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Seasonally adjusted series of Gross Domestic Product (GDP) and its breakdown in underlying
categories or domains are generally not consistent with each other. Statistical differences
between the total GDP and the sum of the underlying domains arise for two reasons. If series
are expressed in constant prices, differences arise due to the process of chain linking. These
differences increase if, in addition, a univariate seasonal adjustment, with for instance
X-13ARIMA-SEATS, is applied to each series separately. In this article, we propose to model
the series for total GDP and its breakdown in underlying domains in a multivariate structural
time series model, with the restriction that the sum over the different time series components
for the domains are equal to the corresponding values for the total GDP. In the proposed
procedure, this approach is applied as a pretreatment to remove outliers, level shifts, seasonal
breaks and calendar effects, while obeying the aforementioned consistency restrictions.
Subsequently, X-13ARIMA-SEATS is used for seasonal adjustment. This reduces
inconsistencies remarkably. Remaining inconsistencies due to seasonal adjustment are
removed with a benchmarking procedure.
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1. Introduction

Most national statistical institutes (NSIs) publish time series at an aggregated level and

breakdowns in K $ 2 domains, for instance the Gross Domestic Product (GDP) divided

over industries or over expenditures.

It is common practice to adjust for seasonal and calendar effects. The latter are

variations in time series that can be explained from variations in the calendar, such as

working day patterns and national holidays. The aim of these adjustments is to make

different reporting periods comparable. Seasonal and calendar adjustment procedures are

generally based on univariate methods applied to the series of each publication domain

separately. A consequence of such approaches is that adjusted figures at the aggregated

level are not consistent with the sum of the adjusted figures of the underlying breakdown

in K publication domains. This is a well-known problem and the status quo is that no
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adequate solution exists. Eurostat’s ESS guidelines on seasonal adjustment (Eurostat

2015) suggest computing the adjusted series at the aggregated level as a sum of the

adjusted underlying domains, which is often referred to as the indirect approach. A

drawback of this approach is that the most reliable estimates at the aggregated level are

disregarded. Alternatively, if the discrepancies are small enough, they can be distributed

by means of multivariate benchmarking techniques. These can be two-step procedures of

benchmarking and reconciliation (Quenneville and Fortier 2006), or simultaneous

methods as described in Di Fonzo and Marini (2011). In the Netherlands, however, the

quarter-to-quarter changes in the discrepancies between the directly adjusted GDP and

the sum of the adjusted series of its expenditures are often larger than the growth rate of

GDP itself. This fact alone renders both remedies suggested by Eurostat unsuitable. For

instance, in the first quarter after the 2013 recession, GDP grew by 0.1% if calculated

directly, and by 20.9% if calculated indirectly.

The purpose of this article is to develop a method that attempts to make consistent

seasonal adjusted series using a multivariate structural time series modelling approach.

We focus on GDP and a breakdown in different expenditures. However, the proposed

method is general and can be applied in any situation where consistent seasonal and

calendar adjustment is required.

Another discrepancy is introduced by chain linking (see Bloem et al. 2001), in which

GDP and its expenditures are calculated as chain volumes. In chain linking, series of a

constant price level are constructed by “chaining” volume growth rates. These volume

growth rates are calculated by dividing the nominal growth rate by a price factor. As each

of the series in the breakdown of GDP has its own price factor, discrepancies arise between

the sum of the expenditures and GDP itself.

In the Dutch case, the discrepancies from chain linking are typically smaller than the

discrepancies introduced by the adjustments for seasonal and calendar effects.

Moreover, we noted that the size of the discrepancies due to seasonal and calendar

adjustment grew larger in the period 2009–2013. This period is characterized by

rapid changes in seasonal patterns following the financial crisis in 2008/2009. The

increasing size of the discrepancies eventually lead to complaints from users. The

discrepancies were noted in the press, and professional users also asked how to interpret

our published results.

Besides discrepancies, there are more quality aspects related to seasonal adjustment.

When new data points become available and are added to the series, better estimates of the

trend, the seasonal and calendar effect of all previous quarters, can be made. Therefore,

revisions are inherent to seasonal and calendar adjustment, which are acceptable, as long

as their size is not excessive.

Traditionally, the quality of seasonal and calendar adjustment is assessed using a well-

defined set of criteria. In the case of X-13ARIMA-SEATS (U.S. Census Bureau 2015),

the method used at Statistics Netherlands, these are the Q- and M-diagnostics. They are

numerical scores given to properties, such as the amount of seasonality compared to noise

and the rate at which the seasonal component changes over time. These criteria are

optimised for each time series individually. After performing seasonal and calendar

adjustment, the resulting discrepancies are calculated and only when these are very

large, the seasonal and calendar adjustment may be changed. Revisions are monitored, but
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never lead to changes in the setup of seasonal and calendar adjustment. So, the quality

criteria that Statistics Netherlands traditionally applies, are (in order of decreasing

importance):

1. Optimal quality diagnostics (specifically X-13ARIMA-SEATS’s Q- and M-values).

2. Minimal statistical discrepancies between GDP and the sum of expenditures.

3. Minimal revision of the seasonal effect after adding new data points.

This is under the assumption that all criteria are within acceptable boundaries. As this

was not the case in the Netherlands after the crisis in 2008/2009, the primary objective of

the current research is to reduce the statistical discrepancy. This is achieved by introducing

a multivariate approach. The consequence of the shift from an optimal univariate solution

to a multivariate solution is that the seasonal and calendar adjustment of one series is

influenced by another. Therefore, some aspects of the multivariate adjustment can be less

optimal, when compared to the univariate case. However, a slightly lower quality

(according to the Q- and M-diagnostics) can be equally acceptable for the users, as long as

no residual seasonal effect can be found in a corrected series. Therefore, our goal is that,

on average, the revisions and quality diagnostics should not deteriorate.

In this article, we describe two alternative approaches to adjustment for seasonal and

calendar effects. The first approach applies a multivariate structural time series model

to an aggregated series and its breakdown in K subseries. The model estimates all

components subject to the constraint that the sum of the subseries is equal to the

components of the aggregated series. Unfortunately, the results of this approach are not

satisfactory due to numerical problems. Furthermore, the estimates for the seasonal

components are considered to be too volatile. Therefore, a second approach is developed,

which is based on a combination of a multivariate structural time series model and routines

of X-13ARIMA-SEATS. Under this approach, the discrepancies are sufficiently reduced,

while the size of the revisions is in the same order as before.

In Section 2 we will first define the problem in a more precise way. In Section 3, we

present the multivariate state-space method for consistent seasonal adjustment. Section 4

discusses the results and finally, the article closes with a conclusion in Section 5.

2. Problem Definition

Statistics Netherlands publishes quarterly figures for GDP with both the final expenditures

and the value added by industry as domains. These breakdowns are called the expenditure

approach and the production approach. Both breakdowns are computed in constant prices

(chain linked volumes) and in current prices. In this article, we will focus on the

expenditure approach in constant prices.

In this article the aggregate B1G, the GDP, is itemized in the subseries P7 (imports),

P3S1A (consumption households), P3S13 (consumption government), P51G (gross fixed

capital formation), P5M (changes in stocks and inventories), P6 (exports) and SD

(statistical discrepancy due to chain linking), that is,

B1G ¼ 2P7þ P3S1A þ P3S13 þ P51Gþ P5M þ P6þ SD: ð1Þ

Bikker et al.: Consistent Multivariate Seasonal Adjustment 11



Statistics Netherlands publishes a very detailed tree-structured breakdown into

expenditures, as explained in the Appendix (Section 6) on the breakdown in expenditures.

The production approach is not considered in this article. Any breakdown of GDP has

the same problems with additivity, so for brevity, we only use the above breakdown in

this article.

The way we will handle the discrepancies arising from chain linking is by considering

them as an extra subseries of the aggregate. It is a series that must be adjusted for

seasonal and calendar effects, together with the other subseries of the aggregate.

Therefore, the method we developed is also suitable for series where no chain linking

takes place, such as current price data and any other set of series where preserving

additivity, or at least reducing discrepancies due to adjustments for seasonal and calendar

effects, is required.

As we will apply our model to chain volumes of GDP and its expenditures, the total

statistical discrepancy after adjustments for seasonal and calendar effects can be divided

in two parts, each with its own origin.

2.1. Discrepancies Arising from Chain Linking

The statistical discrepancies due to chain linking can be interpreted as the consequence

of changes in relative prices of subseries of the aggregate. One can show that the sum of

the chain linked expenditures is chain volume with different weights. In each link step,

the chain volume of GDP is weighted with the relative values of its expenditures in the

previous year, valued at prices of the previous year, whereas the sum of expenditures is

weighted with the relative values of the previous year, in reference year prices. So, the

statistical discrepancy due to chain linking is the difference between the value of the

aggregate valued in previous year prices and the value of the aggregate valued in

reference year prices. The discrepancies due to chain linking are therefore zero in the

first year after the reference year and tend to be larger the further away they are from the

reference year.

The statistical discrepancies due to chain linking typically have a slow moving

long-term trendcycle, combined with a strong short-term pattern. The short-term

pattern has a seasonal and an irregular component. Figure 1 shows a typical example for

total GDP.

The statistical discrepancies due to chain linking are inherent to the way they are defined

and should not be corrected, as this would harm the essence of a chain linked volume. The

seasonal pattern of the discrepancies can be removed. In theory, the discrepancies due to

chain linking could also show calendar effects. However, in the case of the Dutch

economic series, they are negligibly small and we choose to ignore them.

The quarter-to-quarter changes of the seasonal adjusted GDP (GDP-SA) are very

important results from the economic analysis. Therefore, it makes sense to also calculate

the quarter-to-quarter changes of the statistical discrepancy and compare them to GDP-SA

as follows:

%SDt ¼ ðSDt 2 SDt21Þ=B1Gt21*100%: ð2Þ
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When these quarter-to-quarter changes are of similar magnitude or larger than the

changes of GDP-SA itself, the analysis of the latter, by breaking it down into components,

is severely hampered.

Especially when looking at quarter-to-quarter changes, removing the seasonal pattern

can lead to a large reduction in the size of the discrepancies from chain linking. This

is shown in Figure 2, where the quarter-to-quarter changes of the discrepancies in

percentages of GDP-SA have been adjusted for seasonal effects (i.e., the remaining series

represents trend-cycleþ irregular). The value of this series is mainly between 20.1% and

0.1%. To put this into perspective, the majority of GDP-SA growth rates are between

20.5% and 0.5%. As can be seen, the seasonal component is by far the largest component

of the statistical discrepancy arising from chain linking. Therefore, with ideal seasonal and

calendar adjustment, the adjusted statistical discrepancy should have a small influence on

the interpretation of the economic growth and its components.
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Fig. 1. Statistical discrepancies due to chain linking between Dutch GDP and the sum of the final expenditures

(before adjustments for seasonal and calendar effects), reference year ¼ 2010.
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Fig. 2. Univariate seasonal correction of the discrepancies arising from chain linking.
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2.2. Discrepancies from Adjustments for Seasonal and Calendar Effects

The second part of the total statistical discrepancies is introduced by the estimation of

seasonal and calendar effects. Seasonal and calendar adjustment assumes the following

decomposition:

yt ¼ Lt þ St þ bxt þ OLt þ SBt þ It: ð3Þ

Here yt stands for any of the series appearing in Equation (1), L denotes the trend-cycle,

S denotes the seasonal component, bx denotes the regression component with x as an

auxiliary variable and b as the regression coefficient, OL denotes additive outliers and

level shifts and SB denotes seasonal breaks. Finally, I is an irregular component for the

unexplained variation. In this application, the regression component is used to adjust for

calendar effects. In general, other regression effects can also be included, but this is not

applied here. In a fully consistent adjustment, Equation (1) holds for each of the

components in Equation (3). However, when these relations are not explicitly enforced,

discrepancies will arise.

The process of seasonal and calendar adjustment consists of a pretreatment phase and

the actual seasonal adjustment. In the pretreatment phase, we choose between

multiplicative or additive adjustment. In the first case, the original series are

logarithmically transformed before decomposition according to Equation (3) is computed.

The other parts of the pretreatment phase are adjustments for calendar effects and other

regression effects, removal of additive outliers, level shifts and seasonal breaks, and

extrapolation of the series in order to apply symmetric filters. The actual seasonal

adjustment consists in the application of seasonal and trend filters. In this phase, outlier

detection takes place again. After seasonal and calendar adjustment, additive outliers and

level shifts are reintroduced into the series. The final adjusted series is therefore equal to:

ySA
t ¼ yt 2 St 2 bxt 2 SBt ¼ Lt þ OLt þ It: ð4Þ

All steps of the process may cause discrepancies:

Logarithmic transformation: Usually, this is done when this yields a better model fit, as,

for instance, is current practice in X-13ARIMA-SEATS, see U.S. Census Bureau (2015).

For some of our series, this would indeed be the preferred option. However, when

multiplicative adjustment is chosen in at least one series, the logarithmic transformation

can cause additional discrepancies.

Outlier detection: when each time series is analysed separately for significant outliers,

discrepancies may arise when an outlier is significant in one series but not significant or

even detectable in another. These may lead to relatively large incidental discrepancies.

The outlier detection in both the pretreatment phase and the filtering phase can generate

discrepancies. Here, the general term outlier is used for the combination of additive

outliers, level shifts and seasonal breaks. A special case is the situation where the seasonal

patterns change rapidly. In this case, discrepancies may arise around the period where the

rapid change occurs, because these periods are considered to be outliers.

Calendar effects: Estimating the regression coefficients for the calendar effects for each

series separately contributes to the discrepancies. The calendar effects in some series are

not significantly different from zero (at a 5% significance level). Therefore, it is not
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incorporated in the model of these series. This leads to relatively small discrepancies,

evenly distributed along the length of the time series.

Extrapolations: The extrapolations are very sensitive to the model choice in

X-13ARIMA-SEATS and to outliers at the beginning and end of the time series.

This may lead to relatively large discrepancies at the beginning and end of the time series,

and is a source of revisions.

Seasonal and trend filters: when different time series are treated with filters of a

different length, which is usually the case, some discrepancies will arise in the seasonal

components along the full length of the series.

The statistical discrepancy can be calculated by rewriting Equation (1):

SD ¼ B1G 2 ð2P7þ P3S1A þ P3S13 þ P51Gþ P5M þ P6Þ: ð5Þ

The right-hand side of this equation is called the indirect discrepancy, and the left hand

side is called the direct discrepancy. This equation holds not only for the series itself, but

in an ideal world, also for each of the components of Equation (3). However, due to the

arguments mentioned above, this is not the case for the seasonal component, as is shown in

Figure 3 for the period 1996–2014. The solid line is the indirect seasonal component from

the chain linked index, calculated as the seasonal component of GDP minus the seasonal

components of all other expenditures (right-hand side of Equation 5). The solid line

is very different from the seasonal component of the SD (left-hand side of Equation 5).

The result is an increase in the quarter-to-quarter change of the discrepancy instead of a

significant decrease. Therefore, the analysis of the economic growth and its components is

severely hampered.

In a preliminary study, we tried to reduce the inconsistencies by improving the settings

in X-13ARIMA-SEATS. We found that a reduction is possible, but reducing them to an

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

quarter-to-quarter change of the seasonal component due to chain linking SD

quarter-to-quarter change of indirect seasonal component 

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

%

Fig. 3. Seasonal component of the discrepancies arising from chain linking calculated directly and indirectly

with conventional univariate seasonal adjustment.
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acceptable level or even eliminating them completely and at the same time maintaining

sufficient quality of the seasonal and calendar correction does not seem to be possible

in this application. The lessons we learned in this study are nevertheless useful for the

solution we found, described below. The most important lessons are:

. The largest part of the discrepancies is caused by the pretreatment, especially the

treatment of outliers.

. An additive adjustment approach for all series helps to reduce the discrepancies

compared to a multiplicative adjustment. Although a multiplicative adjustment is

preferred for the series of export, GDP and consumption of households, an additive

adjustment is applied. The quality under additive correction is acceptable also for the

series where multiplicative correction is preferred. The differences between these

approaches are small in practice, at least for the GDP in the Dutch situation.

. The best results could be obtained by an equivalent approach, that is, using the same

settings (ARIMA models, filters), modelling outliers in the same periods, additive

adjustment for all series, and using the same set of auxiliary variables for all series.

This results in a less optimal adjustment according to the Q- and M-diagnostics of

X-13ARIMA-SEATS.

The discrepancies are still unacceptably large, even under an optimally chosen

equivalent approach and therefore not further implemented in the production of official

releases. These findings have led to the conclusion that a multivariate approach is needed

in order to reach all three objectives, that is, reducing discrepancies while maintaining

univariate quality and avoiding large revisions. This approach is presented in the next section.

3. Multivariate Structural Time Series Model

In this section, a multivariate structural time series modelling approach is developed for

the purpose of estimating seasonal effects for an aggregated series and its breakdown

in K series in a consistent way. With a structural time series model (STM), a series is

decomposed in a trend component, seasonal component, regression components and an

irregular component. The model can be extended with other components as cyclic

components, or with ARMA components to model autocorrelation beyond these structural

components, but this is not applied in the present article. For each component, an

appropriate stochastic model is assumed which allows the trend, seasonal, and regression

coefficients to be time-dependent. See Harvey (1989) and Durbin and Koopman (2012)

for an extensive treatment of structural time series modelling. In multivariate STMs,

two or more series are modelled simultaneously, which allows modelling cross-sectional

dependency between these series.

3.1. Consistent Seasonal Adjustment with a Multivariate STM

We developed a multivariate STM for quarterly GDP, broken down into a hierarchy

according to either the expenditure approach or production approach. Either hierarchy

contains multiple levels (see Appendix (Section 6) for the breakdown of expenditures). At

every level, there is a statistical discrepancy before seasonal and calendar adjustment (but

only if measured in constant prices). The breakdown of GDP into seven subseries
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(including the statistical discrepancy) is defined in Equation (1). The time series modelling

approach outlined in this section can be applied to each hierarchy of GDP (see Appendix

(Section 6) for details). It is important that the consistency between all hierarchical levels

of GDP is maintained. This is done repeatedly in a top-down approach. In each hierarchy,

restrictions are imposed that ensure that for every subsequent level, all time series

components are benchmarked to estimates of the aggregate at the higher level.

Let ytþ be the GDP as measured on a quarterly basis. In the first step, the following

univariate STM is estimated:

ytþ ¼ Lt þ St þ aDO
t þ btxt þ lDL

t þ gtD
S
t þ et: ð6Þ

The trend-cycle Lt is modelled according to the smooth trend model and the seasonal

pattern St is modelled using a trigonometric model (Durbin and Koopman, 2012, chap. 3;

and supplemental file of this article). Furthermore DO
t is a dummy variable, indicating the

period in which an additive outlier occurs, that is,

DO
t ¼

1 for the period t where an outlier occurs

0 for all other periods

(
ð7Þ

and a denotes the corresponding time-invariant regression coefficient measuring the

magnitude of the outlier. In (6), DL
t is a dummy variable indicating the period in which a

level shift occurs, that is,

DL
t ¼

0 for all t before the period in which a level shift occurs

1 for all t from ðand includingÞ the period in which a level shift occurs

(
ð8Þ

and l denotes a time-invariant regression coefficient measuring the size of the level shift.

A break in the seasonal pattern is modelled with a similar intervention variable:

DS
t ¼

0 for all t before the period in which a seasonal break occurs

1 for all t from ðand includingÞ the period of the seasonal break

(
ð9Þ

The magnitude of the seasonal break is measured by gt, which is defined as a time-

invariant trigonometric seasonal model. This implies that all four quarters have their own

break (adding up to zero) which are time invariant. Furthermore xt denotes the number of

working days that is used to model calendar effects in period t, and bt denotes the

corresponding time-dependent regression coefficient modelled as a random walk (Durbin

and Koopman 2012, chap. 6). The regression coefficient is allowed to vary over time, since

GDP generally increases over time and therefore, also, the size of the working day effect.

Finally et is a disturbance term for any unexplained variations.

In the general case, multiple additive outliers, level shifts and seasonal breaks are

possible, and multiple auxiliary variables may be useful. Then, Equation (6) can be

adapted in a straightforward way.

Based on (6), smoothed estimates for total GDP (or the aggregated series of another

hierarchy) are obtained. In a second step, the K subseries (without the aggregated series),

Bikker et al.: Consistent Multivariate Seasonal Adjustment 17



represented by a K-dimensional vector ð yt1; : : : ; ytk; : : : ; ytKÞ
0, are modelled by a

K-dimensional multivariate STM:

ytk ¼ Ltk þ Stk þ akD
O
t þ btkxt þ lkD

L
t þ gtkD

S
t þ etk; k ¼ 1: : :K: ð10Þ

The various components in (10) are defined similarly as in Equation (6), but now, for

each series k ¼ 1, : : : K, separately. Outliers, level shifts and seasonal breaks may be zero

for some series if the analysis shows that they do not occur in a particular series.

To avoid an increase of discrepancies due to seasonal and calendar adjustment, several

constraints are imposed on the time series components. These constraints ensure that, for

each of these components at each point in time, the value for the aggregate series is exactly

equal to the sum of the values of the underlying subseries. Therefore, Equation (10) is

applied with the restriction that the sum of the various state variables equals the smoothed

values obtained in (6). This is done using the benchmark procedure proposed by Doran

(1992). We have constraints for the following components:

- The trend components:

Ltþ ¼
XK

k¼1

Ltk ð11Þ

- The regression coefficients for the working day effects:

btþ ¼
XK

k¼1

btk ð12Þ

- The seasonal components:

Stþ ¼
XK

k¼1

Stk ð13Þ

- Outliers:

aþ ¼
XK

k¼1

atk ð14Þ

- Level shifts:

lþ ¼
XK

k¼1

ltk ð15Þ

- Seasonal breaks:

gtþ ¼
XK

k¼1

gtk ð16Þ

With the initially intended seasonal adjustment method, the consistent estimates for the

seasonal components Stk, seasonal breaks gtk, and calendar effects btkxt are used for
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seasonal and calendar adjustment. Since these estimates obey restrictions in Equations

(13), (16), and (12), the adjustment procedure does not increase discrepancies.

In order to estimate the multivariate STM described above, it is written in state space

form. The state space representation of Equations (6) and (10) is given in the supplement

of this article. Next, the Kalman filter is used to obtain optimal estimates for all state

variables (see Durbin and Koopman 2012; Harvey 1989). The Kalman filter is a recursive

procedure to obtain optimal estimates for the state vector at time t based on the data up to

and including time period t. These estimates are referred to as the filtered estimates. The

filtered estimates of past state vectors can be updated, if new data become available. This

procedure is referred to as smoothing. Several smoothing algorithms are available in the

literature. In this article, the fixed interval smoother is applied, which is a broadly applied

smoothing algorithm, and these estimates are referred to as the smoothed estimates. The

Kalman filter assumes that the hyperparameters are known, which is generally not the

case. Therefore, they are estimated with a maximum likelihood procedure. Finally, we

apply diffuse initialization of the Kalman filter for all the state variables.

These models are analyzed with a program that was developed in Oxmetrics (Doornik

2009), using the procedures of Ssfpack 3.0 (Koopman et al. 1999, 2008). Ssfpack is

a library of subroutines developed for analyzing (multivariate) STMs. Standard model

diagnostics summarized in Durbin and Koopman (2012, chap. 2) are applied to evaluate

whether the innovations meet the assumption that they are normally and independently

distributed.

Several forms of Model (10) are applied to total GDP and its breakdown in seven series

defined by (1). The main differences are in the covariance structures assumed for the

disturbance terms of the trend, seasonal component and regression coefficients, varying

from full covariance matrices, diagonal matrices and diagonal covariance matrices with

equal variances for several series. A general result obtained with these models is that the

estimated components, especially the seasonal component, were volatile, and subject to

large revisions when data points were added to the time series. From a practical

perspective, this is not desirable. In many cases, there are problems with the numerical

optimization procedure applied to find a maximum of the likelihood function. To

circumvent these issues, an alternative three-step approach is developed to solve problems

with large discrepancies. This new approach consists of pretreatment based on a

multivariate STM that ensures that the components that contributed most to the

discrepancies are consistent. The seasonal adjustment itself is carried out with

X-13ARIMA-SEATS. A seasonal adjustment approach based on a multivariate STM is

left as a topic for further research.

3.2. Multivariate STM for Pretreatment

The following procedure, which combines the advantages of a multivariate approach

and the robustness of conventional univariate seasonal adjustment with X-13ARIMA-

SEATS, is proposed as a practical solution for handling discrepancies. In a first step, the

univariate STM (6) is applied to the aggregated series. Then, the multivariate STM (10)

is applied to the K subseries with restrictions (12), (14), (15), (16), and diagonal

covariance matrices for the disturbances of the trends and the seasonal components.
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These results are used to remove additive outliers, level shifts, seasonal breaks, and

calendar effects from the series. In a second step, X-13ARIMA-SEATS via JDemetraþ

(Grudkowska 2015) is used for the extrapolation of the series and to obtain seasonally

adjusted series by applying trend and seasonal filters. After that, the additive outliers,

level shifts, and calendar effects removed in the first step are reintroduced in the

series. In a third step, multivariate benchmarking is applied to eliminate any remaining

discrepancies.

The final seasonally adjusted series are the seasonally adjusted series plus the level

shifts and additive outliers removed in the pretreatment. Seasonal breaks are not added

back to the series, because the purpose of seasonal adjustment is to remove seasonal

patterns.

Effectively, this means that the multivariate model is only used for pretreatment,

comparable to this step in X-13ARIMA-SEATS (except for the extrapolation, which is

done by X-13ARIMA-SEATS in our approach). The advantage of carrying out this

pretreatment with a multivariate STM is that calendar effects, additive outliers, level shifts

and seasonal breaks are fully consistent between the subseries and the aggregate. To this

end, we used the same regressors for all series, and outliers were modelled consistently, as

described in the next subsection. Since these components obey restrictions (12), (14), (15)

and (16), we obtained a close-to-optimal result, which is more stable than the approach

based on estimating consistent seasonal effects with the multivariate STM. An empirical

result of this approach is that if pretreatment yields small discrepancies, then most likely

the final seasonal adjustment will not increase these discrepancies by much, see

Subsection 2.2.

The increase in discrepancies due to univariate seasonal adjustment with X-13ARIMA-

SEATS is minimized if the same filter length is used for all series. We chose a short

seasonal filter, since the seasonal pattern changes quite rapidly. This had only a slight

effect on the quality of univariate seasonal adjustment. The ARIMA model used for

extrapolation was determined for the aggregate and applied for each series in the

breakdown. This procedure results in seasonally adjusted series that have only very small

discrepancies. In order to remove these, a multivariate benchmarking procedure was

applied.

3.3. Consistent Outlier Detection

Three types of outliers are distinguished: additive outliers, level shifts and seasonal breaks.

As outliers can be much larger than the seasonal and calendar effects, their influence can

be very large. Detecting and modelling them is crucial for achieving good seasonal

adjustment. In some cases, more than one outlier is needed to model the economic events

in a short period of time. On the other hand, it is difficult to find the optimal combination

of outliers and avoid overfitting of the series. An observation is that not using the right

combination of outliers results in a serious deterioration of quality diagnostics of

X-13ARIMA-SEATS. Another consequence is that the estimates of all state variables can

become unstable.

For every significant outlier in one of the series, there must be a counterpart in one or

more of the other series to achieve consistency. These counterparts are not necessarily
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significant, and therefore difficult to detect. Sometimes there are substantive economic

explanations for the occurrence of outliers that are helpful in choosing the type of outlier,

timing, the counterparts and in some cases, even the size of the outliers. When the size

of an outlier can be determined from statistical/economic analysis, the outlier can be

manually removed from the series and does not need to be modelled in the multivariate

STM. This results in a more parsimonious model, which is therefore preferred. When the

size of the outliers cannot be determined, we model the outliers in the STM.

For around 50% of the outliers, this additional information is not available and outliers

are detected in a model selection process. Outliers are detected using the automatic

detection in the pretreatment phase of X-13ARIMA-SEATS. This method is based on a

RegARIMA model. These outliers are modelled in the multivariate STM. Additional

outliers are detected by considering the residuals of the STM using a disturbance smoother

(Harvey and Koopman 1992). For all residuals with a t-value larger than 2.5, an outlier and

its counterparts are added to the set.

The set of outliers that is modelled explicitly in the pretreatment phase is removed from

the series. The pretreated series become the input for the seasonal adjustment phase.

Nevertheless, the seasonal adjustment phase in X-13ARIMA-SEATS can detect additional

outliers. As these decisions are made for each series separately, they will again lead to

statistical discrepancies. Therefore, we must model these events with additional outliers in

the pretreatment phase. In order to reduce the number of outliers detected in the seasonal

adjustment phase, we increased the critical value that controls whether an observation is

classified as an outlier. All outliers that were detected above this level were added to the

set of outliers modelled in the pretreatment phase. This process is iterated until no new

outliers are detected.

4. Results

In this section, we apply the seasonal and calendar adjustment approach obtained with

standard X-13ARIMA-SEATS (old method) and the improved method proposed in

Section 3 to the cycle of releases of the quarterly GDP and its breakdown in components

according to (1) in an annual estimation cycle and compare the results obtained under both

approaches. The old method refers to the application of X-13ARIMA-SEATS with

settings that conform to Eurostat guidelines (Eurostat 2015), as applied in the production

process. This means that for part of the series the logarithmic transformation is applied.

The set of outliers under the old method is different from the set under the improved

methods.

The quarterly GDP figures are produced twice: 45 days after the end of a quarter, a flash

estimate is published. Then, 85 days after the end of the quarter a new regular estimate is

published, based on more complete data sources. When the regular estimate of the fourth

quarter is published in March, the figures for the first three quarters are revised again.

The quarterly figures are revised three more times after that: for each new annual

estimate, the quarterly figures are adapted such that the four quarters add up to the new

annual figure. This happens for the first time in June and for the second time one year later,

when the final annual figures are published. Finally, one year after this, the quarterly

figures are revised one more time without changing the annual results. Furthermore, every
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time a new quarter is added, the seasonal adjustment procedure is applied to the entire time

series, potentially affecting all quarters. However, normally, revisions of seasonal

adjustments to earlier figures are small. Since 2016, the figures are revised twice because

the process has been accelerated. This implies that the second revision is the final one,

where only quarterly figures are adjusted.

This means that once a year, at the time that the regular estimate for the first quarter (1r)

is made, large changes are made to the (unadjusted) time series. Therefore, it is necessary

to derive new settings for the seasonal and calendar adjustment at this point in time every

year. The annual estimation cycle starts with the regular estimate for the first quarter, and

the derived settings are then used for all subsequent estimates of the annual estimation

cycle. The 1r estimate is followed by the first (flash) estimate of the second quarter (2f) and

the second estimate of the second quarter (2r). This scheme is continued until the second

estimate of the fourth quarter (4r). The first estimate of the first quarter of the current year

comes before the large updates of 1r and therefore, is also part of the same cycle. It is

called 5f, to emphasize that the settings of the previous year are applied.

Below, the old method and the improved method (without the final benchmarking step)

are compared according to the three quality criteria described in Section 1:

. The statistical discrepancy between the seasonally adjusted GDP and its components.

. The standard quality diagnostics of X-13ARIMA-SEATS: M1 to M11 and Q.

. The revisions of the published results between the subsequent estimations.

We use data from the time period 1996–2014 for the computations in this section.

4.1. The Statistical Discrepancy due to Seasonal and Calendar Adjustment

In this subsection, we discuss the discrepancies added by the seasonal and calendar

adjustment process. This process estimates the seasonal components of each of the series.

In both the old approach and the improved approach, the estimated seasonal components

of all subseries do not add up to the seasonal component of GDP, and result in a residual:

D ¼ SB1G þ SP7 2 SP6 2 SP3S1A
2 SP3S13

2 SP51G 2 SP5M 2 SSD

In Table 1, we compare the added statistical discrepancy of the old method and the

improved method, by taking the relative added statistical discrepancy computed as a

Table 1. Average and maximum absolute discrepancies due to seasonal adjustment for the year 2014.

Old method Improved method

Avg % Max % Avg % Max %

1r 0.331 1.01 0.001 0.01
2f 0.329 1.00 0.001 0.01
2r 0.321 1.00 0.001 0.01
3f 0.321 0.99 0.001 0.01
3r 0.320 0.99 0.001 0.01
4f 0.322 0.98 0.001 0.01
4r 0.330 0.99 0.001 0.01
5f 0.313 0.99 0.000 0.01
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percentage change from seasonally adjusted GDP:

D

B1GSA

����
����*100%

Table 1 presents the average and maximum of this difference over the entire time series.

Table 1 shows that a significant reduction in statistical discrepancy due to seasonal and

calendar adjustment can be achieved by using the improved method. With the old method,

interpretation of GDP growth was, on average, hampered by the discrepancy by 0.3%,

with a maximum of 1%, while, with the new method, the disturbance is negligible.

4.2. The Standard Diagnostics of X-13ARIMA-SEATS

Software of the X-11-family summarizes the quality of the seasonal and calendar

adjustment with M1 to M11 and a Q-diagnostics. These diagnostics value different

aspects of the seasonally adjusted series. For the meaning of the values, see the

supplemental file or Ladiray and Quennville (2001). These statistics vary between 0 and

3. Values smaller than 1 are to be preferred, however are not always achievable due to

characteristics of the series. The lower the value, the better. Tables 2 and 3 present the

diagnostics of the seasonal adjustment with the old method and the improved method of

estimate 1r.

In Table 2, eight diagnostics are between 1 and 2 and two of them are above 2. This

shows that the quality of the seasonal and calendar adjustment is not always satisfactory,

but further substantial improvements are not possible using traditional methods. With the

new method, the results have improved to six diagnostics above 1 and none above 2. On

the other hand, the new method has fewer quality diagnostics with very small values. On

average, the quality improves slightly. This is due to the improved analysis of the outliers.

The multivariate pretreatment of the new method results in fewer quality diagnostics with

very high and very low values.

Table 2. Quality of seasonally adjusted estimate 1r (for the year 2014) with old method (values .1 are bold).

Import
(P7)

Consumption
HH

(P3S1A)

Consumption
govern
(P3S13)

Cap. form.
(P51G)

Stocks
(P5M)

Export
(P6)

GDP
(B1G)

M1 0.49 0.42 0.00 0.09 0.33 0.10 0.05
M2 0.64 0.00 0.00 0.06 0.19 0.05 0.02
M3 0.13 0.00 0.00 0.31 0.39 0.00 0.00
M4 0.18 1.16 0.95 1.05 0.84 0.84 0.84
M5 0.24 0.20 0.20 0.20 0.41 0.20 0.20
M6 0.12 0.44 1.00 0.16 0.64 0.52 0.22
M7 0.38 0.39 0.16 0.13 0.32 0.24 0.06
M8 0.91 0.71 0.51 0.53 1.12 0.60 0.17
M9 0.54 0.64 0.26 0.14 0.67 0.34 0.06
M10 1.33 1.04 0.38 0.54 2.30 0.98 0.17
M11 1.30 1.02 0.22 0.44 2.30 0.97 0.17
Q 0.46 0.45 0.22 0.29 0.64 0.34 0.16
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The quality of GDP is almost the same as before, despite the fact that in the

multivariate approach the excellent univariate seasonal and calendar adjustment is

slightly disturbed by the other series. The quality of the gross fixed capital formation

(P51G) deteriorates because M5 worsens due to the larger level shift in 2009-Q1

(resulting in less trend) in the multivariate case compared to the univariate case. M1 and

M2 deteriorate under the new method because this series contains a larger irregular

component. This is the result of using larger critical values for detecting outliers in

X-13ARIMA-SEATS in the seasonal adjustment phase. This also affects M6 and M8,

resulting in larger arbitrary changes of the seasonal component. The results for M9 to

M11 are greatly improved. This is caused by the modelling of the seasonal outliers. In

both methods, the sum of the four quarters of a seasonal outlier adds up to zero.

However, with the improved method, a seasonal outlier has a different magnitude in

every quarter, while with the old method, the outlier is determined in one quarter and the

three other quarters have a third of its opposite magnitude. A disadvantage of the

improved method is that it uses three quarters in the time series to determine the outlier,

while the old method only uses one degree of freedom.

Remarkably large differences in diagnostics are found for M4 for the import (P7)

and the export (P6): both deteriorate. Further analysis showed that M4 could be

improved by adding an extra seasonal break in 2003, which becomes more pronounced

due to the seasonal break of 2008. However, this was unknown during the

implementation of the new method for the seasonal adjustment of the Dutch quarterly

national accounts.

Table 4 presents the difference in overall quality (as measured by the Q-diagnostic)

between the two methods for all eight estimates. Negative values (in bold)

relate to an improvement by using the new method, positive values relate to a

deterioration. Both methods display an almost constant difference in quality during the

annual cycle.

Table 3. Quality of seasonally adjusted estimate 1r (for the year 2014) with improved method.

Import
(P7)

Consumption
HH

(P3S1A)

Consumption
govern
(P3S13)

Cap. form.
(P51G)

Stocks
(P5M)

Export
(P6)

GDP
(B1G)

M1 0.33 0.61 0.02 0.27 0.73 0.18 0.04
M2 0.17 0.02 0.03 0.18 0.55 0.08 0.02
M3 0.30 0.17 0.27 0.86 1.10 0.03 0.00
M4 0.95 0.51 0.51 0.40 0.18 1.05 0.40
M5 0.20 0.20 0.20 0.60 0.95 0.20 0.20
M6 0.08 1.32 0.74 1.41 0.81 0.31 0.16
M7 0.30 0.19 0.24 0.14 0.19 0.18 0.10
M8 0.82 0.72 0.51 0.68 1.02 0.60 0.33
M9 0.45 0.13 0.26 0.19 0.21 0.25 0.22
M10 0.64 0.52 0.36 0.78 1.23 0.38 0.22
M11 0.32 0.40 0.24 0.17 0.48 0.16 0.12
Q 0.40 0.30 0.24 0.39 0.61 0.28 0.14
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4.3. Revisions

In this section, revisions of the quarter-to-quarter growth in %-point are investigated under

the old method and the improved method.

The quarter-to-quarter growth is defined as

ût ¼
ySA

t 2 ySA
t21

ySA
t21

�100%; ð17Þ

where ySA
t denotes the seasonally adjusted figures. This is computed for the GDP and the

variables of the breakdown.

The revisions are split into two types; the first are due to the updates from flash to

regular estimate:

R1 ¼
X4

t¼2

û
f

tjt 2 û
r

tjt

��� ���
 !

: ð18Þ

with û
f

tjT and û
r

tjT the flash and regular estimates of the growth rates, see formula (17), for

quarter t based on the time series up to and including quarter T.

Note that the first quarter (t ¼ 1) is excluded in R1 since in the regular estimate of this

quarter, the information on an annual basis is added, which causes large revisions.

The second type of revisions is due to adding the flash estimate of a new quarter:

R2 ¼
X4

t¼1

û
r

tjt 2 û
f

tjtþ1

��� ���
 !

:

The average revision of the last quarter is therefore:

1

7
ðR1 þ R2Þ ð19Þ

which is presented in Figure 4.

Similarly, Figure 5 presents the average absolute revisions of the quarter-to-quarter

growth in %-point over eight estimates (i.e., seven differences) over the last year

Table 4. Difference in Q-diagnostic between old and new method for seasonal adjustment, for the year 2014.

Import
(P7)

Consumption
HH

(P3S1A)

Consumption
govern
(P3S13)

Stocks
(P5M)

Cap. form.
(P51G)

Export
(P6)

GDP
(B1G)

1r 20.06 20.15 0.02 0.10 20.02 20.07 20.01
2f 20.08 20.10 0.03 0.10 20.07 20.07 20.02
2r 20.07 20.10 0.03 0.10 20.07 20.06 20.01
3f 20.08 20.11 0.02 0.13 20.06 20.07 20.01
3r 20.08 20.11 0.02 0.13 20.06 20.07 20.01
4f 20.07 20.12 0.00 0.16 20.04 20.08 20.01
4r 20.06 20.16 0.00 0.09 20.03 20.08 20.02
5f 20.05 20.14 0.01 0.12 20.03 20.06 20.02
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averaged per quarter:

1

28

X3

j¼0

ðR1j þ R2jÞ ð20Þ

with R1j ¼
X4

t¼2

û
f

t2jjt 2 û
r

t2jjt

��� ���
 !

; j ¼ 0; 1; 2; 3

and R2j ¼
X4

t¼1

û
r

t2jjt 2 û
f

t2jjtþ1

��� ���
 !

; j ¼ 0; 1; 2; 3
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Fig. 5. Average revision of annual growth in 2014 defined by equation (20).

Last quarter

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
Import Consump.

HH
Cap. form. Export

improved methodold method

GDP

%

Consump.
govern

Fig. 4. Average revision of quarter-to-quarter growth in 2014 defined by equation (19).
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Series SD (statistical discrepancy due to chain linking) and P5M (changes in stocks) are

both fluctuating around zero. Therefore, both can have huge growths in %-points because

of small absolute values, resulting in huge revisions of the growth. As a consequence, they

are left out of the analysis. The figures show that the size of the revisions of the old method

and the improved method are almost equal. For consumption government a small

deterioration is observed, but the revisions are still very small. The deterioration is caused

by the time-varying seasonal pattern, which is picked up faster under the improved method

due to the use of shorter seasonal filters. A reduction of the revisions was not expected in

advance, as adding or changing observations at the end of the series gives new information

about trend-cycle and seasonal component. Revisions are therefore inherent to seasonal

and calendar adjustment.

5. Conclusion

Quarterly figures about GDP with a breakdown in K underlying subseries for, for example,

expenditures or industries, are produced by national statistical institutes to measure and

analyze economic growth. Two factors are responsible for discrepancies between the sum

of the underlying K subseries and the total GDP. The first factor arises due to the process of

chain linking, which means that series of volume growth rates are expressed in constant

price levels. Since the annual changes of these price levels differ between the series,

statistical discrepancies between the sum of the underlying series and total GDP arise.

The first factor does not arise if the estimate is in current values. The second factor arises

after adjusting for seasonal and calendar effects using the standard approach based on

X-13ARIMA-SEATS. In the Netherlands, since 2009, the size of these discrepancies has

often been larger than the growth rates of GDP itself and hampers the interpretation of

these figures.

Several intuitive approaches to avoid discrepancies are available in the literature, such

as the indirect approach and multivariate benchmarking. A major drawback of the first

approach is that official figures about GDP are derived from the most detailed breakdown,

which contains the largest fluctuations, while the most reliable estimates at the aggregated

level are not used. Benchmarking is appropriate if the discrepancies are modest. In the

Dutch application, the discrepancies are large, and benchmarking introduces a residual

seasonal effect in the adjusted series.

In this article, an alternative approach based on a multivariate structural time series

model is considered. The most intuitive approach is to construct a K þ 1 dimensional

structural time series model for GDP and its breakdown in K subseries. The model

contains explicit constraints on the state variables to ensure that trend, seasonal effects,

calendar effects and outliers in GDP are equal to the sum of the K subseries of these

components. In this way, available series are consistently modelled and a two-stage

approach is avoided. Nevertheless, the results obtained with this approach are not

satisfactory since the estimated seasonal effects are too volatile. Furthermore, we

observed numerical problems with the maximum likelihood procedure for the

hyperparameters and the revisions were too large. Solving these problems is left as a

topic for further research.
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As an alternative, a multivariate structural time series model with consistency

restrictions on the additive outliers, level breaks, seasonal breaks and calendar effects

(derived from a univariate model applied to the aggregated series) is only used to

eliminate these effects from the observed series. Subsequently, X-13ARIMA-SEATS is

used for seasonal adjustment of all series. This reduces the inconsistencies remarkably.

Finally, a multivariate benchmarking is applied to restore consistency in the adjusted

series, and the additive outliers, level breaks, and calendar effects are added to the

adjusted series. With this pretreatment approach, a significant reduction of the statistical

discrepancies is achieved, whereas the quality of the adjustment in terms of the standard

X-13ARIMA-SEATS quality measures is maintained or even improved for some series.

In June 2015, this approach was implemented in the production of Dutch official statistics

on economic growth.

When the numerical problems with the complete multivariate approach can be solved,

comparing results of both approaches can give some insights into the influence of the

approaches on the estimates.

The approach considered in this article is generic and applies to many other applications

at national statistical institutes. Therefore, it is worthwhile to further improve the K þ 1

dimensional structural time series model, where consistent seasonal effects are directly

estimated with the structural time series model.

6. Appendix: Detailed breakdown of GDP

Figure 6 summarizes the breakdown of GDP according to the expenditure approach. The

official tables published by Statistics Netherlands are actually more detailed. Not

presented here is the further breakdown of gross fixed capital formation. Each hierarchy

of this breakdown is consistently corrected for seasonal and calendar effect using the

top-down approach described in Subsection 3.2.

In each branch, there is a time series marked SDx. These are the discrepancies

arising from chain linking. They only occur in constant price data. The figure

illustrates that the breakdown comprises GDP itself and 20 subseries, complemented

by nine different series for the discrepancies arising from chain linking (one for each

branch of the tree). A similar breakdown tree of GDP is used for value added by

industry (the production approach). This tree consists of six branches, and comprises

20 subseries for branches of industry and, of course, six series for discrepancies arising

from chain linking.
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