combining them using a
bootstrap estimator. We implement the procedure by drawing 1,000 bootstrap samples

from the nonprobability survey data, estimating the regression coefficient in each of them,

2
and then calculating the variance (&gNP ) across all regression coefficients. We then set

the variance hyperparameter in (1) to the estimated variance and the prior distribution for
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the regression coefficient in Model 3:

B ~N (@”7 (65;”’)2) , 3)

with mean being the ML coefficient calculated using the nonprobability sample (the mean
of all bootstrapped coefficients will converge to it). This approach is an alternative to
calculating the uncertainty around the nonprobability-based regression coefficient and
ensures it is always positive. The method is limited in a sense that the hyperparameter
relies on the bootstrapped nonprobability sample which may propagate its unrepresenta-
tiveness and homogeneity, especially when very large nonprobability sample sizes are
used, again leading to a false sense of certainty about the regression coefficient. However,
analogous to the distance approach, this effect is reduced the larger the size of the
probability sample.

For the variance of the regression model, 0'2, we first transform it to a precision, that is,
inverse variance (o %), and set o2 ~ I'(r, m) where I'( - , - ) denotes a Gamma distribution
with hyperparameters r being a shape and m being a rate. In our application, we set these
hyperparameters to be r = m = 10">. This specification for the precision parameter is
approximately noninformative and gives preference to the data (Gelman et al. 2013, 128). It
remains the same for Models 1 through 3, which ensures comparability of the results.

3. Simulated Data Inference

In this section, we demonstrate how the proposed methods work under various
assumptions regarding bias and sample size introduced through simulated data. First, we
investigate the effect of bias on the regression coefficients of the model (part A of the
simulation), and second, we analyze to what extent the bias affects model-based
predictions of the outcome variable (part B).

The analysis was implemented in OpenBUGS (Spiegelhalter et al. 2007) and R (R Core
Team 2016) using the library r2openbugs (Sturtz et al. 2005). We also use MCMCpack
to summarize the results of the simulations, boot package for bootstrapping, as well as
ggmcemc and lattice packages for visualization. In the simulations, the posterior
distributions were obtained using three MCMC chains with samples of 2,000 each and 500
burn-in samples which ensured convergence of all chains.

To generate the data, we first assume the true values of the parameters in a linear
regression model with intercept 8, =5, two parameters 3, = 0.5 and B3 =1, and
standard deviation of the outcome being oy, = 5. Predictors x; and x, have means 0 and 5,
respectively, standard deviations 4 and 0.5, and are correlated with correlation p = 0.1.
These assumptions yield the mean response being y = 10.

To introduce bias, we multiply the true parameter 83 = 1 by 0.5, 1 (i.e., unbiased
sample), 1.5, 2, 2.5, and 3 when generating the nonprobability samples (part A of
simulation). For testing the effect of bias in nonprobability samples on the predicted
outcomes (part B), we generate a predictive posterior distribution for a fixed probability
test sample of size 500 using coefficients generated in part A. Bias introduced in this way
is quite significant. For instance, when coefficient (33 is doubled, the expected outcome
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increases to 15. These scenarios are relatively extreme to real-life applications, but aim to
demonstrate the limits of the proposed methods.

In the simulation we assume three nonprobability sample sizes NPS € {1000, 10000,
50000} and probability sample sizes PS € {50, 100, 150, 200, 250, 300, 350, 400, 450,
500, 600, 700, 800, 900, 1000}. In each simulation, for each PS we generate 100 sets of
data with each combination of bias level and NPS. In total, it yields 27,000 data sets.

3.1. Model Evaluation

First, we evaluate the performance of the three modelling approaches by calculating the
bias, variance, and mean-squared error (MSE; the sum of variance and squared bias) of the
posterior means of the coefficients estimated using Models 1, 2 and 3. This permits an
assessment of the effect of bias in nonprobability-based informative priors on all of the
model coefficients.

Second, to evaluate model-based predictions, we split the probability survey data
randomly into two parts: a training set (denoted by y) and a test set (¥). We then use the
training set to fit the models specified in Subsection 2.1. Next, we predict the outcome
variable in the test set §. We do so by applying posterior distributions of model parameters
estimated using y to the covariates in the test set. The resulting distributions are called
posterior predictive distributions, that is, posteriors for each data point.

Next, to evaluate the error properties of the predictions for the three models, we
calculate the bias, variance, and MSE of the means, denoted by §, of the posterior
predictive distributions for §. In the simulation, we define the MSE as:

MSE(®y) = E {(i - y)ﬂ ,

which can be decomposed into variance and bias MSE(3) = Bias*(§) + Var(¥).

We compute the bias as the difference between the mean of the posterior means, ¥, and
the mean of the test sample outcome ¥, i.e., Bias(y) = %Z y— %Ey whereas Var(y) is the
unbiased estimator of the variance of §.

We calculate the bias, variance, and MSE of the posterior predictive means for the
three models described in Subsection 2.1 under different probability sample size
scenarios. To accomplish this, we run the models on training sets ranging in size from 50
to 600 cases with intervals of 50, and from 600 to 1,000 with intervals of 100. The samples
are constructed cumulatively so that the same cases used in the smaller samples are also
included in the larger samples.

3.2. Results

Having generated the artificial probability and nonprobability samples for each size and
level of bias as described in the previous section, we applied the three modelling
approaches (Model 1, 2, and 3) as described in Subsection 2.1 to produce posterior
distributions of model parameters and predictive distributions for the test sample in
simulation part B. We then compare the effect of bias introduced in the nonprobability
sample on bias, variance, and MSE of the coefficients and means of the posterior
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predictive distributions as defined in Subsection 3.1. The bias, variance, and MSE are
averaged over 100 simulated data sets.

3.2.1.
Figure 1 presents the bias, variance, and MSE for the three coefficients, where 5 has been
generated with bias in the nonprobability (NP) sample. First, we observe that Model 2 does
not lead to bias in the coefficients and performs similarly to Model 1, which relies on
weakly-informative priors without information from the NP samples. It also leads to
improvements in variance (middle panel of Figure 1) and MSE (lower panel). For Model 3,
we observe larger improvements in variance compared to Models 1 and 2. However, in the
presence of bias, the MSE tends to be dominated by it. This results from the fact that the
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Fig. 1. Effect of bias in nonprobability samples on regression coefficient. Note: Regression parameters are in
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sample size on the x-axis.



662 Journal of Official Statistics

prior in Model 3 relies on the size and variability of the NP sample and does not protect
against bias present in it.

More precisely, in Model 3 the positive bias in the posterior mean of B33 (top right panel)
is increasing with the introduced bias (difference between posterior mean of the coefficient
and the true coefficient) and it is more persistent with larger nonprobability sample sizes
(NPS). This is offset by the negative bias in the intercept 3; as the regression equation needs
to be consistent with the expectation of the outcome in the probability sample, E[y] = 10.
However, for large NPS (10,000 or 50,000), the prior for 3; is relatively tight and it
dominates the posterior of 3, for small probability sample sizes (PS), which subsequently
leads to bias in the predictions of the outcome (see Figure 2 and the following Subsection
3.2.2). With an increase in PS, the posterior becomes more and more dominated by the
unbiased probability sample, which first increases the bias in the posterior of 8; and
decreases in B33 (e.g., NPS = 10,000 and bias = 3 in top left and right panel of Figure 1) to
gradually decrease bias in both coefficients (e.g., NPS = 1,000 and bias = 2.5) and output
predictions (left panel in Figure 2). Coefficient 3, remains unaffected by bias.

3.2.2. Part B: Model-Based Predictions

Figure 2 shows the effect of bias introduced in the nonprobability samples on the
predictive ability of the models when priors are based on those samples. We average over
means of posterior predictive distributions (referred to as predictions for brevity) for 500
generated outcome data points. In all comparisons, we utilize the true generated outcome.

In Figure 2 we observe that Model 2, compared with the weakly informative Model 1
without input from nonprobability samples, yields mostly unbiased predictions. For Model
3, as indicated in the previous section, the bias in predictions changes with the size of bias in
Bs. A large bias in the coefficient yields larger prediction bias, larger variance, and larger
MSE. Also, for larger nonprobability sample sizes (NPS), the bias persists for larger
probability sample sizes (PS). However, for a moderate bias (83 multiplied by 0.5 to 1.5),
Model 2 and Model 3 show a reduction in the prediction variance and MSE (presented on
log scale) compared with Model 1 and for nonprobability sample sizes of 1,000 and 10,000.

bias: 0.5 bias: | bias: 1.5 bias: 2 bias: 0.5 bias: 1 bias: 1.5 bias: 2 bias: 0.5 bias: 1 bias: 1.5 bias: 2

0.8

04 Z Z z
02 g iy | - 3
2 \ R« 6
0 oo 5|15 Nomagagd (S z \W\_‘“;
. s s 04 2
02 10 | ehmriay
3 25
2 Z z| @20 z
R 2 2 §15 3
o b 5 |\ |\ V. ‘amb:::g = i 5
a 5|7 | =05t [ — L owvere (]
4 5 3
z z z
2 = 2.0 = o
2 P @ 2 @
e gl s I\ mm* g
g e [Noim gl =
8 10 8 5

Probability Sample size
Model 1 —Model 2 ~Model 3

Probability Sample Size Probability Sample Size
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between the average predicted outcome and the average true generated outcome), middle panel shows variance,
and right panel shows the logarithm of mean-squared error (MSE), averaged over 100 simulations. Each panel
shows a combination of four levels of bias in B3 (Beta:1 denotes no bias, i.e., B3 X 1) and three nonprobability
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For NPS = 50,000 and larger amounts of bias, reductions in variance and MSE are observed
only for Model 2 and they are relatively small compared with Model 1 predictions.

4. Real-Data Application

To demonstrate the proposed methods on actual survey data, we make use of two
probability-based surveys: the German Internet Panel (GIP) and the GESIS Panel, and eight
nonprobability surveys. Each survey implemented the same questionnaire to respondents
during overlapping field periods. Relevant details of the surveys are provided below.

We demonstrate the proposed Bayesian method on two continuous outcome measures:
an additive index of a subset of Big Five (BIG-5; Digman 1990; Goldberg 1993)
personality items and an additive index of a subset of Need for Cognition (NFC; Cacioppo
and Petty 1982) scale items. The Big Five index included four items related to “trust of
people”, “artistic interests”, “finding fault in others”, and having an “active imagination”
with each item using a 5-point response scale from “strongly disagree” to “strongly agree.”
The distribution of additive values approximately followed a normal distribution. The
NFC index included four items about “knowing answers without understanding their
rationale”, “being confronted with tricky tasks to solve”, “preferring to solve complex to
simple problems”, and “thinking only because one has to.” Each item used a 7-point
response scale from “strongly disagree” to “strongly agree.” A square-root transformation

was applied to the index to achieve approximate normality.

4.1. German Internet Panel

The GIP is an ongoing individual-level longitudinal online survey, which is designed to be
representative of the population aged 16—75 in Germany. It is the central data collection
project of the Collaborative Research Center 884 “Political Economy of Reforms” funded
by the German Research Foundation (DFG). In 2012 and 2014, the GIP recruited sample
members by means of a 3-stage stratified probability area sample and face-to-face
recruitment interviews. At the first sampling stage, a random sample of areas was drawn
from a database of 52,947 areas in Germany, each containing approximately equal
numbers of households. Within each PSU, listers recorded every household along a
predefined random route. Subsequently, a random sample of households to be interviewed
drawn. All age-eligible members of sampled households were invited to become online
panelists (Blom et al. 2015). The GIP covers individuals without computer and/or internet
access by equipping them with the necessary devices (Blom et al. 2016a; Herzing and
Blom 2019). The first recruitment process, which took place in 2012, yielded a recruitment
rate of 18.5% (also based on Response Rate 2; AAPOR 2016) and in the second
recruitment process in 2014 a recruitment rate of 20.5% (also based on AAPOR Response
Rate 2) was achieved. Every two months, all panel members are invited to take part in an
online survey of about 20—25 minutes on various social, economic, and political topics.
The questionnaire module used in the present study was implemented 1-31 March 2015.
Out of 4,989 original panel members, 3,426 completed the survey for a completion rate of
68.7%. Despite the low recruitment rate, the representativeness of the GIP compares well
to other probability-based surveys in Germany (Blom et al. 2017).
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4.2. GESIS Panel

Like the GIP, the GESIS Panel is an ongoing individual-level probability-based
longitudinal survey. It is designed to be representative of the German-speaking population
aged between 18 and 70 years, permanently residing in Germany. The sample was drawn
from municipal population registers using a stratified multistage sampling procedure. All
sample members who were interviewed with face-to-face recruitment interviews were
asked to participate in the panel. The recruitment process, which took place in 2013/14,
yielded a panel registration rate of 28.4% (based on Response Rate 1; AAPOR, 2016).
Subsequent interviews are conducted on a bi-monthly basis using a mix of mail and web
data collection. Mail questionnaires are sent to participants who are unable or unwilling to
complete the interview online. Interviews are divided into two parts: a 15-minute
interview on modules submitted by external researchers and a five-minute interview
devoted to longitudinal core study topics developed by GESIS. The core study covers a
range of topics, including values, political behavior, well-being, and usage of information
technology. The questionnaire module we use was approved by the GESIS Panel team and
fielded 18 February—14 April 2015. Out of 6,210 original panel members, 3,822
completed the interview (61.5%). More details of the GESIS Panel methodology can be
found in Bosnjak et al. (2017), where they show the representativeness of the panel to be
similar to other probability-based surveys in Germany (see also Blom et al. 2016b).

4.3.  Nonprobability Surveys

The eight nonprobability web surveys were conducted by different commercial vendors.
The vendors were recruited through a call for tender published in November 2014. The
tender call sought to implement a ten-minute questionnaire on a sample of approximately
1,000 respondents in three waves of data collection. Initial data collection was to take
place in March 2015 with two follow-up surveys in September 2015 and March 2016. The
primary stipulation was that the sample should be representative of the general population
aged 18—70 years living in Germany. Exactly how representativeness was to be achieved
(e.g., quota sampling) was left to the discretion of each vendor. Out of 17 bids, seven
commercial vendors were commissioned based on technical requirements and budgetary
considerations. An eighth commercial vendor, upon learning about the study goals of the
project, voluntarily offered to participate without compensation. Further details of each
nonprobability survey, including cost information, is provided in Table 1. To maintain
confidentiality, we do not identify the commercial vendors by name and simply refer to the
nonprobability surveys by number, that is, Survey 1, Survey 2, and so on. The actual cost
of the commercial surveys (excluding the gratis survey) ranged from EUR 5,392.97 to
EUR 10,676.44. The average cost per respondent therefore ranged from EUR 5.40 to
EUR 10.29. We do not have cost information for the GIP and GESIS Panel surveys.

4.4. Comparison of Outcome Variables Between Surveys

Here, we examine the extent to which the outcome variables differ within and between
the probability and nonprobability surveys. Figure 3 displays estimated means and 95%
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Table 1. List of probability and nonprobability surveys.

Average cost

No. Quota Total cost per respondent
Survey respondents  variables Fieldwork period (in Euros) (in Euros)
GIP 3,426 N/A Ist—31st March 2015 Unavailable ~ Unavailable
GESIS 3,822 N/A 18th February—14th Unavailable  Unavailable
April 2015
1 1,012 Age, gender, 1st—31st March 2015 0 (pro bono) N/A
region,
education
2 1,000 Age, gender, 5th—18th March 2015  5,392.97 5.40
region
3 999 Age, gender, 2nd-11th March 2015  5,618.57 5.63
region
4 1,000 Age, region Ist—18th March 2015  7,061.11 7.07
5 994 Age, gender, 2nd-16th March 2015  7,411.00 7.46
region
6 1,002 Age, gender, 25th March—1st 7,636.22 7.62
region, April 2015
education
7 1,000 Age, gender, 3rd—9th March 2015 8,380.46 8.39
region
8 1,038 Age, gender, 5th—11th March 2015 10,676.44 10.29
region

confidence intervals (ClIs) for the BIG-5 (left panel) and NFC (right panel) outcome
variables in the GIP and GESIS Panel surveys.

The figures show very little difference between the GIP and GESIS Panel estimates of
BIG-5 and NFC. Both probability surveys yield mean estimates that overlap by their
respective confidence intervals. Larger differences are apparent between the probability
and nonprobability surveys. For the BIG-5 variable, all nonprobability surveys yield mean
estimates that fall outside of the GIP and GESIS Panel confidence intervals. All but one
of the nonprobability-based means is lower than the GIP and GESIS Panel means.
Differences between the nonprobability surveys are less pronounced, as most of the
estimates are relatively homogeneous and lie within a close range. For the NFC variable,
the nonprobability mean estimates are larger than the corresponding GIP and GESIS Panel
estimates. All but two of the nonprobability surveys yield mean estimates that lie outside
of the GIP and GESIS Panel CIs. Analogous to the BIG-5 estimates, most of the
nonprobability NFC estimates are similar to each other. In summary, it is apparent that
differences in the means exist between the probability and nonprobability surveys, but
differences are less apparent between the nonprobability surveys.

4.5. Comparison of Regression Coefficients Between Surveys

Next, we compare the ML estimates of regression coefficients of BIG-5 and NFC obtained
from the probability and nonprobability surveys. Control variables include age (four
categories), sex (binary), marital status (three categories), occupation (four categories),
secondary education certificate (three categories), region of residence (binary), internet
access (binary), and housing tenure (binary). We also include a survey weight variable,
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Fig. 3. Means and 95% confidence intervals for BIG-5 (left panel and Need for Cognition (NFC) (right panel)
on the probability (GIP and GESIS Panel) and eight nonprobability (NP) surveys.

which was produced to reduce bias through a raking adjustment to population benchmarks
(Blom et al. 2017), as a covariate in the regression. For the regression analysis of the
GESIS Panel and the nonprobability surveys, we use the same independent variables,
minus region and the survey weight, which were both unavailable.

Figure 4 shows the regression coefficients and 95% CIs from the BIG-5 model estimated
from the GIP Panel with corresponding coefficients estimated from the nonprobability
surveys. The conclusions for the GESIS Panel (not shown) are virtually the same. Overall,
there is a close correspondence between the probability and nonprobability coefficients
across the models. Very few of the nonprobability estimates lie outside of the CI ranges of
the probability estimates. The results contrast with the results presented in Subsection 4.4,
where differences in the outcome variable between the probability and nonprobability
surveys were more pronounced. Our finding that regression coefficients are less affected
by bias than univariate estimates in nonprobability samples is consistent with other work
(Ansolabehere and Schaffner 2014; Pasek 2016).

5. Application Results

5.1. Evaluation and Efficiency

In this section, we evaluate the performance of the three modelling approaches on the GIP
and GESIS Panel data by using the model-based predictions as described in Subsection
3.1. Splitting the probability survey data into training and test sets in the applicaton is done
for evaluation purposes only and takes advantage of the abundant number of probability
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Fig. 4. Comparison of OLS regression coefficients and 95% confidence intervals for BIG-5 in the German
Internet Panel (triangles) and eight nonprobability surveys (circles).

cases we have at our disposal. In practice, we envision the practitioner would only have
access to a small probability sample and therefore this evaluation step would not be
feasible. We then use the training set to fit the models specified in Subsection 2.1.

After excluding cases with missing data and assigning 1,000 cases from the probability
survey to the training set, the remaining cases are assigned to the test set. For the BIG-5
outcome, the test set includes 1,924 and 2,150 cases for the GIP and GESIS Panel surveys,
respectively. For the NFC outcome, the respective sample sizes are 1,891 and 2,088 cases.
The nonprobability sample sizes are not altered.

_ - = 2 -
In the application, we use MSE(y) = E {(5’ - 5’51,‘) ] , Where yfij are the model-adjusted,

in-sample (superscript IS) predictions in the test set of the probability survey. These
predictions are adjusted by (i) applying the regression model with the same covariates as in
Models 1, 2, and 3 exclusively to the test set, with noninformative Jeffrey’s priors, and
then (ii) computing posterior predictive means and using them as igj. By using the
adjusted predictions rather than the original observations, we account for the fact that our
model may be unrealistic and explain only a small part of data variability. An important
distinction between § and 3:’;3, is that the former are out-of-sample predictions made by
using one of the three specifications of models described in Subsection 2.1 on the training
set, whereas the latter are in-sample predictions informed exclusively by the withheld test
set. Analogously, the bias here is the difference between the mean of the posterior means
¥, and the mean of the model-adjusted predictions yad , that is, Bias(y) = 1 >y 1 0¥ yad]
(cf. Subsection 3.1).
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Finally, to assess the efficiency of the two models informed by the nonprobability data
(Models 2 and 3) relative to the reference model (Model 1), which is based on only
weakly-informative priors, we examine the ratio of the variances of the posterior
predictive means:

) ) Var (Juode
€(Var (Juoden ), Var (Yuoaer2)) = VZ:gZ Z f; 7
ode
) . Var (¥uode
E(Vdr(yMndell)7 Var(yMOdeB)) - VZ:E;Z j Z;

Analogously, we examine the ratio of the MSEs of the posterior predictive means. If the
value of any ratio is less than 1, then the informative model is more efficient than the
reference model. Conversely, if the ratio is equal to or greater than 1 then the informative
models do not produce efficiency gains over the reference model.

5.2. Variance, Bias, and MSE

This section presents the results of the three modeling approaches (Model 1, 2, and 3)
implemented on the GIP and GESIS Panel surveys. The variance, bias, and MSE as defined
above are computed for the posterior predictive means (hereinafter referred to simply as the
mean estimates) of the two outcome variables produced under each model. The entire
procedure of splitting the probability data into training and test sets was conducted 100
times to produce 100 estimates of variance, bias, and MSE for each probability sample size.
The forthcoming results report the averages of these 100 repetitions. Each of the models
was fitted using the independent variables described in Subsection 4.4.

The posterior characteristics were computed, as in Section 3, using three MCMC chains
with samples of 1,000 and a 100 iteration burn-in sample. This ensured convergence of all
chains used for creating the posterior distributions. We investigated the convergence using
a larger number of iterations and found that the results were robust with respect to the
number of iterations used.

Results for the BIG-5 and NFC means are shown for both GIP and GESIS Panel data in
Figure 5. For brevity, we show the results using only one nonprobability survey, NP = 5,
the middle-priced of the seven paid-for nonprobability surveys. Similar results (not
shown) were found when the other nonprobability surveys were used.

Models 2 and 3 yield very similar variance estimates and are virtually indistinguishable
in the figures. For the smallest probability sample sizes, both models yield substantially
smaller variance estimates compared to the reference model (Model 1). Maximum
variance efficiency is achieved with a probability sample size of 50, while efficiency gains
tend to diminish as the sample size increases. All three models converge to variance
equivalency at about n = 500. What is most striking is that the variance estimates
produced under Models 2 and 3 for the smallest sample sizes are approximately equivalent
to the variance estimates produced under the reference model for the largest probability
sample size of 1,000. In other words, a probability sample size of only 50 cases with a
supplement of 1,000 nonprobability cases achieves roughly the same variance as a much
larger probability sample size of 1,000 does on its own.
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Fig. 5. Variance, bias, and mean-squared error (MSE) for estimates of BIG-5 and need for Cognition (NFC) in
the GESIS Panel and GIP. Note: Results shown for one nonprobability survey (NP = 5) only. Similar results were
found when other nonprobability surveys were used.

Concerning bias, as expected, the majority of plots show a slightly larger bias in
Models 2 and 3 relative to the reference model for the smallest probability sample
sizes, where the nonprobability-based priors have their strongest influence on the
posterior estimations. In general, however, the magnitude of the bias is quite small,
which is consistent with the results of the comparison of regression coefficients in
Subsection 4.5.

In terms of MSE, the figures reveal that for small probability sample sizes Models 2 and
3 yield MSE values that are substantially smaller than those of the reference model. These
MSE reductions persist at a decreasing rate until the probability sample size reaches about
500, at which point the values from all three models converge. The results clearly indicate
that any increase in bias due to using the nonprobability-based priors is offset by the
reduction in variance. Analogous to the variance results, the MSE values under Models 2
and 3 remain similarly small across the sample size spectrum. The practical implication is
that the same MSE achieved through a large probability sample can be roughly achieved
by supplementing a very small probability sample (e.g., 50—100 cases) with a larger
nonprobability sample.

5.3. Model Efficiency and Cost Implications

In the final analysis, we summarize the MSE/variance efficiencies achieved through
Models 2 and 3 and examine whether they would have likely resulted in a cost saving
compared to Model 1 for a given MSE. Figure 6 presents efficiency ratios of MSE and
variance for mean estimates of BIG-5 (upper panel) and NFC (lower panel) for the GIP
and GESIS Panel surveys. The ratios are averaged across all eight nonprobability surveys
(with equal weight given) to provide an overall summary measure of model efficiencies.
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Four observations can be made from Figure 6: (i) as observed in the previous
analyses, MSE/variance efficiency gains are largest for the smallest probability sample
sizes. For example, Models 2 and 3 reduce MSE and variance by more than 80%, on
average, compared to Model 1 for the smallest sample size of 50. Even when the
sample size is doubled to 100 cases, MSE/variance reductions of at least 70% are
observed; (ii) the BIG-5 variable experiences larger efficiency gains than the NFC
variable, and both variables yield slightly larger efficiency gains in the GIP than in the
GESIS Panel; (iii) gains in variance efficiency are only slightly larger than gains in
MSE efficiency, which indicates that the bias due to utilizing nonprobability-based
priors is marginal compared to the corresponding variance reduction; and (iv) Models 2
and 3 yield very similar gains in MSE and variance efficiency with slightly larger gains
achieved under Model 2.

To demonstrate the cost implications (and potential cost savings) of the different
models, we utilize actual cost data for the nonprobability surveys (see Table 1) and
hypothetical cost data for the probability-based GIP survey. For the GIP survey, we
assume a cost per respondent of 22 euros, which is roughly 2 and 4 times larger
than the most and least expensive nonprobability surveys (excluding the gratis
survey), respectively. Using these data, we perform a crude estimation of the expected
cost of performing a probability-only survey (under Model 1) that would achieve the
same MSE that was actually achieved under Model 3 — the more conservative of the
two models utilizing nonprobability-based priors. We then compare the estimated
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Model 1 costs with the actual and estimated costs of Model 3 for the fixed MSE. The
analysis is conducted in two steps. First, a linear regression model of GIP costs (log-
transformed) on MSE (and MSE squared) is fitted using the Model 1 MSE results.
Next, we plug-in the MSE values achieved under Model 3 into the fitted model to
estimate the (back-transformed) cost of collecting a probability-only sample. Lastly, we
calculate differences between the estimated Model 1 costs and the actual/estimated
Model 3 costs for each realized MSE and compute the expected cost savings (in
percentages) under Model 3.

Tables 2 and 3 show the estimated cost differences between Model 1 and Model 3 for
the BIG-5 and NFC outcomes, respectively. The cost differences are shown for the five
smallest probability sample sizes (50, 100, 150, 200, and 250). Regarding the BIG-5
outcome, cost savings are evident for each sample size. In general, the largest cost savings
occur for the smallest sample size of 50, followed by 100, and so on, which is consistent
with the MSE reductions observed in the previous analyses. However, there is large
variation in the amount of cost savings across the seven (paid-for) nonprobability surveys.
For example, when the two least expensive nonprobability surveys (surveys 2 and 3) are
used to construct the priors then estimated cost savings of about 55% and 52% are
achieved, respectively, for the BIG-5 outcome with a probability sample size of 50. The
other, more expensive, nonprobability surveys yield cost savings ranging from about 7%
to 29% for the same sample size. For larger probability sample sizes of 100 and 150, the
range of cost savings for the BIG-5 outcome is slightly reduced to between 12% and 51%,
and 8% to 47%, respectively, across all nonprobability surveys. Beyond 150 probability
cases, the two least expensive nonprobability surveys continue to achieve significant cost
savings (greater than 30%), but as for the more expensive nonprobability surveys, the cost
savings are more modest (less than 15%).

Cost savings for the NFC outcome are much less pronounced. Only nonprobability
survey 6 yields a modest cost savings (about 21%) for a probability sample size of 50. The
remaining nonprobability surveys produce cost savings of less than 8% for the same
sample size, and some surveys achieve no cost savings at all. With a probability sample
size greater than 150 cases, the majority of nonprobability surveys yield no cost savings.
Thus, the cost-effectiveness of Model 3 appears to be sensitive to the probability sample
size, differences in per respondent costs between the probability and nonprobability
surveys, and the outcome variable of interest.

6. Discussion

This study demonstrated a novel method of using Bayesian inference to supplement small-
and modest-sized probability samples with nonprobability samples in a way that can
improve the cost and error properties of survey estimates. Specifically, we proposed
two ways of constructing informative nonprobability-based priors. We then showed that
using these priors to inform estimates derived from small probability samples yields
substantially lower mean-squared errors (MSEs) compared to estimates derived from
probability-only samples. Moreover, applying these informative priors to small
probability samples (e.g., 50 or 100 cases) through a real-data application yielded
estimates that were approximately as efficient as estimates based on much larger
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probability-only samples (e.g., 1,000 cases). Reductions in MSE were primarily driven by
large reductions in variability which completely offset any increases in bias. By using
simulated data, we also demonstrated general applicability of the method and its
mechanism for various sample sizes and levels of bias in the nonprobability samples.

Using actual cost data for several nonprobability surveys and a plausible assumed cost
for a probability survey, we showed that the method can lead to large expected cost
savings (up to 55% in our application) compared to a probability-only sample for a given
MSE. However, the extent of cost savings depended on the outcome variable of interest
and the nonprobability sample costs which varied across the survey vendors used. The
largest cost savings tended to occur when the per-respondent costs were about four times
greater in the probability survey than in the nonprobability survey.

At a time when many survey researchers are shifting away (or abandoning altogether)
probability samples and embracing less-expensive nonprobability samples despite their
known caveats, our results suggest that it is possible to retain the benefits of both
sampling approaches in a way that is beneficial from both a cost and error perspective.
The proposed method is ideally suited for tight survey budgets in which only a small
probability sample (e.g., 50—100 cases) can be afforded alongside a larger nonprobability
sample. The finding that the method can yield estimates that are just as efficient as
estimates derived from very large probability samples is a particularly attractive feature
for survey practice.

However, there are potential issues with the Bayesian method that should be
considered. First, it is possible that some nonprobability samples may contain large
biases that, when utilized as prior distributions, could negate reductions in variability and
yield larger MSEs compared to probability-only samples. We did not face this issue in
our application, as the estimated regression coefficients used in our models were not
substantially different between the probability and nonprobability surveys. When using
simulated data, we found that if the interest is in the size of the effect (regression
coefficient), the combination of probability and nonprobability samples yields reductions
in variance and MSE of that effect with minimal amount of bias. However, using
nonprobability-based priors for model-based predictions or imputation of a missing
outcome variable may not produce desired improvements if bias in the nonprobability
sample is substantial (in our simulation study a bias of around 50% of the outcome
variable). Thus, it would be prudent for the researcher to adjust the nonprobability
sample data in advance of constructing priors to minimize bias at the outset, especially if
prediction is the ultimate objective.

A further issue with the Bayesian approach is the vast number of modeling
specifications and prior configurations that one could employ. We deliberately kept the
modeling and prior specification as basic as possible. This sometimes required choosing
simplicity over complexity in order to facilitate implementation and minimize
computation time. Further refinements of the modeling approach could be developed to
account for more complex data structures, such as categorical outcome variables. In
addition, adapting the modeling approach to incorporate complex sample design features
(e.g., stratum, cluster indicators) is an area for future work.

In conclusion, we find that augmenting a probability sample with a nonprobability
sample under a Bayesian framework can produce survey estimates with smaller MSE and
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potentially large cost savings relative to probability-only samples. The proposed method,
which turns the usual approach of treating a probability sample as an unbiased prior for a
nonprobability sample “on its head” as one reviewer put it, could be a useful import to
survey practice where cost-saving measures and error-reduction tools are in high demand.
However, despite the advantages of the method, survey organizations using nonprobability
samples may still be skeptical to the idea of fielding a small probability sample survey
in parallel when the nonprobability sample will likely dominate the inference. Here, we
would contend that adopting a system of estimation that accounts for both sampling
streams, yet incentivizes probability-based observations and allows for the direct
quantification of uncertainty in survey estimates is a more defensible strategy than one that
renounces probability sampling entirely along with all of its attractive theoretical
properties. Moreover, the idea of enhancing a small, but carefully designed, probability
sample with abundant but potentially error-prone data is not a new idea and is a widely
accepted strategy in small area applications where sparse probability samples are routinely
supplemented with alternative data sources to improve the cost and error properties of
population estimates (Marchetti et al. 2016; Porter et al. 2014; Briggs et al. 2007,
Schmertmann et al. 2013).
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