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Sensitive outcomes of surveys are plagued by wave nonresponse and measurement error
(classification error for categorical outcomes). These types of error can lead to biased
estimates and erroneous conclusions if they are not understood and addressed. The National
Crime Victimization Survey (NCVS) is a nationally representative rotating panel survey with
seven waves measuring property and violent crime victimization. Because not all crime is
reported to the police, there is no gold standard measure of whether a respondent was
victimized. For panel data, Markov Latent Class Analysis (MLCA) is a model-based approach
that uses response patterns across interview waves to estimate false positive and false negative
classification probabilities typically applied to complete data.

This article uses Full Information Maximum Likelihood (FIML) to include respondents
with partial information in MLCA. The impact of including partial respondents in the MLCA
is assessed for reduction of bias in the estimates, model specification differences, and
variability in classification error estimates by comparing results from complete case and
FIML MLCA models. The goal is to determine the potential of FIML to improve MLCA
estimates of classification error. While we apply this process to the NCVS, the approach
developed is general and can be applied to any panel survey.

Key words: Survey error; full information maximum likelihood; measurement error; Markov
latent class analysis; national crime victimization.

1. Introduction

Social and behavior science researchers often collect data using questionnaires or

instruments consisting of items that purport to measure some underlying construct that is

difficult to measure accurately. For example, it is well known that employment status is

difficult to measure because it relies on misunderstood concepts such as “looking for

work,” “temporary layoff” versus “job termination,” “temporary work” versus “permanent

employment,” and so on (see Biemer 2004). Employment classifications are typically

based on responses to a series of questions that must be combined to categorize an

individual as “employed,” “unemployed,” or “not in the labor force.” Because of the fine
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distinctions among these categories or classes, misclassifications that lead to unstable and

biased estimates of the class sizes are not uncommon.

A mixture modeling technique called Markov Latent Class Analysis (MLCA) can be

used in panel surveys to correct the estimates for misclassification bias. It models wave-

to-wave transitions and treats inconsistencies between the data and the model as

measurement error or other model errors. MLCA provides estimates of the probabilities of

misclassifying people in each labor category, the Wave 1 class probabilities, and the

probabilities of transitioning from class to class across waves that have been corrected for

misclassification.

A common problem in panel surveys that may limit this analysis is that some

respondents fail to respond at one or more panel waves, resulting in an incomplete

longitudinal record. This incompleteness poses a problem not only for MLCA but also for

standard longitudinal modeling techniques that delete observations with missing time

points and analyze only records with no missing values (referred to as case-wise deletion;

see, for example, Allison 2001). Two different, although somewhat equivalent, modeling

approaches are available to address this missing data problem: imputation and Full-

Information Maximum Likelihood (FIML) estimation. One key difference between the

two is that imputation replaces the missing values in the record with model-derived values

to obtain a complete record that can then be used in a full data set estimation process.

FIML, the focus of this article, obtains parameter estimates by maximizing the incomplete

data likelihood using completely observed and partially observed cases; that is, all

available (full) information. Multiple imputation (see, for example, Schafer and Graham

2002; Little and Rubin 2002) is an extension of single imputation that multiply-imputes

each missing value to facilitate the computation of imputation variance. It has been shown

in Allison (2012) that FIML is equivalent to multiple imputation in the limit as the number

of imputations per missing value approaches infinity.

Equally as important as the choice of approach is the assumption that is made for the

missing data mechanism itself. Assuming that the data are Missing Completely At

Random (MCAR) will lead to bias inferences if response propensities are correlated with

the classification error probabilities, which seems common (see, for example, Vermunt

1997; Hess et al. 2013). For example, Biemer (2004) showed that, in the Current

Population Survey, people who misreport unemployment may tend to be nonrespondents

whose information is often collected by proxy response. Likewise, people who under-

report victimizations or who provide erroneous information about their victimizations may

also be more likely to fail to respond at some panel wave.

This article demonstrates the importance of compensating for nonresponse in the Latent

Class Analysis (LCA) of panel survey data, particularly when making inferences about the

measurement components of the model. It shows the importance of including observations

that contain missing values on some variables, not only for variance reduction, but also to

reduce the bias. We will also show how it is possible to model data that are Missing At

Random (MAR) using MLCA combined with FIML models.

Thus, the focus of this article is to explore the effects of methods for compensating for

wave nonresponse on the classification error rates in each panel survey wave under the

alternative assumptions about the nature of missing data. For this purpose, data collected

between 2007 and 2013 from a long-standing national panel survey with indicators of
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violent and household-level crime victimization, the National Crime Victimization Survey

(NCVS) (U.S. Department of Justice 2015), will be used to fit MLCA models for two types

of victimizations: property crimes and violent crimes. Missing data will be modeled

simultaneously in an MLCA model under MCAR and MAR missing data assumptions to

address two key aims:

(1) Demonstrate the importance of using full information in modeling the structural and

measurement components of an MLCA model by determining the effect that missing

data have on the MLCA model determined to best fit the data.

(2) Evaluate the effects of alternative assumptions about the missing data mechanism

(i.e., MCAR or MAR) on the estimates of misclassification and prevalence.

The remainder of this section provides a brief overview of MLCA models and the basic

FIML approach to compensate for nonresponse. Section 2 describes the study data and

modeling approach used to address the key aims of this article. In Section 3, the final

MLCA model under each missing data mechanism is presented, along with estimates of

classification error and crime victimization prevalence over time under MCAR and MAR

missing data assumptions. The article concludes in Section 4 with a discussion of the

differences across these models, their impact on classification error, thoughts on which

model is most appropriate for the NCVS, and ideas for future analysis in this area.

Although we apply this process to the NCVS, the approach we develop is general and can

be applied to any panel survey.

1.1. Methods for Assessing Measurement Error in Panel Data

Markov Latent Class Models (MLCMs) adjust a panel survey’s substantive estimates for

the effects of misclassification and, as a byproduct of this process, produce estimates of the

“response probabilities”. In this application, response probabilities are referred to as

classification error parameters because of the interpretation that the latent variable is the

true classification. Rather than relying on external realizations of the true or “gold

standard” values to estimate measurement error, MLCMs assume a model of the

population structure and the measurement distribution parameters to provide maximum

likelihood estimates of the parameters of this model. This approach was first introduced

with cross-sectional data by Paul Lazarsfeld (1950) as LCA. In 1973, a modification of

LCA, MLCA, was proposed by Wiggins (1973) to extend LCA techniques to panel data.

Since then, MLCA methodology has been further developed by Poulsen (1982), Van de

Pol and De Leeuw (1986), Van de Pol and Langeheine (1990), Dias and colleagues (2008),

and Di Mari and colleagues (2016).

Using the notation in Biemer (2011), let X and Y denote two arbitrary random variables

having values x and y, respectively. Denote Pr(X ¼ x) by pX
x and Pr(Y ¼ yjX ¼ x) by pYjX

yjx
.

Extensions of this notation to three or more variables are straightforward. The MLCM

assumes that observations on a latent categorical variable X are subject to classification

errors. These models require a minimum of three time points with each time point

consisting of a latent variable and an indicator of that latent variable. Let the variable Xt

denote the true value of the latent variable (X) at time t and let the observed value Yt be an

indicator of Xt. For purposes of this article, Xt and Yt are assumed to have the same number
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of categories for all time points t. However, extensions to situations where the number of

latent and manifest classes differ are straightforward.

The general MLCM contains two components: (1) the structural component, which

describes the interdependencies between the Xt and the model covariates (referred to as

grouping variables because they are categorical variables), and (2) the measurement

component, which describes the interdependencies among the observations Yt at each

wave t ¼ 1,...,T and their interactions with Xt and other model covariates. Later in the

article, a model employing four panel waves will be used in the analysis. However, to

simplify the exposition, fix the ideas and establish the notation, here we present the model

for three panel waves (i.e., T ¼ 3) – the minimum number of panel waves for a MLCM to

be identifiable. Extensions to four or more waves are straightforward.

The standard MLCM assumptions for three waves are as follows:

1. First-Order Markov Property. p X3jX1X2

x3jx1x2
¼ p X3jX2

x3jx2
(i.e., a unit’s latent state at Wave 3

(X3), given its state at Wave 2 (X2) is independent of its state at Wave 1 (X1)).

2. Independent Classification Errors (ICE). pY1Y2Y3jX1X2X3

y1y2y3jx1x2x3
¼ pY1jX1

y1jx1
pY2jX2

y2jx2
pY3jX3

y3jx3
(i.e.,

classification errors for the three indicators are mutually independent across waves).

3. Time-Invariant Classification Errors. pYt jXt

yt jxt
¼ pYjX

yjx
for y ¼ yt, x ¼ xt, t ¼ 1,2,3;

classification errors for the indicator Yt are assumed to be the same for all waves

t ¼ 1,2,3.

4. Group-Homogeneous Error Probabilities. pYtjXt

ytjxt
for t ¼ 1,2,3 is the same for all units

in class Xt ¼ xt (i.e., within the same latent class, individuals in the same class have

equal misclassification probabilities).

Thus, the likelihood kernel for an MLCM with three time points with latent variables

X1, X2, and X3 with corresponding indicators Y1, Y2, and Y3 and a single grouping variable

G can be expressed as:

L pð Þ ¼ pGY1Y2Y3

gy1y2y3
¼ pG

g
x1;x2;x3

X
p X1jG

x1jG
p X2jGX1

x2jGx1
p X3jGX2

x3jGx2

� �
pY1jGX1

y1jGx1
pY2jGX2

y2jGx2
pY3jGX3

y3jGx3

� �
ð1Þ

where pG
g

x1;x2;x3

P
ðp X1jG

x1jg
p X2jGX1

x2jgx1
p X3jGX2

x3jgx2
Þ is the structural component of the model and

x1;x2;x3

P
pY1jGX1

y1jgx1
p Y2jGX2

y2jgx2
p Y3jGX3

y3jgx3
is the measurement component of the model with pYt jGXt

yt jgxt

representing the classification error probabilities at time t with t ¼ 1,2,3.

The likelihood kernel presented in (1) can be expressed succinctly using Goodman’s

(1973) notation for hierarchical models, whereby the model terms for the structural,

measurement and nonresponse (if applicable) components are specified in braces using

only the highest order interactions. For example, in (1), the structural component can be

expressed as a log-linear model {GX1 GX1X2 GX2X3}, or as a modified path model as

{X1jG X2jX1G X3jX2G}, and the measurement component as {GX1Y1 GX2Y2 GX3Y3} or

{Y1jX1G Y2jX2G Y3jX3G}. Thus Goodman’s notation for the likelihood kernel presented in

(1) may be expressed either as the log-linear form: {GX1 GX1X2 GX2X3}{GX1Y1 GX2Y2

GX3Y3} or the modified path model form: {X1jG X2jX1G X3jX2G}{Y1jX1G Y2jX2G

Y3jX3G}. Goodman’s notation will be used throughout the rest of the article because it

is more succinct. Figure 1 graphically depicts this model in the form of a path diagram.
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At the tth wave, an indicator of the event (Yt) is collected, which is a representation of the

true value or latent construct Xt. In addition to measurement error, the indicators at Waves

2 and 3 are also subject to attrition (wave nonresponse) and item nonresponse. In Figure 1,

circles represent the latent variables, squares represent manifest variables, and arrows

denote relationships. An ignorable nonresponse mechanism, defined in more detail below,

is assumed for the model.

1.2. Methods for Accounting for Wave Nonresponse in MLCA

When wave nonresponse exists in the indicators or item nonresponse exists in the grouping

variables, then the exclusion of cases with one or both types of nonresponse may introduce

bias into the model results. When dealing with nonresponse, it is important to understand the

nonresponse mechanism and account for it appropriately. Nonresponse is often classified

according to one of three missing data mechanisms: MCAR, MAR, or Missing Not At

Random (MNAR), also referred to as “nonignorable.” Originally defined by Rubin (1976),

MCAR occurs when the missing data do not depend on the observed or unobserved data;

MAR is less restrictive in that the missing data depend on only the observed data; MNAR is

the least restrictive mechanism where the missing data depend on the unobserved data.

Recent work with cross-sectional data suggests benefits of using FIML techniques

over listwise deletion, listwise deletion with reweighting, and hot deck imputation to fit a

single hypothesized model. FIML methods provide better estimates of variance and are

recommended when nonresponse is more than 5% and missing is dependent on the

outcome (Allison 2012; Iannacchione 1982). FIML has shown promising results in LCA

under a MAR and MNAR missing data mechanism to estimate inmate victimizations over

complete case analysis, suggesting that respondents with missing indicators are more

likely to be victims (Berzofsky, Biemer, Edwards 2015).

FIML can maintain unbiased inferences on the estimates (Graham 2009; Little and

Rubin 2002; Enders 2010). For categorical data analysis, FIML approaches are similar to

those developed to handle continuous data – partially observed information is used when

fitting log-linear models under the assumption of a multinomial sampling distribution

(Vermunt 1997). FIML can handle an MCAR, MAR, or MNAR missing data mechanism

(Fay 1986; Vermunt 1997). However, handling MNAR missing data requires knowledge

of the MNAR mechanism that is unobservable; this requirement leaves the researcher to

formulate a model for the MNAR mechanism for which methods of testing have not been

developed (Enders 2010).

G

X1

Y1 Y2 Y3

X2 X3

Fig. 1. Illustration of a Markov latent class model with one grouping variable, G. Double arrow denotes

equivalence of the response probabilities.
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In 1982, Fuchs (1982) extended the methodology of FIML to estimate the parameters of

a saturated log-linear model using the Estimation-Maximization (EM) algorithm when

nonresponse is MAR (Vermunt 1997), thus providing the fifth assumption for the models

presented in this article:

5. Nonresponse is Ignorable. Nonresponse at each wave is “MAR” in the sense of

Little and Rubin (2002).

Thus, the likelihood kernel for the MLCM detailed in Equation 1 can be modified to

include dichotomous (0/1) response indicators R1, R2, and R3 that correspond to indictors

Y1, Y2, and Y3, respectively, under a MAR mechanism, as follows:

L pð Þ ¼ pGY1Y2Y3

gy1y2y3

¼ pG
g

x1;x2;x3

X

r1;r2;r3

X
pX1jG

x1jG
pX2jGX1

x2jGx1
pX3jGX2

x3jGx2

� �
pY1jGX1

y1jGx1
pY2jGX2

y2jGx2
pY3jGX3

y3jGx3

� �
pR1R2R3jGY1Y2Y3

r1r2r3jgy1y2y3

� �
ð2Þ

where the terms pR1R2R3jGY1Y2Y3

r1r2r3jgy1y2y3
determine the response mechanism assumed for the model.

Under the assumption of ignorable nonresponse, the log likelihood function can be

separated into two additive terms – one involving the parameters of the model in (1) and

the other involving the nonresponse parameters. Thus, maximizing the likelihood

associated with (1) will produce valid estimators of the MLCM.

In the case of MLCA, the default method for handling nonresponse in LatentGOLD

(Vermunt and Magidson 2013) is Fuchs’ approach for wave nonresponse and stochastic

mean imputation for item nonresponse, making applying this technique straightforward

and accessible to researchers. LatentGOLD 5.0 was used for all presented analyses.

2. Methods

2.1. Data: National Crime Victimization Survey

The NCVS is a nationally representative, probability-based household survey of the

United States sponsored by the Bureau of Justice Statistics and conducted by the U.S.

Census Bureau that gathers information on criminal victimization, reported and not

reported to police (Truman and Morgan 2016). The NCVS incorporates a rotating panel

design, which uses a stratified multistage cluster sample that includes roughly 50,000

households per sample group with each household interviewed every six months for a total

of seven interviews. All households and people aged twelve or older in a rotation group are

interviewed about the number and characteristics of victimizations experienced during the

previous six months.

For this article, we focused on property crime and violent crime victimizations. For

property crime, there is a single household respondent. For violent crime, each eligible

person in the household responds. Because of the rareness of certain crimes and structure

of the NCVS, multiple crime types were collapsed into a single violent or property

victimization indicator at each wave. Violent crimes consisted of rape and sexual assault,

aggravated assault, robbery, and simple assault; property crimes consisted of household
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burglary, motor vehicle theft, and theft. By collapsing, we gained model stability and

avoided sparseness in the grouping classifications (Berzofsky and Biemer 2017).

The NCVS implements a two-phase approach to identify and enumerate victimizations.

During the first phase of the interview, a screener is used to identify experiences with

crime during the six-month reference period. The second phase of the interview is a

detailed follow-up for each victimization identified during the screening phase. Indicators

of specific types of victimization are created as a composite from various questions.

Regarding household crimes, the respondent was asked about property break-ins or

attempts and motor vehicle theft in the last six months in various scenarios (e.g., “did

anyone steal gas from (it/them)”). At the person level, respondents are asked questions

about victimization attacks and provided cues (e.g., location, weapon). For example, the

question on theft with location cues was worded “since _____, were you attacked or

threatened or did you have something stolen from you,” and some of the cues provided

were “at home including porch or yard” and “at work or school.”

The amount of wave nonresponse observed in the crime victimization indicators at each

wave of the study is more than 35% for violent crimes and less than 13% for household

crimes. Wave nonresponse rates observed during the first four waves for the property and

violent crime victimization indicators are presented in Table 1. Among typical reasons for

nonresponse, the NCVS has two special considerations that may cause nonresponse during

an individual wave. First, people may move out of a household. If an address is empty

during the time of the interview, then the household and its members will have missing

values for the wave. Second, new or newly eligible people may move into an existing

household (e.g., a child turning twelve, a college graduate moving in with his or her

parents at some point after the initial wave). In this case, the new or newly eligible person

will have missing values for previous waves when they were either not in the household

or ineligible. The NCVS does have unit-level response rates in the high 80% range at

the person level (see, for example, Truman and Morgan 2016).

For our analysis, we limited the NCVS data to include panel and rotation groups for

which all seven waves had occurred, resulting in data collected between 2007 and 2013.

For these panel and rotation groups, all people and households in which at least one wave

was completed were included in the analysis. Typically, multiple years of data would be

pooled to reduce the standard errors of estimates, making the estimates more reliable.

However, the NCVS public use files limit the number of years that can be pooled, because

the household identifier was scrambled in 2006 when the new census primary sampling

Table 1. Crime victimization indicator wave nonresponse.

Any Wave 1 Wave 2 Wave 3 Wave 4

Violent
Missing 110,236 58,935 58,960 58,520 56,955
Non-missing 51,635 102,936 102,911 103,351 104,916
Wave nonresponse rate (%) 68.10 36.41 36.42 36.15 35.19

Property
Missing 47,713 8,037 7,929 8,560 8,779
Non-missing 34,678 56,423 57,339 58,360 59,434
Wave nonresponse rate (%) 57.91 12.47 12.15 12.79 12.87
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units were integrated into the sample design. As MLCA requires linking households and

people across time, the scrambling of the identifier limits the number of years that can be

pooled. The issue of sparse cell sizes (i.e., model cells with zero or near-zero counts) can

cause difficulties with model convergence (Biemer 2011; Bartolucci et al. 2013).

Therefore, only the first four waves were used for the violent and property crime victimi-

zation analysis. This focus resulted in a total of 161,871 people and 68,213 households.

Among these people, the number with an observed violent crime victimization was less

than 1.5 percent, and among these households, the number with an observed property

crime victimization was less than nine percent. Observed crime victimization prevalence

is presented in Table 2.

It is expected that the initial interview would have larger victimization rates compared

with the later waves because it is unbounded and respondents may “telescope” by recalling

incidents that occurred before the six-month reference period. Despite this consideration,

Wave 1 data were included to be consistent with the NCVS, which, beginning in 2006,

included Wave 1 responses in the published estimates (Rand and Catalano 2007). Data

gathered in Wave 2 may be considered the most accurate because they are from the first

bounded interview with the least amount of fatigue; however, being the first bounded

interview does not imply a gold standard because the data can still suffer from other

sources of measurement error (e.g., interviewer bias, questionnaire wording).

2.2. Modeling Approach

We followed the modeling strategy that worked best on most tested models as discussed by

Berzofsky and Biemer (2017) (see also Biemer 2011), which consisted of two main steps.

First, grouping variables were identified with a forward selection approach using the

Bayesian Information Criterion (BIC) to identify when each grouping variable should

Table 2. Observed crime victimizations in the NCVS.

Wave

1 2 3 4

Violent victimization
Unweighted

Victims 1,295 844 801 710
Non-victims 101,641 102,067 102,550 104,206

Weighted
% Victimization 1.36 0.89 0.83 0.73
Standard error 0.05 0.04 0.03 0.03

Property victimization
Unweighted

Victims 5,199 3,524 3,299 3,173
Non-victims 59,261 61,744 63,621 65,040

Weighted
% Victimization 8.19 5.48 4.99 4.68
Standard error 0.17 0.12 0.12 0.10
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enter the model. Grouping variables create mutually exclusive groups whereby the

classification error rates are homogenous within each group; grouping variables are further

discussed in the following paragraph. These variables were added to the structural and

measurement models. Likelihood ratio tests were used to determine the most parsimonious

base model that removed group heterogeneity and met the MLCM assumptions: first-

order Markov, ICE, time-invariant classification errors, and group-homogeneous error

probabilities. Second, using the base model from step 1, all remaining MLCM

assumptions were tested and relaxed according to the following procedure: (1) models

with boundary or convergence issues that might make the model unstable were rejected,

and (2) for models without estimation issues, results from likelihood ratio tests for nested

models and BIC for non-nested models were used to select the final model.

The NCVS collects information on 14 grouping variables: twelve personal or

household-level variables and two para-data variables (U.S. Department of Justice 2015).

These 14 grouping variables formed the foundation of grouping variables considered for

our models. Grouping variables were classified as time varying or time invariant

(Bartolucci et al. 2013). Time-invariant grouping variables were those where fewer than

five percent of respondents changed status from the first observed value to the last

observed value; age category was an exception to this rule. Time-invariant grouping

variables were defined by the first observed value. To reduce the complexity of the model

and get parsimony without sacrificing fit, time-varying grouping variables were defined

by the creation of an additional category to capture the “movers” who, regardless of

movement direction, had similar classification error rates (Berzofsky and Biemer 2017).

Because of low item nonresponse rates in all but one of the grouping variables (less than

four percent), grouping variables were imputed before MAR analysis with a stochastic

mean imputation technique, the default imputation method for covariates in LatentGOLD.

Grouping variables considered for the violent and property victimization models with item

nonresponse rates are detailed in Table 3.

One challenge of conducting MLCA with complex survey data is that one or more

assumptions may be violated because of the sample design (Biemer 2011). For the structural

component assumptions, first-order Markov models were tested against second-order

Markov models, models where transition probabilities are assumed to depend on the

previous two time points, and Mover-Stayer models, models with an additional latent

construct to identify persons or households whose victimization status is constant (stayer) or

changes (mover) over time (Goodman 1961). Time-invariant classification error rates were

tested by relaxing assumptions on the coefficients for each time point. For the measurement

component assumptions, group-homogeneous error probabilities were tested by relaxing

assumptions on the coefficients for each indicator; ICE assumptions were tested using

bivariate residual analysis to identify dependent indicators (Vermunt and Magidson 2013).

Table 4 highlights the various models that were compared using Goodman’s notation

for hierarchical models. In Table 4, X1 to X4 represent the latent construct of victimization

(violent or property) at each wave; Y1 to Y4 represent indicator 1 through indicator 4,

respectively; A represents marital status, B represents age category, C represents

household ownership, D represents household size category, E represents age category of

the oldest person in the household, F represents urbanity, and M is a latent construct to

capture movement.
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Once the final model was determined from MCAR and MAR analysis according to the

approach detailed previously, models were fit to each category of victimization – violent

and property. Each model was applied to two data sets:

(1) MCAR analysis using complete case data (e.g., listwise deletion) and

(2) MAR analysis using the Fuchs FIML approach on the outcome (victimization) and

mean imputation on the grouping variables.

Thus, a total of four models were used to address the aims of this article:

(1) violent victimization MCAR model applied to the person-level MCAR data set,

(2) violent victimization MAR model applied to the person-level MAR data set,

(3) property victimization MCAR model applied to the household-level MCAR data

set, and

(4) property victimization MAR model applied to the household-level MAR data set.

LatentGOLD software was used for all analyses in this report; LatentGOLD addresses the

issue of clustering and weighting through a pseudo-maximum likelihood technique and

Table 3. Crime victimization grouping variable item nonresponse.

Missing
Non-

Missing

Item
Nonresponse

Rate (%)

Violent
Age category1,3 0 161,871 0.00
Education1 3,756 158,115 2.32
Gender1 0 161,871 0.00
Household size category2 5,437 156,434 3.36
Household ownership1,3 0 161,871 0.00
Interview type (in person/phone) 0 161,871 0.00
Marital status1,3 1,506 160,365 0.93
Number of in person interviews 0 161,871 0.00
Proxy answered interview 0 161,871 0.00
Race category1 0 161,871 0.00
Urbanity1 0 161,871 0.00

Property
Age category for oldest in household1,3 0 82,391 0.00
Household income2 18,768 63,623 22.78
Household size category2,3 0 82,391 0.00
Household ownership1 0 82,391 0.00
Interview type – all in person 0 82,391 0.00
Interview type – all/some/none in person 0 82,391 0.00
Number of in person interviews 0 82,391 0.00
Race category for oldest in household1 0 82,391 0.00

Urbanity1,3 0 82,391 0.00
1 First observed value used for analysis.
2 Time varying variable with single “mover” category.
3 Grouping variable used in violent or property victimization model.
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addresses nonresponse through applying FIML and stochastic mean imputation to

categorical data analysis. The ability to apply Fuchs’ FIML approach is built into the

software as the default method for addressing nonresponse on the dependent variables.

For independent variables, LatentGOLD applies stochastic mean imputation by default.

In regard to MLCA, FIML is used to address wave nonresponse in the indicators, and

stochastic mean imputation is used to address item nonresponse in the grouping variables.

3. Results

The aims of this article are (1) to demonstrate the importance of using full information in

an MLCM and (2) to evaluate the effect MCAR and MAR missing data assumptions have

on MLCA model estimates of misclassification and prevalence. Subsection 3.1 provides

details on the model fitting process and final models used in our analysis for both

victimizations (violent and property). Subsection 3.2 compares estimates of misclassi-

fication from MCAR and MAR MLCMs for each type of victimization. Subsection 3.3

compares prevalence estimates from the structural component of MCAR and MAR

MLCMs for each type of victimization.

3.1. Modeling Results

With respect to victimization type, models with and without missing data identified the

same grouping variables and relaxed the same MLCA assumptions, resulting in identical

final models. Table 5 presents victimization model diagnostics for violent and property

crime victimization. The dissimilarity index indicates the percentage of data that would

need to change cells for the model to fit perfectly; it is an alternative way to assess the fit of

the model. Full measurement models for violent and property crime victimization are

given in Supplemental data, Appendix A (available online at: http://dx.doi.org/10.1515/

JOS-2017-0026). Complete LatentGOLD syntax for model estimation of violent and

property crime victimizations is given in Supplemental data, Appendix B (available online

at: http://dx.doi.org/10.1515/JOS-2017-0026). Subsections 3.1.1 and 3.1.2 provide

specific details on the base and final models for violent and property crime victimization,

respectively.

3.1.1. Violent Crime Victimization Modeling Results

The violent crime victimization final model without missing data (i.e., after listwise

deletion, respondents without missing indicators or grouping variables) included 51,528

cases, 31.8% of all respondents. The base model found three grouping variables to be

significant in the measurement component of the MLCM – first observed value of marital

status, household ownership, and first observed value of categorized age. When missing

data were included, the same grouping variables were found to be significant. The

identified grouping variables are listed in Table 3.

For violent crime victimizations, a full model with interaction terms between the

grouping variables and the latent wave indicator of victimization status was deemed

appropriate, and several MLCA assumptions were relaxed, regardless of the missing data

assumption. Our models were able to relax model assumptions because four time points

were used in the models. Based on the bivariate residual test, the ICE assumption was not
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violated. The final MCAR and MAR violent victimization models consisted of a

second-order Markov model with varying covariates for the observed victimizations and

varying classification errors between the first wave and all following waves.

3.1.2. Property Crime Victimization Modeling Results

The property crime victimization final model without missing data included 48,590 cases,

59.0% of all responding households. The base model found three grouping variables to be

significant in the measurement component of the MLCM – categorized household size,

first observed value of categorized age of oldest household member, and urbanity. As with

violent crime victimization when missing data were included, the same grouping variables

found to be significant in the MCAR models were also identified in the MAR models.

The property crime victimization model experienced similar MLCM assumption

violations as the violent crime victimization model. The base model for property crime

victimization consisted of a full model with main effects and interaction terms between

the grouping variables and the latent wave indicator of victimization status. The time

homogeneous classification error, first-order Markov assumptions, and group homo-

geneous classification error assumptions were relaxed. The final MCAR and MAR

property crime models consisted of a mover-stayer full model with varying covariates for

the observed victimizations and varying classification errors between the first wave and all

following waves.

3.2. Estimated Misclassifications

Now we use the second-order MLCM and the mover-stayer MLCM to create estimates of

misclassification and prevalence by fitting the measurement and structural components

with each missing data assumption (MCAR, MAR). The measurement component

provides estimates of false positive and false negative rates at each time point. False

positive rates measure the probability of respondents identifying as victims when in truth

they are nonvictims (i.e., PðYt ¼ 1jXt ¼ 2Þ). False negative rates result from respondents

identifying as nonvictims when in truth they are victims (i.e., P Yt ¼ 2jXt ¼ 1
� �

). Trends

of estimated false positive and false negative rates for violent and property crime

victimization at each wave of the NCVS are presented in Figures 2 and 3, respectively,

with 95% confidence intervals represented by error bars.

From Figure 2, it is clear that regardless of model type, the false positive rates for

violent victimizations are larger for the first interview. These larger rates are probably the
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Fig. 2. False positive rates for violent and property crime victimization.
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result of telescoping (as noted earlier, the first interview used for estimation is unbounded,

whereas all follow-up interviews are bounded). This finding also held for the MCAR

property victimization model, but not the MAR property victimization model. False

positive rates are low regardless of model and victimization type: less than one percent for

violent and less than five percent for property victimizations.

Based on false positive rates, victimization type appears to affect the results from the

MCAR and MAR models after the first wave in different manners. Both MAR models

yielded higher estimates of false positive rates compared to the corresponding MCAR

estimates. For violent crimes, the MCAR and MAR models yield similar estimates. For

property crimes, the MAR model yields estimates near the upper end of the 95%

confidence interval of the MCAR model estimates; MAR estimates for false positive rates

are larger than the MCAR estimates at every wave, except Wave 1, by roughly 0.7%.

From Figure 3, the manner in which false negative rates change over time for violent

victimizations differs depending on the mechanism for missing response. Under the

MCAR model, the false negative rate is significantly higher in the first interview (85%)

compared with the later interviews (<65%); however, for the MAR model, the false

negative rate is statistically unchanged across the four periods (<51% in all waves). This

result is an indication that the inclusion of those who do not respond helps control for

differences in the false negative rate over time. For property victimization, although there

appears to be an increase in the false negative rate from interview Wave 1 (66% for MCAR

and 62% for MAR) compared with the later waves (<80% for all waves for MCAR and

MAR) regardless of the missing data mechanism, these differences are not statistically

significant.

Interestingly, our results do not detect an increase in the false negative rate in interview

wave 4. Some research (see, for example, Hart et al. 2005) has shown that respondent

fatigue occurs in later waves of the NCVS. Respondent fatigue is likely to increase the

classification error rates over time. One possible reason that our models do not

demonstrate this pattern is because we limited our analysis to the first four interview

waves. Hart and colleagues (2005) looked at all seven waves, finding respondent fatigue to

have its greatest effects in Waves 6 and 7, which are not included in our current analysis.

Perhaps due to the less sensitive nature of property crimes and a more engaged

respondent, the estimated false negatives for property crime victimization at each wave of

the NCVS by model type show different trends than those for violent crimes. Estimates
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differed by 4.1% at the first wave but were similar during following waves, with MAR

estimates being slightly higher by at most 0.2%. The false positive and false negative rate

estimates are somewhat consistent across waves with respect to model type.

3.3. Estimated Prevalence

Victimization prevalence is measured in the structural component of the MLCM.

Estimates of violent and property victimization were computed three ways:

(1) based on observed responses (i.e., direct estimates from the data set),

(2) based on the MCAR model, and

(3) based on the MAR model are presented in Figure 4, with 95% confidence intervals

represented by error bars.

As with the classification error rates, standard errors are larger for the FIML methods

compared with the complete case analysis. If the missingness is MCAR, then we would

expect the standard errors from the MAR model to be smaller, because the MAR model

uses more information than the MCAR model. If the missingness is MAR, increased

standard errors are to be expected because missing values contribute more variance to the

final model. Estimates differ between model types for violent crime victimizations,

suggesting that missing data do affect estimates of prevalence. FIML models estimate

violent crime prevalence to be higher than the observed and complete case analysis.

Prevalence rates for either victimization are highest during the first wave; this finding may

be attributed to telescoping because the initial wave is unbounded, which inflates the

number of reported victimizations (U.S. Census Bureau 2014).

Overall estimates of property crime victimization are similar across model types, with

the MAR model differing the most from the MCAR model during the first wave by 5.1%.

For violent crime victimization, for all but the first wave, the MAR estimates are higher

than the MCAR estimates. The FIML MAR model appears to be correcting for respondent

fatigue by keeping the violent crime prevalence consistent across waves.

4. Discussion

In this article, we fit two different types of models for the response mechanism in NCVS

data. One model (MCAR) was fit in a complete case analysis that included only records
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with no missing values on all the victimization indicators or grouping variables across all

four waves. This model excluded about 70% of the cases for violent victimization and

about 40% of the cases for property victimization. The other model (MAR) used FIML

techniques to account for missing data in the indicators and mean imputation to account

for missing data in the grouping variables. This model included all cases that responded

in one or more waves. Estimates of classification error rates and prevalence rates were

produced from both models. The MAR model attempts to compensate for any bias that

could be introduced into the analysis by excluding the missing cases. MAR models assume

that the missing data mechanism does not depend on the variable that is missing but may

depend on other influencing factors that can be modeled using additionally observed

variables.

A third type of missing data mechanism, MNAR, can also be modeled using FIML

techniques. This type of model assumes that the missing data mechanism associated with

the outcome variable (i.e., victimization indicator) depends on that same outcome

variable. However, MNAR FIML models are difficult to apply with existing software, and

there are trade-offs in doing so. MNAR model estimates will often have larger variances,

which may offset any gains in reducing nonresponse bias. The software we used

experienced issues with EM convergence and local minima, leading to model instability.

Besides being more difficult to program, MNAR models that may be specified can be

limited by the computer’s memory capabilities. In our case, 16 gigabytes of RAM were not

sufficient to run some models. As a result, the MNAR models we fit resulted in implausible

estimates, which were most likely due to weak identifiability and local minima (Bartolucci

et al. 2013; Biemer 2011). Given the poor performance of the MNAR models, those results

were not included in this article.

MAR estimates that differ considerably from MCAR estimates usually indicate that the

MCAR assumption is untenable; thus, excluding the cases with missing data from the

analysis will yield biased estimates. For violent and property crime, MAR models

produced substantially different estimates from the MCAR models. For violent crime

victimization, FIML MAR estimates of prevalence were higher than MCAR estimates at

all but the first wave. For property crime victimization, MAR and MCAR estimates of

prevalence were similar in all but the first wave. This result suggests that nonrespondents

are more likely to be victims of violent crime but perhaps not property crime.

As previously noted, the purpose of this article was to demonstrate that MLCMs can be

used to account for measurement error and nonresponse and to evaluate the differences

between MLCMs with and without missing data. However, further research is needed. For

example, the nonresponse bias implied by the MAR models for violent crimes presents an

intriguing finding, namely, omitting respondents with wave and/or item nonresponse from

the analysis of violent crime could substantially bias the results. These models would

benefit from further refinement and verification. Although item nonresponse was minimal

in our final models, future research could treat the two types of nonresponse (wave and

item) differently because the mechanism that causes an individual to opt out at a wave may

be different than that which causes an individual to not respond to an item in the interview.

One opportunity to develop qualitative research to support our findings would be

through cognitive interviewing. We hypothesize that much of the measurement error from

wave to wave is due to comprehension error, recall error, or respondent fatigue (also
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known as “satisficing”). Perhaps evidence of these errors can be found using cognitive

interviewing techniques where respondent conditions that give rise to these error sources

could also be explored. Another method for verifying our findings would be via a

simulation study. Using Monte Carlo simulation, multiple data sets, each with a unique

and known nonresponse mechanism, could be generated from the current NCVS data to

determine how various types of nonresponse errors manifest themselves as biases in

victimization estimates. In addition, the simulations could also investigate the extent to

which measurement errors affect the application of MAR and MNAR nonresponse

models. A variation on the simulation study could explore the validity of the models by

generating data sets with varying levels of nonresponse and measurement errors. Then the

results from the models could be compared with the known model-generating parameters.

The data themselves presented a few unique challenges. Because of the design of the

NCVS, it is difficult to pool data from a larger time period. We could pool only panels that

started data collection in 2007 because of issues of household and person ID linkage

related to the scrambled household identifiers introduced in 2006. This small sample could

be contributing to the large standard errors observed for the model-based estimates.

Pooling data from a larger time period would increase the sample size, which could then

result in more stable models.

The problems with small samples were compounded by the fact that crime victimization

is a rare event, which resulted in few positives in the sample on which to build a model for

misclassification of positives. We addressed this issue by combining crime types into two

distinct categories – property crimes and personal crimes – to build up their prevalence.

In 2014, the overall rate of violent crimes was 20.1 per 1,000 people aged twelve or older;

rape and sexual assault crimes accounted for just 1.1 per 1,000 people aged twelve or older

of the overall rate (Langton and Truman 2015). For this reason even with 15 years of data,

standard errors could still be large, particularly for false negative estimates. In addition,

analyzing 15 years of data may expose other issues such as temporal changes in definitions

of certain types of crime or crime reporting over time. Our analysis excluded data

collected from the later waves (i.e., Waves 5, 6, and 7). This exclusion was done primarily

to reduce the number of sparse cells due to cross-classifying responses from seven waves,

which could be compounded because of potentially greater respondent fatigue in later

waves.

The goal of this analysis is not to quantify all of the errors present in the NCVS, but to

show a model-based way of addressing two types of errors and the effect nonresponse can

have on model estimates. Despite the limitations of the data, our findings demonstrated

that excluding respondents with missing data may bias estimates of prevalence.
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