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Multivariate beta regression models for jointly modelling two or more variables whose values
belong in the (0,1) interval, such as indexes, rates or proportions, are proposed for making
small area predictions. The multivariate model can help the estimation process by borrowing
strength between units and obtaining more precise estimates, especially for small samples.
Each response variable is assumed to have a beta distribution so the models could
accommodate multivariate asymmetric data. Copula functions are used to construct the joint
distribution of the dependent variables; all the marginal distributions are fixed as beta. A
hierarchical beta regression model is additionally proposed with correlated random effects.
We present an illustration of the proposed approach by estimating two indexes of educational
attainment at school level in a Brazilian state. Our predictions are compared with separate
univariate beta regressions. The inference process was conducted using a full Bayesian
approach.
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1. Introduction

In recent years, numerous applications of the beta distribution have been developed due to

the distribution’s suitability for modelling rates or proportions. Its properties include being

defined on the range (0,1), allowing for asymmetry present in these types of variables, and

assuming different forms depending on its parameters. The beta regression additionally

allows heteroscedastic observations.

Ferrari and Cribari-Neto (2004) proposed a univariate beta regression for modelling

rates or proportions and used a classic approach to estimate the model parameters. A

Bayesian version of the static beta regression was proposed by Branscum et al. (2007).

More recently, Da-Silva et al. (2011) proposed a method for beta time series data, in which

the model parameters that are related to the means follow a dynamic model. However, the

most frequently proposed use of the beta distribution in the context of regression has been

restricted to cases where there is only one dependent variable.
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We propose a new approach to jointly modelling indexes, rates or proportions,

commonly estimated with low accuracy in small samples. Examples of variables that are

measured in the range (0,1) and are related to each other are the proportion of poor people,

the mortality rate and the ratio of food expenditures to total expenditures. The models

proposed in this article can also be employed in estimating correlated poverty indexes for

small domains. While the motivation for this work has been the estimation of rates or

proportions in small areas (or domains), the strategy used to achieve this goal can be

applied to a more general context. Multivariate models are developed for modelling rates

or proportions, offering the possibility of jointly managing related quantities in one single

model and enjoying the benefits that this joint approach offers. Borrowing strength across

the response variables in the multivariate models proposed here can provide more precise

estimates of the quantities of interest.

Cepeda-Cuervo et al. (2014) apply a bivariate strategy using the Farlie-Gumbel-

Morgenstern (FGM) copula, modeling the dispersion parameter of the beta regression as

proposed in Smithson and Verkuilen (2006) and Simas et al. (2010). However, their

approach does not account for any hierarchical structure of the population and no

extension to the multivariate case is discussed. Melo et al. (2009), Fabrizi et al. (2011) and

Murteira and Ramalho (2014) propose and apply multivariate models for dealing with

fractional data.

This article develops multivariate regression models where the dependent variables

marginally follow a beta distribution. These models address data fitting in general

contexts, and the models are especially advantageous for small area estimation. The beta

marginal distributions were reparametrised by the mean and the dispersion, as in Ferrari

and Cribari-Neto (2004). The associations between the response variables are considered

as a copula function applied to the marginal densities. Copulas are useful tools for building

multivariate distributions where the marginal distributions are given or known, allowing

individual models be analysed together. Additionally, copula functions allow the

representation of various types of dependence between variables. The use of copulas

allows flexibility in handling nonlinear relationships between the response variables and is

therefore a more general setup than the multivariate normal distribution, which allows

only linear relationships. For a complete study on the copula function and its utilities in

statistics, see Nelsen (2006).

Two types of multivariate models with beta responses are proposed: a beta regression

model, where the marginal densities are connected by a copula function, and a hierarchical

beta model with correlation between their means. In a small area estimation context where

auxiliary variables and data from multiple characteristics are available, these models can

improve the prediction of observations and target-population parameters. Several authors

argue that this approach provides better estimates than fitting separate univariate models,

because a multivariate model considers the correlations between the response variables

after conditioning on the auxiliary variables. Fay (1987) modelled the joint behaviour of

the median income in households of three, four and five dwellers. Datta et al. (1999)

applied a multivariate mixed linear model and concluded from a simulation study that the

multivariate approach provides better results than setting a separate model for each

variable. The methods most commonly employed are based on borrowing information

from neighbouring or related areas. The models proposed in this article have a direct
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application to the small area estimation problem by additionally allowing strength to be

borrowed between the response variables.

The article is organised as follows. In Section 2, we propose a multivariate beta

regression model by employing copula functions. In Section 3, we apply our proposed

models to the small area estimation problems, presenting an illustration with Brazilian

education data. Section 4 offers some conclusions and suggestions for further research.

2. Multivariate Beta Regression Model Based on Copulas

The structure of dependence between two or more related response variables can be

defined in terms of their joint distribution. One way of obtaining a multivariate beta

distribution is to join the univariate beta using copula functions, which is one of the most

useful tools when the marginal distributions are given or known. The use of copula

functions enables the representation of various types of dependence between variables.

In practice, this function implies a more flexible assumption about the form of the joint

distribution than that given in Olkin and Liu (2003), which assumes that the

marginal distributions have the same parameter. Nelsen (2006) defines a copula as a

joint distribution function

Cðu1; : : : ; uKÞ ¼ PðU1 # u1; : : : ;UK # uKÞ; 0 # uj # 1;

where Uj, j ¼ 1; : : : ;K are uniformly distributed on the interval (0,1).

Sklar’s theorem, stated here in Theorem 1, shows how to obtain a joint distribution

using a copula.

Theorem 1 Let H be a K-dimensional distribution function with marginal distribution

functions F1; : : : ;FK. Then, there is a K-dimensional copula C such that for all

ð y1; : : : ; yKÞ [ ½21;1�K,

Hð y1; : : : ; yKÞ ¼ CðF1ð y1Þ; : : : ;Fkð yKÞÞ: ð1Þ

Conversely, if C is an n-dimensional copula and F1; : : : ;FK are cumulative distribution

functions, then the function H defined by (1) is a distribution function with marginal

distributions F1; : : : ;FK. Moreover, if all marginal distributions are continuous, C is

unique. Otherwise, the copula C is uniquely determined in ImðF1Þ £ : : : £ ImðFKÞ, where

Imð�Þ represents the image of ð�Þ.

Let y ¼ ðð y11; : : : ; y1KÞ; : : : ; ð yn1; : : : ; ynKÞÞ be a random sample of size n from a

continuous joint distribution with marginal densities f 1; : : : ; f K . Thus, the likelihood

function is given by:

LðCÞ ¼
Yn

i¼1

cðF1ð yi1jCÞ; : : : ;FKð yiK jCÞÞf 1ð yi1jCÞ: : :f Kð yiK jCÞ ð2Þ

where C denotes the set of parameters that define the distribution functions Fk, the

densities f k, and the copula-density function cð�Þ, k ¼ 1; : : : ;K.

In (2), we assume that each response variable k is beta distributed, such that:

Yikjmik;fk , Betaðmik;fkÞ; i ¼ 1; : : : ; n; k ¼ 1; : : : ;K
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gðmikÞ ¼ hik ¼
Xpk

j¼1

xijbjk

where Betaðmik;fkÞ denotes that Yik is beta distributed with mean mik and variance
mikð12mikÞ

1þfk
, gð�Þ is the link function and pk is the number of covariates for the response

variable k.

Denote by BetaMðm;f; uÞ the multivariate beta distribution obtained by using K

marginally beta-distributed variables with parameters m ¼ ðm1; : : : ;mKÞ
T and f ¼

ðf1; : : : ;fKÞ
T and a copula function with a vector of parameters u ¼ ðu1; : : : ; uLÞ

T .

Thus, the structure of dependence between the K beta responses is defined by their joint

distribution, which is obtained by applying a copula function, resulting in the likelihood

function given by (2). Under the Bayesian approach, the specification of the model is

completed by assigning a prior distribution to f ¼ ðf1; : : : ;fKÞ, the parameter b ¼

{bjk : j ¼ 1; : : : ; pk; k ¼ 1; : : : ;K} and the parameters that define the copula family.

Souza (2011) developed and fitted Model (2) using different copulas to predict missing

response values. It was also carried out a simulation study to compare bivariate and

univariate beta models under different scenarios.

2.1. Multivariate Hierarchical Beta Regression Model

In the multivariate beta regression model presented in the previous section, the marginal

beta regression coefficients were fixed. However, there are situations in which some or all

of the coefficients are assumed to be random. In these cases, the coefficients of each

observation have a common average, suffering from the influence of nonobservable

effects. Such models are often called mixed-effects models and have applications in

several areas. Jiang (2007) discusses linear mixed models and some inference procedures

for estimating their parameters. Rao and Molina (2015) shows some use of mixed-effects

models in small area estimation.

In this section, we propose a generalisation of the multivariate regression model

presented in Section 2 by assuming that some or all of the coefficients associated with the

linear predictor of each response variable can be random and correlated.

Let yidk be the observed value of the i th microunit within the d th macrounit for the k th

response variable, i ¼ 1; : : : ; nd, d ¼ 1; : : : ;D and k ¼ 1; : : : ;K. Furthermore, let us

assume that yidk and yi 0dk are conditionally independent, ;i – i0. The multivariate

hierarchical beta regression model is defined as

yidjmid;fid; u , BetaMðmid;fid; uÞ; i ¼ 1; : : : ; nd; d ¼ 1; : : : ;D ð3Þ

yidkjmidk;fidk , Betaðmidk;fidkÞ; k ¼ 1; : : : ;K ð4Þ

gðmidkÞ ¼
Xpk

j¼1

xidjkðbjk þ ndjkÞ ð5Þ

ndjk , N 0;s2
jk

� �
; j ¼ 1; : : : ; pk and k ¼ 1; : : : ;K ð6Þ
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where: pk is the number of covariates for the response variable k; BetaMðmid;fid; uÞ

denotes a multivariate beta distribution using a copula function with parameter u and the

beta marginal distributions for the i th microunit belonging to the macrounit d;

yid¼ð yid1; : : :;yidKÞ
T ; mid¼ðmid1; : : :;midKÞ; fid¼ðfid1; : : :;fidKÞ; bk¼ðb1k; : : :;bpkkÞ;

xidk¼ðxid1k; : : :;xidpkkÞ
T and

xT
dk¼

x1d1k ··· x1dpkk

x2d1k ··· x2dpkk

..

.
··· ..

.

xNdd1k ··· xNddpkk

0
BBBBBB@

1
CCCCCCA
:

Thus, microunits belonging to the same macrounit have the same coefficient and the

coefficients are different between macrounits. Each response variable can have its own set

of regressors and these are not necessarily the same.

As generally described in Equations (3) and (5), the model allows all regression

coefficients to be random. However, in many applications of hierarchical models, only

some coefficients are assumed to be random, specifically the intercept term. To allow fixed

and random coefficients, Equation (5) can be changed to

gðmidkÞ ¼
Xpk

j¼1

xidjkbjk þ
Xpk

j¼1

zidjkndjk ¼ xT
idkbk þ zT

idkndk;

with zidk ¼ ðzid1k; : : : ; zidpkkÞ
T and ndk ¼ ðnd1k; : : : ; ndpkkÞ

T . If zidjk ¼ xidjk, the j th

coefficient is random and if zidjk ¼ 0, the correspondent coefficient is fixed.

In the model described in Equations (3)–(6) all random effects in n could be considered

independent, and only the correlations across the response variables would be modelled.

However, to allow the averages of the responses to borrow strength across themselves for a

given macrolevel d, all random coefficients for a same covariate j can be assumed to be

correlated. For example, if all covariates are the same for all response models, we have

ndj ¼ ðndj1; : : : ; ndjKÞ
T , NKð0;SjÞ, j ¼ 1; : : : ; p where

Sj ¼

s 2
j1 sj12 · · · sj1K

sj12 s 2
j2 · · · sj2K

..

. ..
. ..

. ..
.

sj1K sj2K · · · s 2
jK

0

BBBBBBB@

1

CCCCCCCA

:

A special case very often used in practice is to assume that only the intercepts are

correlated, i.e., nd1 ¼ ðnd11; : : : ; nd1KÞ
T , NKð0;S1Þ.

The dependence of the response variables is evident on two levels: the observations and

the linear predictors. This dependence can be favourable for this model with respect to the

small area estimation problem because it allows strength to be borrowed across the means,

which are interpreted as the true values of indexes, rates or proportions of interest. The

logistic link function was used in all applications. The model stated in Equations (3)–(6)
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assumes that information about K response variables and D macrounits with nd microunits

d ¼ 1; : : : ;D are available.

Equation (5) relates the averages of the response variables in each d th macrounit, and

considers specific macrounits’ effects. Thus, the mean midk and midk 0 additionally borrow

strength among themselves because they are correlated. This is particularly important in

the small area estimation problem, in which midk is interpreted as the true value of the rate

or proportion of interest and information from related quantities can produce more

accurate estimators.

The vector parameter fid is modelled as presented in the next section. The way it is

modelled depends on the specific application considered and it might be subject to

restrictions.

3. An Example of Small Area Estimation

The models defined in Section 2 were developed for general applications where there are

K related variables, measured in the range (0,1), which can be explained by covariates.

Here, we present an example of small area estimation.

The researcher may be interested in estimating functions of the response variables for

small domains or for some domains with no sample at all. The multivariate models

proposed in the previous section can be applied to make predictions on the nonsampled

domains and to produce more accurate estimates for the small domains. Auxiliary

information (covariates) must be known for all units at the level being predicted. The

information can be obtained from a census or administrative records. We have not

considered the case of missing values in explanatory variables.

3.1. Brazilian Educational Data

The Brazilian evaluation of basic education is conducted by the Brazilian National

Institute of Education Research (INEP). The evaluation measures the performance of

students of the 4th and the 8th series of elementary school. The tests are performed every

two years in urban state schools with more than 20 students. The evaluation of Brazilian

education combines performances in the Portuguese language and mathematics tests with

socioeconomic information.

The hierarchical structure of the data, organised into municipalities and schools,

suggested the use of hierarchical modelling. Only schools with students in the 4th series in

Rio de Janeiro State were considered in our application.

We considered the whole data of Rio de Janeiro State as our population and in each

municipality selected a two-stage simple random sample of schools and students. In fact,

we know the score values of all students for all schools. However, we pretend that we only

know the sample-school means and sample-school variances for the selected schools and

their respective sample sizes. This is not a unrealistic illustration, because information at

individual level is not usually available due to issues of confidentiality.

The response variables are respectively the averages of proportions of correct answers

in Portuguese and mathematics estimated at school level. In this application, these

averages of proportions in both disciplines for each selected school are direct estimates

based on a sample of students in each selected school.
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It is important to note that although the number of correct answers for each student can

be assumed to be binomially distributed, the school total cannot. Therefore a logistic

model is not feasible here, since we are supposing that data at student level are not

available. We further assume that the proportion in each school can be approximated by a

beta distribution. This is not a strong assumption because the number of students in each

school is not too small.

The main aim is to estimate these indexes for the nonsampled schools and to reduce the

errors for the sampled schools. A two-part, multivariate hierarchical beta model was

applied. One part relates the direct estimates of schools’ proficiency to model parameters,

and the other part relates these parameters to the auxiliary variables. The schools’ indexes

are in the (0,1) interval because the school averages are neither zero nor one for both tests.

It is assumed that there is information for all schools, selected or not, on the following

chosen covariates: existence of a program to avoid school dropout (x2); lack of books for

students (x3); the percentage of teachers who teach less than 60% of the program of their

disciplines (x4); proportion of teachers in the school with lower wages (x5); and lack of a

library in the school (x6). The variable (x1) refers to the intercept.

The information available about the characteristics of schools is provided by the

questionnaires given to school directors and teachers. Schools where there were no answers

for at least one of these questionnaires were excluded from the analysis. Municipalities

where there was only one state school, after the first mentioned dropouts were additionally

eliminated, leaving 82 municipalities. For each one of these 82 municipalities, a random

sample of 20% of the schools was selected. In eleven municipalities, all schools were

selected. From the total 1,787 schools in the 82 municipalities, only 421 were selected.

Within each selected school, a sample of 20% of the students was selected.

The response variables contain sampling error that may be related to the school sample

size. To consider this feature, a modification in the multivariate hierarchical model

is proposed in the equation of the observations. This modification was proposed by

Liu et al. (2014) for a univariate beta model. Because it is natural to assume that the

variance of the estimate increases when the sample size decreases, the following two-level

model (3)–(6) is proposed:

yidk , Betaðmidk;fidkÞ;

where yidk is the direct estimate (based on the sampling design) of the expected index of

proficiency of the discipline k, of the i th school in the d th municipality for i ¼ 1; : : : ; nd,

d ¼ 1; : : : ;D, where nd is the number of selected schools for the d th municipality.

We assume that the parameter fidk can be different for each sampled school, and its

value depends on the sample size through the following function: fidk ¼ gknid 2 1, where

gk is a unknown fixed parameter which may vary with the k th component of the response

vector, k ¼ 1; : : : ;K and nid is the sample size of the i th school in the d th municipality.

This assumption for fidk is valid only for the sampled schools. For the nonsampled ones

we constructed the estimator after inferring about the parameter; see Subsubsection 3.1.2

for details.

For the condition fidk . 0 to be satisfied, we must have

gk . max{1=nid;;ði; dÞ [ s} ð7Þ
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where max 1=nid;;ði; dÞ [ s
� �

denotes the maximum of the inverses of all school sample

sizes. Note that g21
k can be interpreted as the design effect (deff ) with respect to the

variance of the sample proportion obtained in a simple random sampling with negligible

sampling fraction. Therefore, if we have a previous estimate or guess of the deff for each

response k ¼ 1; : : : ;K, we can use it to set the gks. However, even if this information is

not available, we can still obtain estimates of gks through the model.

Taking into account the inequality (7), one should impose the following constraints on

the range of gks prior, based on one’s prior knowledge about the signal of the intraclass

correlation rk for each variable of interest k ¼ 1; : : : ;K:

a) if rk . 0 ! max{1=nid;;ði; dÞ [ s} , gk , 1;

b) if rk , 0 ! gk . 1;

c) if one is not sure about the sign of rk then gk . max{1=nid;;ði; dÞ [ s}.

A simple type of prior that can be assigned to the gk, k ¼ 1; : : : ;K are independent

uniform priors, with ranges obtained as advised above.

The following models were considered in our analysis of the school data:

Model A

yidkjmidk;fidk , Betaðmidk;fidkÞ; i ¼ 1; : : : ; nd; d ¼ 1; : : : ;D

gðmid1Þ ¼ b11 þ xid2b21 þ xid3b31 þ xid4b41 þ xid5b51 þ xid6b61 þ nd11

gðmid2Þ ¼ b12 þ xid2b22 þ xid3b32 þ xid4b42 þ xid5b52 þ nd12

nd1 ¼ ðnd11; nd12Þ
T , N2ð0;SÞ;

Model B

yidjmid;fid; u , BetaMðmid;fid; uÞ; i ¼ 1; : : : ; nd; d ¼ 1; : : : ;D

yidkjmidk;fidk , Betaðmidk;fidkÞ;

gðmid1Þ ¼ b11 þ xid2b21 þ xid3b31 þ xid4b41 þ xid5b51 þ xid6b61 þ nd11

gðmid2Þ ¼ b12 þ xid2b22 þ xid3b32 þ xid4b42 þ xid5b52 þ nd12

nd1 ¼ ðnd11; nd12Þ
T , N2ð0;SÞ;

where only the intercepts are assumed to be random.

A preliminary analysis showed that the covariate x6 (“lack of library in the school”) is

not statistically significant as a predictor of the index of proficiency in mathematics in the

presence of the other covariates. Therefore, we did not use it as a predictor of the second

response variable in all models.
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Note that Model A generates conditional correlation between the dependent variables

given municipality d, as long as S is not diagonal. However, Model B is much more

general and useful for small area estimation purposes than Model A, since it allows the

dependent variables to be correlated, conditional on the true small area parameters mid,

fid and u. This is equivalent to assuming that the sampling errors of the respective direct

estimators are correlated. Furthermore, at first we would think that the use of a suitable

copula function makes it possible to assume S diagonal in Model B; however, a drawback

of adopting this strategy is that this does not allow the municipality random effects to be

correlated across the dependent variables.

In the small area context, Models A and B can be regarded neither as a unit-level model,

because the response variables are direct estimators, nor as an area-level model, because

the municipality random effects are not of the same level as the domains of interest

(schools). Since our model can be considered a two-level generalised hierarchical model,

the only input response variables required to estimate its model parameters are the design-

based direct estimates. Nevertheless, an extension of the model proposed here should

include the designed-based variance-covariance matrix as additional information.

Because the scores of all the students are available in the Brazilian microdata test, it is

possible to calculate the true observed proportions of the selected schools and to compare

them with the direct estimates and the estimates provided by the models.

It is possible to obtain various types of dependence with copula functions. However,

there is a wide variety of copula functions. The question thus arises of which copula to use.

It makes sense to use the copula that is most appropriate for the data. Silva and Lopes (2008)

and Huard et al. (2006) presented proposals for the selection of copulas and models. The

criterion proposed by Huard et al. (2006) seeks the most appropriate copula for the data

within a previously established set of copulas. Silva and Lopes (2008) implemented the

Deviance Information Criterion (DIC) found in Spiegelhalter et al. (2002) and others. This

criterion examines the model globally, providing not only the choice of the copula, but

also the regressors and the marginal distributions of the response variables. The criteria

Akaike Information Criterion (AIC), in Akaike (1973) and Bayesian Information Criterion

(BIC), in Schwarz (1978), play a similar role.

Let LðyjCj;MjÞ be the likelihood function for the model Mj, where Cj contains the

copula parameters and those related to the marginal distributions. Define

DðCjÞ ¼ 22logLðyjCj;MjÞ. The AIC, BIC and DIC are given by:

AICðMjÞ ¼DðE½Cjjy;Mj�Þ þ 2qj;

BICðMjÞ ¼DðE½Cjjy;Mj�Þ þ logðnÞqj;

DICðMjÞ ¼ 2E½DðCjÞjy;Mj�2 DðE½Cjjy;Mj�Þ

where qj denotes the number of parameters of the model Mj.

Let
�
Cð1Þj ; : : : ;CðTÞj

�
be a sample from the posterior distribution obtained via MCMC.

Then we have the following Monte Carlo approximations:

E½DðCjÞjy;Mj� < T 21
XS

t¼1

D CðtÞj

� �
and E½Cjjy;Mj� < T 21

XT

t¼1

CðtÞj :
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The linear correlation coefficient is not suitable for measuring the dependence between

variables in a model involving copulas since it is not invariant under monotone nonlinear

transformation. A further appropriate measure, which can be found in Nelsen (2006), is the

Kendall’s t statistic, given by

t ¼ 4

ð1

0

ð1

0

Cðu; vÞdCðu; vÞ2 1:

The parameter u has different interpretations, as well as different ranges depending on

the copula, as can be seen in Table 1. As the parameter u can be written in terms of the

Kendall’s t, it is possible to compare the correlations given by different copulas. Thus,

the FGM copula is useful for weak association levels between 22=9 and 2/9. On the other

hand, the Clayton copula considers only positive correlations. Another advantage of

considering t is that this facilitates the task of assigning a prior to u.

In the following, we focus on the bivariate case. We use the copulas described in

Table 1, where the ranges of variation of copula parameters u and the measures of

dependence Kendall’s t are presented.

In the following section, the inference process on the parameters of Model B and the

indirect estimators of the sampled and nonsampled areas are presented. The inference

process and the estimators are analogous for Model A.

3.1.1. Inference

We assume that sample selection bias is absent from both models, that is, the sampling

scheme is noninformative, see Pfeffermann et al. (2006) for further details. Let ys be the

matrix of the response variables for the sampled schools and W ¼ S21. The posterior

density for Model B of all unknown quantities is given by:

pðb;g; u; n;WjysÞ / pðysjb;g; u; n;WÞ £ pðnjWÞpðbÞpðgÞpðuÞpðWÞ:

Assuming independent priors for b, g, u and W, we have:

pðysjb;g; u; n;WÞ ¼
YD

d¼1

Ynd

i¼1

cðF1ð yid1Þ; : : : ;FKð yidKÞjn;b; u;gÞ

£
YK

k¼1

f kð yidkjbk; gk; nd1kÞ

Table 1. Copula Functions used in this article.

Copula Cðu; vjuÞ u t

Clayton ðu2u þ v2u 2 1Þ21=u ð0;1Þ ½0; 1�\ f0g
FGM uv½1þ uð1 2 uÞð1 2 vÞ� ½21; 1� ½22=9; 2=9�

Frank 2 1
u

ln 1þ ðe
2uu21Þðe 2uv21Þ

e 2u21

� �
ð21;1Þ\ f0g ½21; 1�\ f0g

Gaussian
ÐF21ðuÞ

21

ÐF21ðvÞ

21
1

2p
ffiffiffiffiffiffiffiffiffi
12u 2
p expf2ust2s 22t 2

2ð12u 2Þ
dsdtg ½21; 1� 2

p
arcsen u

Gumbel expf2½ð2lnuÞu þ ð2lnvÞu�1=ug ½1;1Þ ½0; 1�
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and

pðnjWÞ ¼
YD

d¼1

pðnd1jWÞ /
YD

d¼1

jWj
1=2

exp 2
1

2
nT

d1Wnd1

� �

/ jWj
D=2

exp 2
1

2

XD

d¼1

tr nT
d1nd1W

	 

( )

/ jWj
D=2

exp 2
1

2
tr

XD

d¼1

nT
d1nd1

 !
W

" #( )
;

with g ¼ ðg1; g2Þ, n ¼ ðn111; n112; : : : ; nD11; nD12Þ, b1 ¼ ðb11;b21;b31;b41;b51;b61Þ and

b2 ¼ ðb12;b22;b32;b42;b52Þ. The cumulative distribution function and the density of

the beta distribution for the response variable k is represented by Fk and f k, respectively.

In addition, cð:Þ is the density of the copula function.

The posterior distribution of all unknown parameters has no closed form, and thus a

Monte Carlo Markov Chain (MCMC) simulation can be applied. Assigning a Wishart

prior to W and a normal one to the intercepts ðb11;b12Þ provides a full conditional with

known forms for them. Therefore, we can use Gibbs to sample from these parameters. The

other parameters are sampled via the Metropolis-Hastings algorithm (Gamerman and

Lopes 2006). Samples of the posterior distribution of t are obtained directly from samples

of the posterior of u, since t is a function of u.

Souza (2011) discussed different strategies for sampling from the posterior when the

random-effect model described in (3)-(6) is fitted, including slice sampling (Neal, 2003).

The importance of the posterior parametrisation to the convergence of MCMC algorithm

when this model is fitted is shown.

To illustrate the convergence process, Souza (2011) simulated data from the model

yid ,BetaMðmid;f; uÞ; i ¼ 1; : : : ; nd; d ¼ 1; : : : ;D

yidk ,Betaðmidk;fkÞ

gðmidkÞ ¼b1k þ xid2kb2k þ nd1k

nd1 ¼ðnd11; nd12Þ , N2ð0;SÞ

where BetaM represents the distribution generated by the Farlie-Gumbel-Morgenstern

(FGM) copula with beta marginals. Souza (2011) fixed (K ¼ 2) response variables, with

D ¼ 100 domains and nd ¼ 20 units in each one. The following priors were considered:

u , Uð21; 1Þ; bjk , Nð0; 1026Þ, j ¼ 1; 2; fk , Gammað0:001; 0:001Þ, k ¼ 1; 2; and

W ¼ S21 , Wishartð2; I2Þ, where I2 is the identity matrix of order 2. Souza (2011) used

the same covariate for both responses. Note that ldjk ¼ b1k þ nd1k, which is equivalent to

ldjk , Nðb1k;s
2

1kÞ. A simulation study carried out under both ways of parametrisation

showed that for the same number of iterations, the convergence is reached faster when the

centre parametrisation is considered, that is ldjk , Nðb1k;s
2

1kÞ. For further theoretical
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discussion of how to create strategies for improving MCMC convergence, see Gilks and

Roberts (1996).

Assigning a Wishart prior to S is convenient because the full conditional distribution

of S is known and has close form, which allows the Gibbs sampling algorithm to be

employed to sample from it. However, other parameterisations of the matrix S can be

considered. One simple way of decomposing S is as follows:

S ¼
s 2

1 r12s1s2

r12s1s2 s2
2

0

@

1

A ¼
s1 0

0 s2

 !
1 r12

r12 1

 !
s1 0

0 s2

 !

Another well-known parameterisation is the spectral decomposition. These decompo-

sitions of S facilitate the elicitation of the prior. The disadvantage is that the full

conditional of the parameters no longer have any close form. Souza (2011) analysed two

different ways of assigning vague prior distributions to the variances parameters:

s22
k , Gammaðe ; eÞ, for k ¼ 1; : : : ;K, setting e small; and one of the approaches

proposed by Gelman (2006), sk , Uð0;MÞ for k ¼ 1; : : : ;K, fixing M large. For r12, a

uniform prior on the interval ð21; 1Þ is assigned. Souza (2011) showed that the slice-

sampling algorithm is efficient for sampling from the full conditional of the sks, but very

slow for sampling from the full conditional of the random effects when a uniform

distribution is assigned to the sks. The Metropolis-Hastings algorithm was employed

when the gamma prior was adopted for the variances. The simulation studies showed that

the posterior distribution of all model parameters does not depend much on the three

different ways of assigning prior distributions to S.

3.1.2. Small Area Estimation

The posterior mean of midk and its posterior variance can be empirically evaluated by

calculating the mean and the variance of the T iterations of the MCMC algorithm. These

values are obtained by jointly simulating the pairs m
ðtÞ
id1;m

ðtÞ
id2

	 

using the fitted model,

where: m
ðtÞ
idk ¼ g21 b

ðtÞ
1k þ n

ðtÞ
d1k þ

Ppk

j¼2b
ðl Þ
jk xidjk

� �
for t ¼ 1; ::; T , k ¼ 1; 2, i ¼ 1; : : : ; nd

and d ¼ 1; : : : ;D.

In addition, it is necessary to define the estimators for the nonsampled schools. Because

there is information on the auxiliary variables for these schools, the estimate of the

expected index in each nonselected school at each ðtÞ sample point of the posterior

distribution is given by m
ðtÞ
idk ¼ g21 b

ðtÞ
1k þ n

ðtÞ
d1k þ

Ppk

j¼2b
ðtÞ
jk xidjk

� �
; for t ¼ 1; : : : ; T ,

k ¼ 1; 2, i ¼ nd þ 1; : : : ;Nd and d ¼ 1; : : : ;D, where Nd is the population size in d th

domain. Because we have T sample points from the posterior distribution of midk, we can

obtain credibility intervals for the quantities of interest midk for sampled and non-

sampled schools.

It is also possible to make inference about the students’ score means at municipality

level. Let us assume that Nid, the number of students in each school i ¼ 1; : : : ;Nd for

each municipality d ¼ 1; : : : ;D, is known. Then we can generate MCMC samples from
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the posterior distribution of the municipality score means, ðmd1;md2Þ, as

m
ðtÞ
dk ¼

XNd

i¼1
Nidm

ðtÞ
idkXNd

i¼1
Nid

; t ¼ 1; : : : ; T ; k ¼ 1; 2; and d ¼ 1; : : : ;D ð8Þ

Posterior means and their respective posterior variances for each municipality can be

obtained easily by calculating the means and the variances of T MCMC samples.

3.1.3. Some Results: Study 1

We fitted Models A and B, using the copulas listed in Table 1, to the data. We assigned

relatively vague priors to all parameters of the two fitted models. In particular, with respect

to the gks parameters, we assigned independent uniform priors with the lower limit of their

intervals given by inequality (7) and the upper limit equal to 105, i.e gk , Uð0:5; 105Þ;

k ¼ 1; 2. For the other parameters, we set bjk , Nð0; 106Þ; j ¼ 1; : : : ; 6,

W , Wishartð2; I2Þ, where I2 is the identity matrix of order 2. For the parameter u the

respective prior was set according to the copula as follows: Gammað0:001; 0:001Þ for

Clayton; Uð21; 1Þ for FGM; Nð0; 104Þ for Frank; Uð21; 1Þ for Gaussian; and Uð1; 10000Þ

for Gumbel.

In all cases, two parallel chains were generated, each one with 200,000 iterations and a

burn-in of 100,000. For all models, the chains were obtained from developing a special

code in Ox version 5.0 (Doornik 2007). The corresponding two-univariate hierarchical

beta model, simply denoted as “Separated” in Table 2, was also adjusted to investigate the

benefits of the multivariate framework. Table 2 presents the model selection criteria

results for all fitted models. The lower the DIC, AIC and BIC values, the better is the

model. As noted in Table 2, the lowest values of the criteria are obtained when Model B is

fitted using the Frank and Gaussian copulas. The values are slightly lower for the Frank

copula. It should be noted that these copulas allow the widest range for the correlation

between the indexes.

Table 3 shows the model parameter estimates for the Frank and Gaussian copulas. The

posterior mean for the parameter r, which represents the correlation between the random

effects, is approximately 0.60 for both models, as well as the Kendall’s t coefficient. These

values indicate that a multivariate approach should be considered in the analysis of the

students’ performances.

Table 2. Model selection criteria.

Models pD DIC AIC BIC
Log-

likelihood

Model A 104.03 21809.37 21989.42 21932.83 956.70
Model B1 – Clayton 117.78 22137.79 22345.34 22288.74 1127.78
Model B2 – Fgm 108.85 22041.43 22231.14 22174.54 1075.14
Model B3 – Frank 119.48 22237.28 22448.24 22391.65 1178.38
Model B4 – Gaussian 112.94 22239.19 22437.07 22380.47 1176.06
Model B5 – Gumbel 117.60 22213.52 22420.73 22364.13 1165.56
Separated 69.08 21802.51 21910.68 21850.04 935.80
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According to the model comparisons used, the Frank copula seems to fit the Brazilian

educational data somewhat better than the others. Therefore, we applied the Frank copula

to compare the performance of the small area estimates obtained from Model B with its

competitors.

The main goals of modelling the indexes of proficiency are to reduce the variability of

the direct estimates derived from the sampling design and to obtain accurate estimates for

nonsampled schools since the direct estimators can only be obtained for the selected ones.

The multivariate model provides estimates for all schools, but we need to evaluate its

adequacy. The 95% credible intervals of the predictive proportions by the replica yðtÞidk, for

i [ s, contain 98.1% and 97.8%, respectively, of the observed values for the disciplines of

Portuguese and mathematics.

The reduction of the variability of the direct estimates by the application of the model can be

assessed by estimating the coefficients of variation (CV) of the direct estimators obtained

under design-based approach, that is, CV̂Dð yidkÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnid 21Þ21yidkð12yidkÞ 12nidN21

id

	 
q
= yidk

and by calculating the coefficients of variation obtained by employing the models, that

is, CVpðmidkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VpðmidkÞ

p
=EpðmidkÞ, where the symbols Epð:Þ and Vpð:Þ denote the

posterior mean and the posterior variance under the assumed model, respectively. Figure 1

summarises the distribution of the CVs obtained from the estimators. Clearly, the CVs

generated by the models are much lower than those obtained through the direct estimation.

We also assessed the relative differences between the small area prediction for each

subject provided by the approach employed and the respective true value. The same

measure was calculated for the predictions obtained when the two univariate independent

hierarchical beta regressions are fitted. Figure 2 shows the box plots for the approaches. It

can be seen from Figure 2 that there is some gain in using either Model A or Model B

compared to the univariate separated model for both subjects. Model B performs a bit

better than Model A in all scenarios. However, Figure 2 shows that model-based estimates

Model A Model B Separated Direct

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a)  Portuguese

Model A Model B Separated Direct

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b)  Mathematics

Fig. 1. Box plots of the coefficients of variation of the model-based estimators and the direct estimator for the

sampled schools: Portuguese (a) and Mathematics (b).
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do not seem to substantially reduce the true relative errors of the direct estimates. This

might be due to the fact that both sample sizes of schools and students for many

municipalities and schools are not small enough to achieve considerable improvement of

model-based estimates over designed-based estimates. This issue is investigated further in

Subsubsection 3.1.4.

3.1.4. Some Results: Study 2

We conducted a second study to investigate the effect of reducing school and student

sample sizes on the model-based estimates’ improvement over the designed-based

estimates. In this second study, the population consists of schools with at least 50 students

who had taken both tests. Municipalities that had only one school after these exclusions

were also discarded from the population, leaving 96,941 students. Then a simple random

sample without replacement of ten percent of schools was selected, ensuring that at least

two schools and at most seven schools would be selected per municipality. In the second

Model A Model B Separated Direct
−50

0

50

100

(a)  Portuguese test: sampled schools

Model A Model B Separated
−50

0

50

100

(b)  Portuguese test: nonsampled schools

Model A Model B Separated Direct
−50

0

50

100

(c)  Mathematics test: sampled schools

Model A Model B Separated
−50

0

50

100

(d)  Mathematics test: nonsampled schools

Fig. 2. Box plots of the relative differences in (%) between the small area prediction for each subject provided

by the approach employed and the respective true value, carried out separately for schools in and out of the

sample.
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stage, a simple random sample without replacement of ten percent of students in each

school were selected, imposing a restriction of a maximum of five students per school. The

population consists of 32 municipalities in which 87 schools have been selected out of

1,062 schools, making a total of 719 students in the sample. In this study, we only

compared the Model A estimates to the direct estimates.

We fitted Model A to the sample using the same priors described in Study 1. Figure 3

summarises the distribution of the CVs obtained from the Model A estimator and the direct

estimator for both subjects. As expected, the CVs obtained by the Model A are still much

lower than those obtained by the direct estimation for sampled schools.

Model A
Portuguese

Direct
Portuguese

Model A
maths

Direct
maths

0.0

0.1

0.2

0.3

0.4

(a)   Sampled schools

Model A
Portuguese

Model A
maths

0.00

0.05

0.10

0.15

0.20

(b)   Nonsampled schools

Fig. 3. Coefficients of variation of the model-based A estimator and the direct estimator for the schools in

sample (a) and the coefficients of variation of the model-based A estimator for the schools out of sample (b).
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(a)   Sampled schools

Model A
Portuguese

Model A
maths

−100
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(b)   Nonsampled schools

Fig. 4. Box plots of the relative differences (in %) with respect to the true value for the model-based A estimator

and the direct estimator for the schools in sample (a); Coefficients of variation of the model-based A estimator for

the schools out of sample (b).
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Figure 4 shows the box plots of the relative differences between the school mean

prediction for each subject provided by model-based A and designed-based approaches

with respect to true value. It can be seen from Figure 4 that the reduction of the

prediction errors of the proposed model-based A estimates with respect to the direct

Model A
Portuguese

Direct
Portuguese

Model A
maths

Direct
maths

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 5. Coefficients of variation of the model-based A estimator and the direct estimator calculated at

municipality level for the subjects of Portuguese and mathematics.
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Fig. 6. Box plots of the relative differences in (%) with respect to the true value for the model-based A estimator

and the direct estimator calculated at municipality level.
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estimator is more appreciable than the respective result obtained from Study 1 for both

subjects.

We also obtained the posterior means and the posterior variances, and consequently the

coefficients of variation under the assumed model, for all 32 municipalities using formulas

in Subsubsection 3.1.2. Estimates of the coefficients of variation of the direct estimators

were obtained by using standard formulae to estimate the means and the variances in two-

stage cluster sampling without replacement with equal probability of selection in both

stages (schools and students), see, for example Lohr (1999, 147) for formulae.

Figures 5 and Figure 6 respectively present box plots of the coefficients of variation and

the relative differences with respect to the true value of the Model A estimates and the

direct estimates at municipality level for the subjects of Portuguese and mathematics. As

expected, the gain in precision of the model-based estimates with respect to the direct

estimates at municipality level are much higher than at school level for both subjects.

4. Concluding Remarks and Suggestions for Future Work

The proposed models have the advantage of keeping the response variables at their original

scale. Another advantage is the use of copulas, which are marginal free, that is, the degree

of the association of the variables is preserved regardless of the marginal distributions.

Thus, if two indexes are correlated, whatever marginal is adopted, the measure of

dependence is the same. The use of copula functions in beta marginal regressions allows

the joint analysis of the response variables by taking advantage of their dependency

structure. The application of multivariate models with beta responses is an appealing

alternative to models that require transforming the original variables. The choice between

the proposed models and their competitors in the literature should be guided by the goals of

the researcher, who must observe the models’ predictive power and goodness of fit. The

disadvantage of models that use copulas is that they are time consuming when simulating

samples from the posterior distributions of the model parameters or functions of them.

In Section 2, we propose a multivariate hierarchical model with two levels. The variables

are correlated on the first level with the aid of a copula function. Despite being applicable in

general situations, this model has been developed especially for the small area estimation

problem to allow strength to be borrowed across the areas or small domains of interest. The

random effects of the same area are assumed to be correlated, and the random effects of

different areas have the same variance-covariance matrix. In the illustration presented, the

multivariate hierarchical model estimated the expected indexes of proficiency for

nonsampled schools and additionally presented a significant reduction of the coefficients of

variation compared to the direct estimates at school as well as at municipality level.

Sample household surveys are important sources of potential applications of the models

proposed in this work. Examples of variables measured in the range (0,1) are the

unemployment rate and the poverty gap, the latter of which measures, on average, the

distance between the poor and the poverty line. These variables are important measures

both for planning and in the knowledge of the population conditions, but are rarely

available for small geographic levels or population subgroups for intercensus periods.

Prediction of these poverty indexes could be performed using the models proposed in

this article.
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It is important to note that this work focuses on building multivariate regression models

in which the marginal distributions are beta. This work notes the advantages of these

models over corresponding univariate models and proposes a strategy for estimating their

parameters. However, the theory of copula functions can be applied to any multivariate

model that can be built for any known marginal distributions, provided that the dis-

tributions of response variables are different. We can even have continuous and discrete

variables in the same model. To build a model for other distributions is straightforward,

but each model has a peculiar and practical feature. In the specific case of the beta model,

the mean and the dispersion have been adopted as the model parameters, where the latter

parameter controls the variance. Other parametrisations are possible but could lead to

additional difficulties. Various strategies can be defined by the researcher according to the

available data. Some important strategies are first to fix the marginal and then obtain the

appropriate copulas or to estimate models with different copulas and marginal densities

and decide which is the “best” model by applying a model-comparison approach.

As can be seen in a simulation study in Souza (2011), when responses share exactly the

same set of regressors, the results of univariate and multivariate approaches show little

difference. In the abovementioned study and applications with real data, the model

selection criteria were unable to show which approach was preferable. However, in the

application presented in this article where the explanatory variables are not the same for

both responses, we could see a better performance of the multivariate model. Similar

findings were reported for other models and can be seen in Bartels and Fiebig (1991),

Gueorguieva and Agresti (2001) and Teixeira-Pinto and Normand (2009).

It should be noted that the CV of the direct estimates were calculated under a design-

based approach and the measure of precision of the proposed model under a model-based

(Bayesian model-based) approach. Therefore, although we can interpret g21
k as the deff,

the calculation is based on model-based premises, and thus the ratio between the model-

based variance estimate and its respective estimate of the direct estimator variance could

be different from the design-based deff for each school. A possible extension of our

proposed approach should allow the values of deff to vary with schools.

Another point is that in practical situations where the response variables can have values

of zero or one, the beta distribution will not be adequate. One possible way to circumvent

this problem is to use a mixture of distributions so that the zeros and ones can be

accommodated. Ospina and Ferrari (2012) propose a general class of inflated regression

models to fit data with such features. We have not considered omitted values in the exp-

lanatory variables in our model formulation, which could be another possible extension of

the models proposed here.
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Ph.D. thesis, Instituto de Matemática da Universidade Federal do Rio de Janeiro.

Available at: http://www.pg.im.ufrj.br/teses/Estatistica/Doutorado/018.pdf (accessed

1 December 2016).

Spiegelhalter, D.J., N.G. Best, B.P. Carlin, and A.V.D. Linde. 2002. “Bayesian Measures

of Model Complexity and Fit.” Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 64: 583–639. Doi: http://dx.doi.org/10.1111/1467-9868.00353.

Teixeira-Pinto, A. and S.-L. T. Normand. 2009. “Correlated Bivariate Continuous and

Binary Outcomes: Issues and Applications.” Statistics in Medicine 28: 1753–1773.

Doi: http://dx.doi.org/10.1002/sim.3588.

Received February 2015

Revised January 2016

Accepted February 2016

Journal of Official Statistics768

http://dx.doi.org/10.1016/j.csda.2009.06.005
http://dx.doi.org/10.1080/07474938.2013.806849
http://dx.doi.org/10.1080/07474938.2013.806849
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.1016/S0167-7152(03
http://dx.doi.org/10.1016/j.csda.2011.10.005
http://dx.doi.org/10.1093/biomet/93.4.943
http://dx.doi.org/10.1093/biomet/93.4.943
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/s11222-008-9058-y
http://dx.doi.org/10.1007/s11222-008-9058-y
http://dx.doi.org/10.1016/j.csda.2009.08.017
http://dx.doi.org/10.1037/1082-989X.11.1.54
http://www.pg.im.ufrj.br/teses/Estatistica/Doutorado/018.pdf
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1002/sim.3588

