
Imprecise Imputation: A Nonparametric Micro Approach
Reflecting the Natural Uncertainty of Statistical Matching

with Categorical Data

Eva Endres1, Paul Fink1, and Thomas Augustin1

Statistical matching is the term for the integration of two or more data files that share a
partially overlapping set of variables. Its aim is to obtain joint information on variables
collected in different surveys based on different observation units. This naturally leads to an
identification problem, since there is no observation that contains information on all variables
of interest.

We develop the first statistical matching micro approach reflecting the natural uncertainty
of statistical matching arising from the identification problem in the context of categorical
data. A complete synthetic file is obtained by imprecise imputation, replacing missing entries
by sets of suitable values. Altogether, we discuss three imprecise imputation strategies and
propose ideas for potential refinements.

Additionally, we show how the results of imprecise imputation can be embedded into the
theory of finite random sets, providing tight lower and upper bounds for probability
statements. The results based on a newly developed simulation design–which is customised to
the specific requirements for assessing the quality of a statistical matching procedure for
categorical data–corroborate that the narrowness of these bounds is practically relevant and
that these bounds almost always cover the true parameters.

Key words: Data fusion; data integration; finite random sets; hot deck imputation; (partial)
identification.

1. Introduction

Nowadays, a tremendous amount of data is readily accessible, as generated by researchers,

companies, and governments. Thus, instead of collecting new data to answer research

questions, it is a more convenient alternative to use already available data sources.

However, there is often no single data source that includes all information of interest.

Statistical matching (also called data integration or data fusion) furnishes a method with

which researchers can integrate data collected in different surveys. For example, it was

applied by Serafino and Tonkin (2017) to statistically match the data of the EU Statistics

on Income and Living Conditions and the Household Budget Survey.

Assume that we are interested in three blocks of variables, X, Y, and Z, while there are

two data files, A and B, available. Data file A contains nA observations of (X, Y), and data
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file B contains nB observations of (X, Z). The observations in B come from the same

population but are disjoint from the observations in A. The aim of statistical matching,

namely the gain of joint information about variables not jointly observed, is twofold (e.g.,

D’Orazio et al. 2006b, 2):

(i) the estimation of the joint distribution of X, Y, and Z or any of its characteristics

(macro approach), and/or

(ii) the creation of a synthetic data file with complete observations on X, Y, and Z (micro

approach).

As the schematic representation in Figure 1 suggests, statistical matching can be

interpreted as a missing data problem. The observations of the specific variables Y and Z

are missing in a special block-wise pattern in A a B, which denotes the union of the two

available data files. Following, for example, D’Orazio et al. (2006b, 6), the missingness is

induced by the given allocation to a certain data file, and thus the missing data mechanism

in the framework of statistical matching can convincingly be assumed to be missing

completely at random. However, this absence of joint information on all variables leads to

A severe identification problem: the parameters that concern the relationship between Y

and Z are not directly estimable from A a B. Throughout the article, we use the term

parameter to refer to a component of the (joint) probability distribution.

For instance, D’Orazio et al. (2006b) show various ways to remedy the issue of non-

identifiability. On the basis of their underlying concepts, these methods can be allocated

into three basic groups: Approaches which

(i) assume the conditional independence of the specific variables given the common

variables X, in order to achieve a factorisation of the joint distribution whose

components are estimable on A a B,

(ii) require auxiliary information in terms of a third file or other external information

about parameters concerning the relationship of Y and Z,

(iii) refrain from aiming at precise point estimates and account for the uncertainty of the

statistical matching problem by estimating a set of plausible parameters, resulting in

lower and upper bounds for the parameters concerning the relationship between Y

and Z. These estimates can be interpreted as set-valued point estimates, not to be

confused with confidence regions.

yi1 ... yiq xi1 ... xip zi1 ... zir

zb1 ... zbr

ya1 ... yaq xa1 ... xap

xb1 ... xbp

nA

nB

A B

data file A

data file B

joint information

⇓

Fig. 1. Schematic representation of the statistical matching problem (See D’Orazio et al. 2006b, 5 (modified)).
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In practice, it is not testable whether the conditional independence assumption holds, and

in most applications it might be contested. Manski’s Law of Decreasing Credibility

(Manski, 2007, 3), which states that the maintenance of unjustified assumptions reduces

the credibility of analyses, makes a very strong argument against the first group of

approaches. Auxiliary information, which is the basis of the second group of approaches,

is often not available for a certain statistical matching task. Hence, applying statistical

matching, taking the underlying uncertainty credibly into account, is the means of choice

in these situations.

In the context of statistical matching, typically the term uncertainty refers to the

previously mentioned identification problem. It points to the fact that even if we have

complete information on the marginal distributions of (X, Y) and (X, Z), the joint

distribution of (X, Y, Z) cannot uniquely be determined (e.g., D’Orazio et al. 2006a).

Thus, lower and upper bounds on the parameters (i.e., probability components) are the

best that can be obtained without relying on strong untestable assumptions or external

information.

Elaborating the concept of uncertainty and how to measure it formed the central focus of

the papers by Conti et al. (2012, 2017). Much of the current literature on uncertainty

regarding the statistical matching task pays attention to the continuous case, especially to

normally distributed variables (e.g., D’Orazio et al. 2006b; Rässler 2002; Ahfock et al.

2016). However, there is also a relatively small body of literature that is concerned with

categorical data. For instance, D’Orazio et al. (2006a), Vantaggi (2008), and Di Zio and

Vantaggi (2017) deal with statistical matching of categorical data considering different

circumstances.

As emphasised by Conti et al. (2012, 70), the “third group of techniques” reflecting

the natural uncertainty of statistical matching, does not [usually] “directly aim at

reconstructing a complete data set”. In the present article, we introduce imprecise (single)

imputation as the first micro approach for categorical data that directly accounts for the

natural uncertainty of statistical matching. It is based on the imputation of sets of plausible

values, which leads to a complete synthetic data file with partially set-valued observations.

Furthermore, embedding imprecise imputation into the framework of finite random sets

will allow us to derive lower and upper bounds for the parameters of the joint distribution.

As we will highlight, imprecise imputation can be interpreted as a generalisation of

multiple hot deck imputation (e.g., Little and Rubin 2002) and fractional hot deck

imputation (e.g., Kim and Fuller 2004). The bounds, which we obtain by our imprecise

imputation procedure, envelop the results from multiple hot deck imputation and

fractional hot deck imputation.

The article is structured as follows. Section 2 recalls the background of our work by

giving a brief overview of the basic setting of statistical matching, its interpretation as a

missing data problem, and hot deck imputation in this context. Section 3 describes the

idea of imprecise imputation and introduces three imputation procedures. Subsequently,

in Section 4, we embed imprecise imputation into the theory of finite disjunctive

random sets and show how it can be utilised to estimate lower and upper bounds for

the parameters of interest from our imputed data file. After providing the setting and

results of a simulation study in Section 5, we conclude with a summary and outlook

in Section 6. The appendix (Section 7) contains a more detailed description and
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justification of the design of the simulation study and graphics on the results of the

simulation study.

2. Statistical Matching

2.1. The Basic Setting and its Missing Data Interpretation

Let us assume that we have two data files, A and B, indexed by IA and IB, respectively,

with nA and nB disjoint observation units. Without loss of generality, we assume that

the index sets are disjoint: IA ¼ {1, : : : , nA} and IB ¼ {nAþ1, : : : , nA þ nB}.

Furthermore, let X ¼ (X1, : : : , Xp) be the vector of common variables, and Y ¼ (Y1, : : : ,

Yq) and Z ¼ (Z1, : : : , Zr) be the vectors of specific variables. Denote the domains of the

possible values of Xl, l ¼ 1, : : : , p, by Xl, their corresponding Cartesian product by X,

and proceed analogously for the specific variables, defining Y1, : : : , Yq, Z1, : : : , Zr, as

well as Y and Z.

As displayed in Figure 1, data file A exclusively contains information on (X, Y) as

observations (xa, ya)a[IA
, while data file B comprises information on (X, Z) only, as

observations (xb, zb)b[IB
. Consequently, there is no observation that contains simultaneous

information on Y and Z. In the following, the available information will be consolidated in

the incomplete sample A a B, representing the union of files A and B (see Figure 1) with

n: ¼ nA þ nB observations, indexed by I ¼ IA < IB.

Furthermore, we assume that all observations are independently and identically

distributed, each following the joint probability distribution P(X ¼ x, Y ¼ y, Z ¼ z),

where the realisations for a certain observation i [ I are depicted as xi ¼ (xi1, : : : , xip),

yi ¼ ( yi1, : : : , yiq), and zi ¼ (zi1, : : : , zir). By collecting all probability components of the

underlying distribution, we derive the parameter vector consisting of the probability

entries of the multidimensional probability table of X, Y, and Z.

As previously mentioned, statistical matching may be regarded as a missing data

problem. Hence, a natural strategy to solve the statistical matching task is imputation, that

is, the substitution of the missing entries with suitable real or artificial values to derive a

complete (but partially synthetic) data file. To prepare our method, in the following section

we focus on hot deck imputation, where the missing entries of an observation (recipient)

are replaced by records from a similar observation (donor) of the same sample. Hot deck

imputation ensures that only live values, that is, actually observed and no artificial values,

are substituted, and that the marginal and conditional distributions are preserved well for

large samples (e.g., Conti et al. 2008). Hot deck imputation methods are frequently used in

practice, comparatively easy to apply, and nonparametric (e.g., Andridge and Little 2010);

for a general missing data case, see, for example, Little and Rubin (2002, 66).

2.2. Hot Deck Imputation for Statistical Matching

In the context of statistical matching, hot deck imputation belongs to the group of

nonparametric micro approaches. In the following, we will recall and formalise an

example for four variables (X1, X2, Y1, Z1) from D’Orazio et al. (2006b, Chap. 2.4) and also

explain our notation. The data samples A and B are assigned to the roles of recipient file

and donor file. Since it is a symmetric problem, D’Orazio et al. (2006b) only describe the
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case where A is the recipient file and B the donor file. The reverse case works analogously.

The choice of whether only A, only B, or A a B should be imputed depends on many

factors. In this article, we impute A a B without loss of generality. See, for instance,

D’Orazio et al. (2006b, 35–36) for a discussion on this issue.

Random hot deck imputation means that for each missing entry in the recipient file, a

donor record from the donor file is randomly chosen by simple random sampling and its

corresponding values are used to replace the missing entries in the recipient file. Every

missing entry of the specific variable Z1 in the recipient file A, that is, za1, a [ IA, is

replaced by the synthetic value ~za1 :¼ zb1, b [ IB, where b is the randomly chosen

observation unit from the index set IB of data file B and, hence, ~za1 [ {zb1: b [ IB}. The

a-th observation of complete, synthetic data file A is composed of (xa1, xa2, ya1, ~za1), where

the tilde marks the imputed and thus synthetic value.

However, simple random sampling gives all observation units in the donor file the same

probability of being selected. Thus, it implicitly induces the independence of both the

common and specific variables.

A more promising procedure is the assignment of donor and recipient records within

groups of similar (homogeneous) records that are created by exploiting the information of

the common variables. The realisations of selected categorical common variables are used

to generate groups of similar records in both the recipient file and the donor file. Little and

Rubin (2002) call these groups adjustment cells. Following D’Orazio et al. (2006b), we

will call them donation classes. The choice of the common variables that are actually used

to perform statistical matching (the so-called matching variables) has a high impact on the

resulting matching quality. It is desirable that the common variables are highly correlated

with, or good predictors for the specific variables (Rässler 2002, 10). See, for instance,

D’Orazio et al. (2017) on how to choose the matching variables.

Consider again data file A as the recipient. The first step of hot deck imputation within

homogenous groups is the assignment of all observations in A a B to donation classes. For

this purpose, we partition the index set I into D # jXj index sets Id, d ¼ 1, : : : , D, such

that for any d, all observation units in I d have the same realisations of X. Moreover, define

Id
A :¼ I d > IA and Id

B :¼ Id > IB. Every missing entry for the specific variable Z1 of an

observation unit from A in the d-th donation class, that is, za1; a [ Id
A, is replaced by

~za1 :¼ zb1; b [ Id
B, which is the corresponding value of a randomly chosen observation

from the donation class I d
B, and hence ~za1 [ zb1 : b [ Id

B

� �
for all a [ Id

A.

Using donation classes, the imputation of Z is conditional on X, thus reproducing the

empirical conditional distribution of Z given X in A. Since there are no joint observations

of all variables, additionally conditioning on Y is not possible. Thus, a conditional

independence – between the imputed values of Z and the values of Y, given X – is

implicitly (empirically) established in the synthetic parts of the resulting complete file (see

Rässler 2002, 200–204).

Every complete synthetic data file that consists of observations (xa, ya, ~za)a[IA
and (xb,

~yb, zb)b[IB
straightforwardly delivers estimates of the underlying joint distribution by

evaluating the observed relative frequencies. Written in a form preparing for the

generalisation developed in Subsection 4.3, we obtain for an event E ¼ EX £ EY £ EZ with

EX # X, EY # Y and EZ # Z,
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P̂ðEÞ :¼ P̂ððX;Y;ZÞ [ EÞ ¼ 1

n
{a [ IA : ðxa; ya; z~aÞ [ E} < {b [ IB : ðxb; y~b; zbÞ [ E}j j

¼
1

n
{a [ IA : xa [ EX ; ya [ Ey; ~za [ EZ}
�� ��

þ
1

n
{b [ IB : xb [ EX ; y~b [ Ey; zb [ EZ}
�� ��:

ð1Þ

Any event which is not directly representable as a Cartesian product can be decomposed

into the union of disjoint events of the previous form.

In the context of missing data, it is a well-known problem that single imputations are not

able to reflect the uncertainty that arises from the missingness of joint information on Y

and Z. Therefore, it is commonly recommended to apply multiple imputation techniques

(e.g., Little and Rubin 2002, chap. 5.4), where the replacement of missing entries is

performed several times. The obtained complete data files are then analysed by common

methods for complete data and the results are subsequently pooled to achieve point

estimates. Such multiple imputation techniques have been further developed by Rässler

(2002, chap. 4) for application in statistical matching with the intention to estimate lower

and upper bounds for the parameters of interest in the spirit of Manski (1995). However,

Rässler (2002) only considers normally distributed data and, as stated in Ahfock et al.

(2016, 82), by applying multiple imputation “there is no guarantee that the range of

imputed datasets fully captures the uncertainty over the partially identified parameters”.

3. Imprecise Imputation

3.1. Basic Idea and Terminology

Based on these considerations, we will now develop the concept of imprecise imputation,

where we suggest imputing a set of plausible values for a missing entry. This leads to

precise observations (xa, ya)a[IA
in A and (xb, zb)a[IB

in B, and to imprecise, that is, set-

valued, synthetic observations ð~zaÞa[IA
in A and ð ~hbÞb[IB

in B. Please note that our aim is

not to identify a single element of these imprecise observations for the purpose of precise

single imputation, but rather to regard the whole set as the final piece of indivisible

information. In Subsection 4.3 we show how the set-valued imprecise observations can be

directly used to obtain estimates for the probability components of the joint distribution.

The following subsections detail and illustrate imprecise imputation. Three different

ways of determining the sets of plausible values to be imputed are introduced, each taking

into account the variations in how strong and trustworthy the underlying relationship

between the common and specific variables is. Without loss of generality, again let A be

the recipient and B the donor file, and let the donor classes be defined as in Subsection 2.2.

. D Domain imputation replaces every missing entry zal, a [ IA, of a variable Zl,

l ¼ 1, : : : , r, with its domain, that is,

z~al :¼ Zl; ;a [ IA; l ¼ 1; : : : ; r: ð2Þ

. VW Variable-wise imputation on the basis of donation classes replaces every

missing entry zal; a [ Id
A, of a variable Zl, l ¼ 1, : : : , r, with the set of live values of
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Zl within the corresponding class Id
B. Thus,

z~al :¼ zbl : b [ Id
B

� �
; ;a [ I d

A; d ¼ 1; : : : ;D; l ¼ 1; : : : ; r: ð3Þ

. CW Case-wise imputation, that is, the simultaneous imputation of all missing

entries of an observation a in I d
A, where every tuple za ¼ (za1, : : : , zar), a [ Id

A is

replaced with the set of live tuples in the corresponding class Id
B. Consequently,

z~a :¼ ðzbl; : : : ; zbrÞ : b [ I d
B

� �
; ;a [ I d

A; d ¼ 1; : : : ;D: ð4Þ

3.2. Illustration and Discussion of the Different Types of Imprecise Imputation

3.2.1. Domain Imputation

The most conservative way to determine the set of plausible values that are candidate

values for the substitution of a missing entry is to use the whole domain of the

corresponding variable. Concretely, this means that every missing entry zal, a [ IA,

l ¼ 1, : : : , r is substituted by the set of all possible realisations of Zl, that is, its domain Zl.

Hence, ~zal :¼ Zl; ;a [ IA becomes a set-valued entry in data file A, where all elements

of the set are treated as equally plausible, but without a further reduction in the complexity

by some (arbitrary) weighting or aggregation of the elements. The imputed sets for one

variable are equal for all observations. This procedure is briefly illustrated in the following

running toy example.

Minimal Example 1 Consider two data files, A and B, which consist of nA ¼ 2

observations of (Y1, Y2, X1, X2) and nB ¼ 3 observations of (X1, X2, Z1, Z2), respectively.

The corresponding domains of the variables are X1 ¼ X2 ¼ Y1 ¼ Z1 ¼ {0, 1} and

Y2 ¼ Z2 ¼ {0, 1, 2}. Domain imputation results in the following completed data file.

This imputation procedure resembles the approach of Ramoni and Sebastiani (2001),

who use an incomplete sample to estimate bounds for the parameters of conditional

probability distributions in the context of Bayesian networks.

Applying domain imputation, it is guaranteed that the true (but missing) value is always

an element of the imputed set. As previously mentioned, domain imputation is very

Table 1. Minimal example 1.

Y1 Y2 X1 X2 Z1 Z2

1 2 1 0 {0; 1} {0; 1; 2}
0 2 0 0 {0; 1} {0; 1; 2}

------------------------------------------------------------
{0; 1} {0; 1; 2} 1 0 0 0
{0; 1} {0; 1; 2} 1 0 1 1
{0; 1} {0; 1; 2} 0 0 1 2

Numbers in bold represent the original data. The files A and B

are visually divided by the dashed line. The numbers in curly

brackets depict the sets of possible realisations of the

corresponding variables, that is, the domains, which are here

the replacements for the previously missing entries.
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conservative, and thus it can also be applied if the common variables are not good

predictors for the specific variables. However, it neglects any available dependence

structure between the common and specific variables in the available data. In the

following, we will introduce two other methods to determine the set of values for

imputation that both take these dependencies into account, albeit to a different extent.

3.2.2. Variable-Wise Imputation

If q $ 2 or r $ 2, with due regard to the association between the common and specific

variables, imputation can be performed on two different levels, either by treating each of

the specific variables separately or by treating the specific variables within each of the two

blocks simultaneously (see, e.g., Joenssen 2015, chap. 3, for precise imputation). In this

section, we describe imprecise imputation on the separate level, while the simultaneous

level will be addressed in the next section.

The imputation of live values only within donation classes ensures that associations

between the common and specific variables are incorporated. As a consequence, the

preservation of the dependence structure is improved and the estimated bounds for the

parameters of interest become more narrow.

Without loss of generality, again let A be the recipient file and B the donor file. All

observations i [ IA < IB are allocated into donation classes depending on their

realisations of the matching variables selected from the common variables X, following

the notation as introduced in Subsection 2.2. For every observation a [ Id
A, the missing

entry zal of the variable Zl, l ¼ 1, : : : , r is substituted by the set of all live values of this

variable from the same donation class in the donor file B, resulting in Equation (3).

Minimal Example 2 Consider the same data situation as in Example 1. Now we will

illustrate the application of the just-described variable-wise imputation. The different

backgrounds display the different donation classes based on the combinations of the

realisations of X1 and X2. Both common variables are used as matching variables in this

example.

This procedure preserves the dependencies between the common and the specific

variables; however, the successive imputation of single variables breaks the dependence

structure among the specific variables. Little and Rubin (2002, 72), for instance, have

already stated that imputation should be multivariate to preserve the dependencies

between the variables. If one attaches high value to this requirement, the imputation

should be performed simultaneously for all variables in the data file as described in the

following section. Nevertheless, variable-wise imputation is a good compromise between

Table 2. Minimal example 2.

Y1 Y2 X1 X2 Z1 Z2

1 2 1 0 {0; 1} {0; 1}
0 2 0 0 {1} {2}

-----------------------------------------------
{1} {2} 1 0 0 0
{1} {2} 1 0 1 1
{0} {2} 0 0 1 2
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the very conservative domain imputation and the more data-driven case-wise imputation

procedure detailed in the following section.

3.2.3. Case-Wise Imputation

For case-wise imputation, we interpret the missing entries of one observation a [ Id
A out

of the d-th donation class in the recipient file as tuple of the form (za1, : : : , zar). This tuple

of missing entries is replaced by the set of tuples z~a, which have been observed in the donor

file B and the same donation class d, as in Equation (4). This strategy ensures that also the

dependencies among the specific variables Z remain unchanged. The following example

illustrates this imputation procedure.

Minimal Example 3 Consider again the situation of Example 1 as a starting point.

Interpret the empty cells za1 and za2 as tuples (za1, za2), a ¼ 1, 2, and analogously yb1 and

yb2 as tuples (yb1, yb2), b ¼ 3, 4, 5. The result of case-wise imputation in this example is

displayed in the following.

3.2.4. General Remarks

A potential issue arises if at least one donation class in the donor file is empty. If so,

variable-wise and case-wise imputation cannot directly be applied and we then

recommend imputing the domains Z1, : : : , Zr or the Cartesian product of the domains Z.

The partially set-valued data files produced by imprecise imputation can be interpreted

as a set of underlying precise data files. On closer inspection, the sets produced by the three

imputation procedures are nested: the largest set of underlying precise data files is obtained

by domain imputation, while case-wise imputation yields the smallest set. Equation (15)

shows this relationship formally.

Fractional hot deck imputation (e.g., Kim and Fuller 2004), which is also an imputation

approach that is based on set-valued imputations, produces precise results that are contained

in the sets obtained by imprecise imputation. It uses a weighting scheme, which is transferred

onto the set of values to impute. This strategy reduces complexity by circumventing the direct

handling of the imputed set-valued observation by creating a single completed data file with

accordingly down-weighted precise pseudo-observations. This kind of precise data allows the

direct use of common statistical models and methods. The variability, introduced by having

multiple values to be imputed, is accounted for, in the situation of the fractional hot deck

imputation, in the variance estimation of the precise estimator. However, variance estimation

in the context of fractional hot deck imputation may be argued to be more complex yet more

reliable in comparison to multiple imputation (e.g., Yang and Kim 2016).

Table 3. Minimal example 3.

(Y1, Y2) X1 X2 (Z1, Z2)

(1, 2) 1 0 {(0, 0); (1, 1)}
(0, 2) 0 0 {(1, 2)}

--------------------------------------------
{(1, 2)} 1 0 (0, 0)
{(1, 2)} 1 0 (1, 1)
{(0, 2)} 0 0 (1, 2)
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During the imprecise imputation process, variable-wise and, in particular, domain

imputation may create combinations of variable realisations which are contextually

unjustified. For instance. D’Orazio et al. (2006b) distinguishes between two types of

logical constraints to exclude impossible or unlikely combinations in the synthetic

categorical data:

(i) existence of some quantities on the basis of the individual observation unit, and

(ii) inequality constraints on the level of the estimated probability distributions.

Especially the first case can easily be incorporated into the imputation step. Single,

implausible values or tuples of values containing the unjustified combinations can easily

be removed from the synthetic file. As an extension to both types of constraints, the set of

values to be imputed can be restricted further removing not only contextually impossible

values but also combinations of values that showed to be very rare within the data file or

the population, motivated by the approach of Cattaneo (2013), developed in a decision-

theoretic context. This means that the set of (variable-wise or case-wise) live values is

restricted to the set of all values whose relative frequencies exceed a certain threshold d,

which may be dependent on the donation class. Increasing d would gradually eclipse

our conservative perspective, resulting, in the extreme case, in a precise single-valued

imputation.

We propose to build upon the set-valued data directly, without reducing their

complexity via a weighting scheme. In contrast to widely adopted imputation procedures

yielding single-valued data, we are now in the situation of statistical analysis of partially

set-valued data. To frame imprecise imputation formally, it will be embedded into the

concept of finite disjunctive random sets, which allows the estimation of tight lower and

upper bounds for the parameters.

In order to allow for a concise description in the following sections, we will take the

observation-wise perspective on the imputed sets (i.e., the notation in terms of tuples),

which corresponds to the perspective taken by the case-wise imputation. The imputation

results of the other procedures can be transferred by taking the Cartesian product, e.g.,

z~a ¼ ~za1 £ : : : £ ~zar.

4. Imprecision Imputation and Finite Disjunctive Random Sets

Imprecise imputation provides us with partially set-valued data. To prepare a well-

founded statistical analysis, we have to formalise imprecise imputation probabilistically.

For this purpose, the direct formalisation of X, Y, and Z as collections of random variables

and corresponding realisations is no longer sufficient. Starting from an applied point of

view, two types of generalisations, which will indeed prove compatible among each other,

could be imagined. Firstly, we could abstractly look for a concept of set-valued variables

with corresponding set-valued realisations. Secondly, we could assume that every set

represents outcomes of various random variables, one of which is the true underlying,

yet not precisely observable, random variable. (Throughout this article, we use the term

random variable to refer to a mapping to the real numbers as well as to some nonnumerical

finite space. In the context of the latter, the term random element is sometimes used for the

sake of distinction e.g., Nguyen 2006).
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In this section it will be shown how set-valued observations, and thus the resulting data

files of the three imprecise imputation procedures in particular, are covered by the concept

of disjunctive random sets, also known as ill-perceived random variables (Couso et al.

2014; Nguyen 2006). This embedding allows for the assessment of probability statements

and the construction of corresponding estimates from the partially set-valued synthetic file

derived from imprecise imputation. The interpretation of the set-valued quantities as

disjunctive random sets corresponds to the view of Dempster (1967), on which the

Dempster-Shafer theory of belief functions (Shafer 1976) is built, which has become very

popular in artificial intelligence (see, for example Denoeux 2016).

4.1. Random Set Formulation of Imprecise Imputation

The true random variables X, Y, and Z map from the underlying population space,

denoted by V in the sequel, into the domains X, Y and Z, yielding realisations xi, yi, zi

with i [ I , respectively. Now, neither yb nor za are available, but are replaced by

synthetic observations ~yb and ~za, respectively, according to either Equation (2), (3), or

(4), depending on the chosen imprecise imputation procedure. To formalise this situation,

we follow the common practice in statistical matching, treating IA and IB as fixed. This

allows us to globally replace Y and Z by the set-valued variables Y and Z (with

realisations yi and zi, i [ I). The imputed values are already sets, so they fit in nicely, but

in order to deal with the already observed realisations, we regard them now as singletons

containing only the observed value, for example zbl ¼ {zbl}; ;b [ IB; l ¼ 1; : : : ; r.

The variables Y and Z map into the corresponding power sets 2Y and 2Z, whereby

mapping into the empty set is excluded.

If we collect the random variables of interest in a variable G and define W :¼ X £ Y
£ Z, then

G :¼ ðX;Y;ZÞ : V ! 2W ={Y} ð5Þ

is a finite nonempty random set (see Definition 3.1 in Nguyen 2006, 35), satisfying the

required measurability condition by equipping 2W\{Y} with its power set. Since in our

setting the imputed (synthetic) set-valued entries of the specific variables are understood

as the collection of possible underlying true values, this random set has to be interpreted in

the disjunctive way (see, for example Couso et al. 2014; Couso and Dubois 2014).

In general, any disjunctive random set G induces an upper inverse G* and a lower

inverse G*. When considering an event of interest E #W, which is now a singleton in the

considered space 2W, the upper inverse contains all the elements of the population whose

image overlaps with E, while the lower inverse contains only those elements of the

population whose (nonempty) image is entirely contained within E:

G*ðEÞ :¼ {v [ V : GðvÞ> E – Y} ð6Þ

and

G*ðEÞ :¼ {v [ V : GðvÞ # E}: ð7Þ

In a heuristic formulation, the upper inverse considers all aspects that do not entirely

contradict E, while the lower inverse collects all aspects that necessarily imply E. By using
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the probability measure P defined on the original probability space involving V, the upper

and lower probabilities are then defined in terms of the upper and lower inverse,

respectively:

P*ðEÞ ¼ PðG*ðEÞÞ and P*ðEÞ ¼ PðG*ðEÞÞ ;E #W: ð8Þ

In order to improve readability we have not marked the image probability measure

induced by the random set G, i.e., PG ¼ P, and we proceed analogously with the

corresponding set functions P* and P*. If we refer to a different image measure, the random

quantity inducing this image measure, will be set as subscript to P. If we look at an

underlying, ill-perceived random variable W0 :V ! W, only knowing that the unobserved

true value W0(v) lies (with probability one) within the observed set G(v), it can be shown

(see, for example Couso et al. 2014) that for every event E #W the upper and lower

probabilities induced by the random set enclose the probability of W0:

P*ðEÞ # PW 0
ðEÞ # P*ðEÞ ;E #W:

This leads to another way of interpreting a random set, namely as producing a family of

compatible, precise probability measures P (G), which is a subset of the set P of all

probability measures on (2W, 22W). Nguyen (1978) showed that if W is finite, the

probability distribution induced by G corresponds to the basic probability assignment in

Dempster-Shafer theory and thus makes the belief function mathematically equivalent to

P*. Consequently, the technical results from that area may be used as well.

In the present special case of finiteW, the set P(G) coincides with the credal setM(P*),

that is, those precise probability measures that respect the upper and lower bounds defined

by P * and P* event-wise (see Miranda et al. 2010), which also embeds the situation

considered here into the framework of imprecise probabilities (e.g., Walley 1991;

Augustin et al. 2014).

In particular, P* and P* are lower and upper probabilities that are envelopes of all

probability measures P inM(P*):

P*ðEÞ ¼
P[MðP *Þ

inf PðEÞ and P*ðEÞ ¼
P[MðP *Þ

sup PðEÞ:

Indeed, P*, P* and M(P*) are three mathematically equivalent formulations that can be

transferred into each other. Therefore, from an applied point of view, each of them can be

seen as the core result of a probabilistic description of imprecise imputation. For any

possibly true probability distribution PW0
, our embedding into random sets provides us

with a set M(P*) of distributions induced by PW0
such that M(P*) contains PW0

. By

construction, this is the smallest set that is deducible from the concrete imputation

procedure without adding further assumptions or knowledge. Dually, P*(E) and P*(E) are

the narrowest bounds, deducible on the probabilities of an E.

4.2. Conditioning Disjunctive Random Sets

The representation via the setM(P*) of compatible probability distributions including the

embedding into the framework of imprecise probabilities guides the further probabilistic

analysis of the partially set-valued data file achieved by imprecise imputation. For
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instance, if the elements of X £ Y £ Z eventually get associated with real-valued

outcomes, then a generalised expectation is logically defined via the infimum and

supremum of all compatible traditional expectations based on image measures of elements

ofM(P*).

A similar procedure suggests itself for conditioning, namely an element-wise

application of conditioning for all P [M(P*), provided P(C) . 0 for a conditioning

event C (see, for example Dubois and Prade (1992) or Fagin and Halpern (1991) for a

discussion and a comparison to an alternative). It can be shown (e.g., De Campos et al.

(1990), Couso et al. (2014), and Fagin and Halpern (1991)) that this leads to the following

closed-form results for the upper conditional probability

P*ðSjCÞ ¼
P[MðP *Þ

sup PðSjCÞ ¼ P*ðS > CÞ
P*ðS > CÞ þ P*ð

�S > CÞ
ð9Þ

and the lower conditional probability

P*ðSjCÞ ¼
P[MðP *Þ

inf PðSjCÞ ¼ P*ðS > CÞ
P*ðS > CÞ þ P*ð �S > CÞ

; ð10Þ

where �S denotes the complement of S.

4.3. Parameter Estimation by Means of Disjunctive Random Sets Based on Imprecise

Imputation

So far, this approach has been described in a probabilistic setting, where every entity

involved is known (besides the true hidden/ill-perceived random variable). In the

following, the statistical perspective will be taken in which the probabilities that

correspond to the random set need to be estimated from a finite sample. Consequently, we

take our synthetic data file derived from imprecise imputation as consisting of n ¼ nA þ

nB realisations gi, i [ I, of the corresponding generic random set G from Equation (5).

Referring to Equation (8), with Equations (6) and (7), we obtain, in a generalisation of

Equation (1), for our event E ¼ EX £ EY £ EZ:

cP*P* ðEÞ ¼ 1

n
{i [ I : gi > E – Y}j j

¼
1

n
{a [ IA : ðxa; ya; z~~aÞ> E – Y}j j þ {b [ IB : ðxb; y~b; zbÞ> E – Y}j j
� �

¼
1

n
{a [ IA : xa [ EX ; ya [ EY ; z~a > EZ – Y}
�� ��

þ
1

n
{b [ IB : xb [ EX ; y~b > EY – Y; zb [ EZ}
�� ��

ð11Þ

and
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cP*P*ðEÞ ¼
1

n
{i [ I : gi # E; gi – Y}j j

¼
1

n
{a [ IA : ðxa; ya; z~aÞ # E}j j þ {b [ IB : ðxb; y~b; zbÞ # E}j j
� �

¼
1

n
{a [ IA : xa [ EX ; ya [ EY ; z~a # EZ}
�� ��

þ
1

n
{b [ IB : xb [ EX ; y~b # EY ; zb [ EZ}
�� ��:

ð12Þ

From cP*P* ðEÞ and cP*P* ðEÞ also an estimate of the induced underlying set of probability

measures can be derived:

cMMðP*Þ ¼ {P [ P :cP*P* ðEÞ # PðEÞ #cP*P* ðEÞ; ;E #W}: ð13Þ

In comparing the estimates resulting from the different types of imputation procedures,

it is essential to recall that the different set-valued data files are nested, by construction,

with respect to all compatible underlying precise data files. The set resulting from domain

imputation is a (nonstrict) superset of the set obtained from variable-wise imprecise

imputation, which contains the set produced by case-wise imprecise imputation.

Therefore, with the abbreviations introduced in Subsection 3.1, it holds that

cMM
�

P*
CW
�

# cMM
�

P*
VW
�

# cMM
�

P*
D
�

ð14Þ

and, for every event E #W,

cP*P*
DðEÞ # cP*P*

VW ðEÞ # cP*P*
CW ðEÞ # cP*P* CW ðEÞ # cP*P* VW ðEÞ # cP*P* DðEÞ: ð15Þ

This allows us to compare the results obtained through the different imputation approaches

to the result under conditional independence, which yields a single precise probability

distribution. It can be argued that the probability distribution under conditional

independence is contained in any of the estimated sets. Furthermore, as can be seen from

the relations between the different sets of probabilities in Equation (14), the set induced by

case-wise imputation can be regarded as containing probability distributions neighbouring

the one under conditional independence. The other sets can be interpreted to deviate even

more from conditional independence, where domain imputation has the largest deviation.

Domain imputation demonstrably neglects any conditional dependence structure in the

construction of its bounds. Therefore, the bounds are maximal, but not vacuous, thus

constraining the parameter space.

In addition to logical constraints on the imputation level (see Subsubsection 3.2.4),

constraints on the level of the estimated probability distribution can be regarded as a

refinement of the estimated set cMM(P*) of probabilities derived from our imprecise

imputation (see Equation (13)). Since by construction cMM(P*) is representable as a convex

polyhedron in RjWj21, especially linear constraints can be incorporated very conveniently.

Minimal Example 4 For demonstration purposes, let us estimate the bounds of

conditional probabilities P(Y1 ¼ 1jZ1 ¼ 1) for the case-wise imputed data of our toy
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example from Example 3. For the upper conditional probability we need to estimate

P*(Y1 ¼ 1, Z1 ¼ 1) and P*(Y1 – 1, Z1 ¼ 1) in accordance to Equation (9). We estimate the

upper joint probability with Equation (11) by counting how many observations have or

could have realisation with y1 ¼ 1 and z1 ¼ 1. This holds for observations 1 and 4:
cP*P* (Y1 ¼ 1, Z1 ¼ 1) ¼ 1

5
�2 ¼ 0:4. The lower joint probability is obtained by Equation (12)

by counting how many observations only have realisations with Y1 – 1 and Z1 ¼ 1. This

holds for observations 2 and 5, and hence cP*P*ðY1 – 1; Z1 ¼ 1Þ ¼ 1
5
�2 ¼ 0:4 and thus the

upper conditional probability is cP*P* (Y1 ¼ 1jZ1 ¼ 1) ¼ 0:4
0:4þ0:4 ¼ 0:5. Similarly, the lower

and upper joint probabilities are estimated, occurring in Equation (10): cP*P* ðY1 ¼ 1; Z1 ¼

1Þ ¼ 0:2 and cP*P*ðY1 – 1; Z1 ¼ 1Þ ¼ 0:4, resulting in the lower conditional probability
cP*P*ðY1 ¼ 1jZ1 ¼ 1Þ ¼ 0:2

0:4þ0:2 ¼
1
3
. Thus, P̂ðY1 ¼ 1jZ1 ¼ 1Þ is within the interval 1

3
; 1

2

	 

.

5. Simulation Study of Imprecise Imputation

To investigate the quality of imprecise imputation, we have performed a simulation

study. It would have been possible to also match real data, but in a real-data application

the true underlying distribution is unknown and assessing the statistical matching quality

is possible only by checking whether the marginal distributions are preserved. Since this

is clearly not sufficient as a sole quality criterion, we have simulated data. With the

aid of a simulation study we have also been able to cover various data scenarios which

make the results of our investigation of the quality criteria more credible. Moreover, the

noise arising from the sampling procedure in the context of real-data applications is

neutralised.

We simulated a complete categorical data file A a B with i.i.d. observations and split it

into two separate files, A and B, with nA ¼ nB. Subsequently, the observations of Z and Y

are deleted from A and B, respectively, and the two files are statistically matched by

imprecise imputation. To assess the statistical matching quality, we analysed, on the one

hand, whether the true parameters of the marginal distributions and the joint distributions

are within their respective estimated bounds, and, on the other hand, the distance between

the upper and lower bounds. This distance, which we will call interval width in the

following, is an appropriate performance measure since the true parameters would always

lie within the estimated bounds if we chose the unit interval as a trivial estimator of a

probability component. Thus, the narrower the interval that covers the component of the

true parameter, the better the procedure performs. In the following, we will detail the

simulation design, parameters, and results. All simulations and analyses are conducted in

R (R Core Team 2018). The specific task presented in this paper is implemented in a

published R-package impimp (Fink et al. 2019), which was also utilised in the simulation,

but is in the same way usable for real-data applications.

5.1. Simulation Design

The starting point of our simulation analysis is two categorical data files, A and B.

Both of them contain information on four common variables X ¼ {X1, X2, X3, X4}

and four specific variables Y ¼ {Y1, Y2, Y3, Y4} or Z ¼ {Z1, Z2, Z3, Z4}, respectively,

with domains X1 ¼ X2 ¼ Y1 ¼ Y2 ¼ Z1 ¼ Z2 ¼ {0, 1} and X3 ¼ X4 ¼ Y3 ¼ Y4 ¼ Z3 ¼

Z4 ¼ {0, 1, 2}.
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Altogether, we modify the following four simulation parameters:

1. The strength of the bivariate associations in terms of the corrected contingency

coefficient C, also known as Sakoda’s adjusted Pearson’s C: C [ [0, 0.2), C [ [0.2,

0.6), or C [ [0.6, 1);

2. The Jensen-Shannon divergence JSD (e.g., Lin 1991) from the marginal distribution

of the common variables to the discrete uniform distribution: JSD . 0.15 or JSD #

0.015;

3. The numbers of observations nA ¼ nB [ {50, 100, 250}; and

4. the dependence structure among the variables (see Figure 2).

Altogether, we obtain 72 simulation scenarios. An explanation of the choice of the

simulation parameters follows in the next section. An exhaustive justification and

description of the simulation design can be found in Appendix A and Appendix B,

respectively.

5.2. Simulation Parameters

As already stated by Rässler (2002, 10), the common variables should be good predictors

for the specific variables. This ensures that the donation classes are suitable for generating

homogeneous groups of observations that lead to proper donor values for a missing entry.

Taking this fact into account, we vary the dependence structure within a simulated data file

in terms of its bivariate associations.

Figure 2 shows four different dependence structures that are covered by our simulation

design. The upper six variables of each design represent the binary variables, and the six

variables below the dashed line represent the variables with three categories. The

connecting lines between the variables display the bivariate dependencies among these

variables. For example, in the top line of Structure 1, the variable X1 is connected to

variable Y1 and also to variable Z1. The strengths of these bivariate associations are

controlled by the corrected contingency coefficient C [ [0, 1]. This association measure

for categorical variables is based on the X2-coefficient for contingency tables, but is

corrected for the number of observations, as well as for the number of categories.

At first sight, the number of observations plays a counterintuitive role in this simulation

study. We expect that the distances between the lower and upper bounds of the parameters

of interest increase in situations with a higher number of observations. This is due to the
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Fig. 2. Four different dependence structures among the variables in the simulation study. A line between two

variables indicates dependence between them.
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fact that a growth of the number of observations also causes an increase in the number of

missing entries, which, in turn, leads to less precise estimations.

The Jensen-Shannon divergence from the marginal distributions of the common

variables to the discrete uniform distribution is expected to have an indirect effect on the

statistical matching quality. If one or more of these marginals are far away from the

discrete uniform distribution, we obtain rare realisations of our matching variables, which

induce rare donation classes. This circumstance may likely lead to situations where certain

rare donation classes of the recipient file do not exist in the donor file. In these cases, we

impute, in accordance with the recommendation in Subsubsection 3.2.4, the domain for

the missing entries that corresponds to a minimum of information which, in turn, leads to

bounds that are (slightly) further apart.

5.3. Simulation Results

As discussed, we use two measures of quality. Firstly, we investigate whether the true

parameters of our simulation distributions lie within the corresponding lower and upper

bounds estimated on the synthetic and partially set-valued data. Secondly, we report the

mean interval widths that equal the mean distances between the upper and lower bounds.

An interval width of 0 corresponds to a precise estimation.

Table 4 shows that the true values of the components of the marginal and the joint

distributions almost always lie inside the estimated bounds. When considering the

coverage of the marginal distributions (upper part of Table 4), the only visible difference is

between the domain and donation-based approaches with respect to the coverage of the

true probability: while the intervals for domain imputation are always wide enough to

cover the true probability, for variable-wise and to the same extent for case-wise

imputation the estimated intervals are sometimes too narrow. Regarding the joint

distribution (lower part of Table 4), the intervals estimated on the domain-imputed data

still always cover the true probability, but there is now also a slight difference between

Table 4. Relative number of probability table components for which the true parameter of the marginal

distributions (top) / joint distributions (bottom) lies inside the estimated bounds, aggregated over all repetitions.

The presented summary lists the result when pooling all simulation scenarios. The absence of decimal places for

domain imputation highlights the numerically exact values.

Imputation
procedure Min. 1st quartile Median 3rd quartile Max. Mean

Domain 1 1 1 1 1 1
Variable-wise 0.9250 0.9613 0.9867 0.9967 1.0000 0.9792
Case-wise 0.9250 0.9613 0.9867 0.9967 1.0000 0.9792

Imputation
procedure Min. 1st quartile Median 3rd quartile Max. Mean

Domain 1 1 1 1 1 1
Variable-wise 0.9975 0.9989 0.9994 0.9996 0.9998 0.9992
Case-wise 0.9944 0.9985 0.9990 0.9993 0.9997 0.9987
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case-wise and variable-wise imputation, showing the hierarchy of the intervals as given in

Equation (15). Nonetheless, the estimated intervals of the donation-based imputation

approaches still almost always cover the true probability. The difference between marginal

and joint coverage is mostly due to the fact that, using the simulation design, the joint

distribution had more components (46,656) than observations in the data file, which means

that most of the underlying probability entries were zero. The marginal distributions, in

contrast, consisted of only two to three entries, which made it harder to distinguish on the

estimated level between the different imputation approaches. By and large, the results

show a desirable output and also demonstrate the power of our method, which achieves

high average coverage even across the diverse simulation scenarios.

The interval width was separately analysed for the components of the marginal

distributions and joint distributions within the simulation. The aggregated results are

displayed in the figures in Appendix C and summarised in the following.

The mean and maximal interval widths of the estimated intervals for the marginal

distributions using domain imputation are always 0.5. This is the maximum interval width

which can be achieved if we impute A a B under the constraint that nA ¼ nB. Both

variable-wise imputation and case-wise imputation yield intervals that are, in most of the

cases, smaller than the intervals obtained by domain imputation. This also holds for the

components of the joint distributions.

The interval widths of the marginals are conspicuously affected by the divergence of the

marginal distributions to the discrete uniform distribution. If the marginals are close to the

uniform distribution, the intervals are narrow. However, this effect decreases if there are

few direct connections between the specific variables and the common variables. For the

interval widths of the components of the joint distribution, we can observe a slightly

contrary effect regarding the combination of marginals that are close to the uniform

distribution and few direct connections between the specific variables and common

variables. For the simulation designs with a higher divergence to the uniform distribution,

the variation of the interval widths is considerably smaller. Moreover, in these cases, the

median of the interval widths lies below the median of the design, with a smaller

divergence to the uniform distribution. At first sight, this result appears somewhat

counterintuitive, but can be explained as follows. Given a fixed value for the corrected

contingency coefficient C, with marginal distributions of the common variables which are

far away from the discrete uniform distribution, we obtain a probability table which has

fewer combinatorial possibilities for each cell than with marginals close to the uniform

distribution. This circumstance makes the estimation more precise in some cases, which in

turn leads to smaller interval widths.

Furthermore, the results show that with a growing number of observations, the interval

widths of the marginal distributions slightly increase. The interval widths also show higher

variations in these cases. The interval widths for the components of the joint distribution

show the same behaviour with respect to the number of observations.

The strengths of the bivariate associations in terms of the corrected contingency table

also affect the widths of the intervals concerning the marginal distributions. In particular,

the first dependence structure shows that the interval width decreases with a higher C.

Nevertheless, the difference between low and high associations is, in few cases,

(especially for marginals close to the uniform distribution) opposite, or only visible in the
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variations. Considering the interval widths for the components of the joint distribution, we

can see that high associations improve the estimation.

The simulation results also show that, as expected, the dependence structure among the

variables in a data file has an influence on the estimated lower and upper bounds of the

parameters of the marginal distributions. The mean interval widths increase if the specific

variables and the common variables have only few connections. The last dependence

structure where there are only few connections between the common variables and the

specific variables tends to lead to intervals with higher widths for the components of the

joint distribution.

To sum up, all imputation procedures yield lower and upper bounds that almost always

cover the components of the true parameter value. The number of cases where a

component of the true parameter lies outside of the estimated interval is negligible.

Additionally, the width of the intervals decreases the more the dependence structure

among the variables in the data file are incorporated in the imputation procedure. This also

holds for small associations and for structures where the specific variables only have few

connections to the common variables.

6. Concluding Remarks

We have presented the first micro approach for statistical matching of categorical data that

reflects the natural uncertainty of statistical matching. Our approach relies on imprecise

imputation, that is, the idea to impute sets of plausible values. We suggested three types of

imputation strategies: domain, variable-wise, and case-wise imprecise imputation. They

can be distinguished by their ability to reproduce the available dependence structure

between the common and the observed specific variables in the originals files A and B into

the synthetic file. They also differ in the amount of data constellations produced beyond

those obtained by single or multiple imputation under the conditional independence

assumption. Imprecise imputation can be seen as a set-valued generalisation of multiple

(hot deck) imputation on the one hand, and fractional hot deck imputation on the other

hand.

The most conservative approach, domain imputation, does not take any dependencies

in the original data into account. Essentially, the dependencies present in the original files

are diluted in the resulting complete synthetic file. This approach is suitable especially

when there is little dependence between the common and specific variables. On the other

hand, imprecise imputation based on donation classes is able to utilise the observed

dependencies between the common and specific variables, and even, in the example of the

case-wise variant, within the specific variables.

Embedding imprecise imputation into the framework of finite random sets allows us to

derive set-valued estimates of the underlying true parameters. These estimates – possibly

after their refinement by external information, see, for example, Subsubsection 3.2.4 –

reflect the uncertainty inherent in the identification problem of statistical matching. The

estimation procedure utilises the set-valued information to full extent without artificially

reducing the complexity of the imputed sets. Simulation results, based on a new simulation

technique for dependent categorical data, corroborate that the true parameter values lie

almost always inside the respective estimated bounds.
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Imprecise imputation is an intuitive statistical matching micro approach which can

easily be extended for more than two data files. In a strongly unbalanced statistical

matching situation where, for example nA,, nB, imprecise imputation can be applied

straightforwardly to impute only the smaller file. If so, A takes the role of the recipient and

the larger file, B, the role of the donor. In this special situation, the estimates for the

specific variables Y are precise.

Moreover, the imprecise imputed data file with synthetic set-valued observations can be

used as a starting point to derive one or multiple data files of the usual form. This would

bring back the opportunity to use statistical procedures for the analysis of these now

entirely single-valued data and to combine the results obtained from those data files by

common multiple imputation techniques. However, one would then lose sight, to a

considerable extent, of the conviction of this work, which is to produce a credible analysis

by taking the full uncertainty into account.

Further studies need to be carried out to validate the performance of imprecise

imputation. On the one hand, additional simulation parameters and dependence structures

should be investigated in simulation studies. On the other hand, the performance of

imprecise imputation should also be assessed by real-data applications. However,

considerably more work will need to be done to find a definition of appropriate statistical

matching quality criteria, since the true joint distribution is not available for comparisons.

A further natural progression of this work is the comparison of imprecise imputation to

existing statistical matching macro approaches that also address the identification

problem. For this purpose, a comparison of the uncertainty measures introduced in Conti

et al. (2012) or Conti et al. (2017) is desirable.

Finally, we should stress that imprecise imputation is not restricted to the block-wise

missing pattern in the statistical matching framework: it is also applicable to general

missing data problems. All three types of imprecise imputation promise considerable

potential for a credible analysis of (non)randomly missing data far beyond statistical

matching and are worthwhile to be elaborated upon and evaluated in detail.

7. Appendix

7.1. Appendix A. Why we need a new simulation procedure

To generate simulated categorical data that meet all the desired properties, we propose a

new procedure which we detail in the following section. However, first we want to

elucidate why conventional simulation approaches are not suitable for our requirements.

The key aspects are listed as follows:

(i) One way to generate categorical data with predefined properties is to draw random

observations from a multidimensional probability table, which, on the one hand,

fulfils all of these properties that, on the other hand, represents the probability entries

of the joint distribution of all variables. The main disadvantage of this procedure is

that it can be very difficult to find a suitable joint distribution that fulfils all the

desired properties. Furthermore, we would argue that it is necessary to consider

several joint distributions in order to draw valid conclusions about the performance
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of imprecise imputation, which in turn makes the problem of finding suitable

distributions even harder.

(ii) Another option would be the simulation of categorical data based on a

multidimensional (logit) regression model. However, a regression model cannot

be used to control for the dependence structure and strength within the set of

variables in the detail we wish to have.

(iii) The simulation of categorical data which imply a certain dependence structure can

also be realised using a probabilistic graphical model such as a Bayesian network.

The major problem with this way of proceeding is the resulting conditional

independence among parts of our variables. If the – in real-world applications

potentially unjustified – conditional independence assumption holds in our simulated

data, statistical matching techniques directly utilising this assumption would unfairly

outperform, making a fair comparison of procedures impossible.

(iv) A further feasible way to generate dependent categorical data is to employ a

multivariate normal distribution with a predefined correlation matrix and discretise

the data drawn from it. Nevertheless, the resulting simulated data have an ordinal

scale instead of a nominal scale and we have no direct control on the strengths of the

dependencies in terms of the corrected contingency coefficient. The same problems

hold for simulation techniques that are based on a Gaussian copulas, such as the one

suggested by Barbiero and Ferrari (2017).

To sum up, our goal is to use a simulation technique that takes all of our desired properties

into account and avoid the problems described previously.

7.2. Appendix B. Simulation procedure

For this purpose, we invented a new simulation procedure that is directly based on two-

way tables of relative frequencies and a suitable association measure. The bivariate

associations within the simulated data can be expressed by this association measure on
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Fig. 3. Mean and maximal interval widths of the components of the marginal distributions of the specific

variables for variable-wise imputation. The two columns display the pooled results for the marginals of the

specific variables Y and Z, respectively.

Endres et al.: Imprecise Imputation 619



bivariate frequency tables of sizes 2 £ 2, 2 £ 3, and 3 £ 3 reflecting the domains listed

in Section 5. As also mentioned therein, we use the corrected contingency coefficient

to express the strength of associations. Since – for a fixed and known number of

observations – the absolute frequencies can be directly derived by the relative frequencies,

and vice versa, this association measure is also suitable for tables of relative frequencies

and leads to the same results.

In a first step, we generate a set S of relative frequency tables that represents the set of

all possible frequency tables of above-mentioned sizes. S is created by taking all

combinations of two discrete (marginal) probability distributions, whose event

probabilities are strictly positive and on a one-percent grid. This strict positivity is

needed because zero entries in the marginal distributions lead to zero entries in the table

under independence. This entails that theX2 coefficient and all association measures based

y z

100
200

500

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

simulation scenarios

m
ea

n 
in

te
rv

al
 w

id
th

y z

100
200

500

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5m

ax
im

al
 in

te
rv

al
 w

id
th

123456 123456 123456 123456 123456 123456 123456 123456
simulation scenarios

123456 123456 123456 123456 123456 123456 123456 123456

Fig. 4. Mean and maximal interval widths of the components of the marginal distributions of the specific

variables for variable-wise imputation. The two columns display the pooled results for the marginals of the

specific variables Y and Z, respectively.

100
200

500

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0.000

0.005
0.010
0.015
0.020
0.025

0.000

0.005
0.010
0.015
0.020
0.025

0.000

0.005
0.010
0.015
0.020
0.025

simulation scenarios

m
ea

n 
in

te
rv

al
 w

id
th

100
200

500

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0.0

0.1
0.2
0.3
0.4
0.5

0.0

0.1
0.2
0.3
0.4
0.5

0.0

0.1
0.2
0.3
0.4
0.5

simulation scenarios

m
ax

im
al

 in
te

rv
al

 w
id

th

Fig. 5. Mean and maximal interval widths (on the square-root scale) of the components of the joint distributions

of X, Y, Z for domain imputation.
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on it are not defined. S covers a large variety of marginal distributions and association

measures (jSj ¼ 48 044 502).

In a second step, we randomly draw one frequency table from S* for each bivariate

association depicted in Figure 2, where S* # S denotes the set of probability tables that

meets all predefined requirements for a specific simulation setting. Afterwards, we

multiply the selected tables of relative frequencies with the desired number of

observations and create a data file with complete observations x, y, and z. To meet the

challenges of a statistical matching framework, we split this data file into two parts that

represent the files A and B with nA ¼ nB, and remove the observations z from A and y

from B, respectively.
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Fig. 6. Mean and maximal interval widths (on the square-root scale) of the components of the joint distributions

of X, Y, Z for variable-wise imputation.
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Fig. 7. Mean and maximal interval widths (on the square-root scale) of the components of the joint distributions

of X, Y, Z for case-wise imputation.
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7.3. Appendix C. Simulation results

Figures 3–7 show the interval widths of the parameter estimates on the partially set-valued

synthetic data, aggregated for 20 simulation runs. The graphics are grouped by the

different dependence designs (see Figure 2) and the numbers of observations. The results

are displayed separately for the parameters of the marginal distributions and the

parameters of the joint distributions. The whiskers range from the minimum to the

maximum to ensure better readability. Please note that while the interval widths for

the components of the joint distribution are reported on a square root scale to spread the

values and make the different results more visible, the values themselves are not

transformed.

The figure showing the mean and maximal interval widths of the components of the

marginal distributions of the specific variables for domain imputation is not shown here

since the interval widths are 0.5 for all simulation scenarios. This is no coincidence and

results deterministically from the numbers of observations nA and nB.
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