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Publications in official statistics are increasingly based on a combination of sources. Although
combining data sources may result in nearly complete coverage of the target population, the
outcomes are not error free. Estimating the effect of nonsampling errors on the accuracy of
mixed-source statistics is crucial for decision making, but it is not straightforward. Here we
simulate the effect of classification errors on the accuracy of turnover-level estimates in car-
trade industries. We combine an audit sample, the dynamics in the business register, and
expert knowledge to estimate a transition matrix of classification-error probabilities. Bias and
variance of the turnover estimates caused by classification errors are estimated by a bootstrap
resampling approach. In addition, we study the extent to which manual selective editing at
micro level can improve the accuracy. Our analyses reveal which industries do not meet preset
quality criteria. Surprisingly, more selective editing can result in less accurate estimates for
specific industries, and a fixed allocation of editing effort over industries is more effective
than an allocation in proportion with the accuracy and population size of each industry. We
discuss how to develop a practical method that can be implemented in production to estimate
the accuracy of register-based estimates.

Key words: Accuracy; editing; administrative data; short-term business statistics; bootstrap
resampling.

1. Introduction

Publications in official statistics are increasingly based on a combination of sources, for

instance, a sample survey combined with an administrative source. The combination of

data sources sometimes results in a situation where observations are available for nearly

the complete target population, but that does not imply that the outcomes are error free. In

fact, numerous error types may occur, as exhibited by the total survey error framework for

sample surveys (Biemer and Lyberg 2003; Groves et al. 2009), adapted for administrative

data by Zhang (2012a). We believe that it is important for NSIs to quantify the

implications of those errors for the accuracy of statistical outcomes based on mixed

sources, because NSIs aim to publish information of sufficient quality for users.
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Lei Dirrix, Willem Heijnen, Marian Immerzeel, John Spring in ‘t Veld, and Ivonne Valent for providing their help
with the audit sample and Harm Jan Boonstra and Ton de Waal for useful comments on earlier drafts.

Journal of Official Statistics, Vol. 32, No. 3, 2016, pp. 619–642, http://dx.doi.org/10.1515/JOS-2016-0032

http://dx.doi.org/10.1515/JOS-2016-0032


Knowledge on the effect of errors on the accuracy of mixed-source statistics is also

useful for operational decisions, for instance in the editing process. Time, costs, and

quality constraints all play a role in the decision how many units are edited manually in a

statistical process to improve data quality. To this end, ‘selective editing’ methods have

been developed (de Waal et al. 2011). These methods aim to limit manual editing by

focussing on units with a high risk of influential errors, where an ‘influential error’ is

defined as one “that has a considerable effect on the publication figures” (de Waal et al.

2011). In addition to the influence of records on the values of the publication figures, the

effect on the accuracy of the figures is also important.

Estimating the effect of nonsampling errors on the accuracy of estimates in practical

situations is not very straightforward as yet. Depending on the complexity of the combined

data sources and the type of nonsampling error, sometimes analytical approaches are

possible (Burger et al. 2015; Zhang 2012b). In cases with complicated error structures or

when the effects of different processing and estimation steps are taken into account, this

may no longer be possible. Bryant and Graham (2015) estimated the uncertainty caused by

nonsampling errors using a Bayesian approach. Burger et al. (2015) treated a simplified

situation where they did a sensitivity analysis on classification errors for which they used

both an analytical and a parametric bootstrap approach. A bootstrap approach can also be

applied in more complex situations where an analytical solution cannot be found. In the

current article, we proceed with this work towards a more realistic modelling of the error

structure.

To illustrate the method, we look at a case study on the estimation of the quarterly

turnover of the ‘car trade’ based on a combination of survey and administrative data. The

figures are classified by (groupings of ) economic activity according to NACE rev 2,

henceforth referred to as industry codes. Determining the correct activity code of

economic units is often rather difficult and prone to errors (e.g., Christensen 2008).

Reasons are that the surveyed units often have a mixture of economic activities, that

activities change over time but those changes are often not reported to the relevant

administrative organisations, and that the distinction between different codes is sometimes

fuzzy. Previous work on the same case study by Burger et al. (2015) suggested that the

publication figures are rather sensitive to classification errors.

The current article studies classification errors for two purposes: 1) to quantify their

effect on the accuracy of statistical figures, and 2) to show if and how we can use this

information to improve the accuracy of the estimates by selective manual editing. The

current article provides key extensions to Burger et al. (2015) on both topics. Concerning

the first topic, we estimate the accuracy (due to classification errors) of published figures

under more realistic conditions, rather than providing a sensitivity analysis as was done in

Burger et al. (2015). Concerning the second topic, we experiment with selective editing

aided by the estimated classification-error model.

The remainder of the article is organised as follows. Section 2 presents a theory to

estimate accuracy and model classification errors. Section 3 introduces the case study.

Results on the estimated accuracy are given in Section 4. Next, Section 5 estimates the

effect of supplementary editing on the estimated accuracy. Finally, Section 6 discusses the

results and gives suggestions for further research. The Appendix describes a theory for

correcting the bias in the bootstrap estimates of accuracy.
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2. Theory to Estimate Accuracy and Model Classification Errors

2.1. Estimating Accuracy for Given Classification Errors

Consider a population of units (i ¼ 1; : : : ;N) that is divided into industries based on

economic activity as derived in a business register (BR). Denote the total set of industries

byHfull. Each unit (enterprise) i has an unknown true industry code si ¼ g and an observed

industry code ŝi ¼ h, where g; h [ Hfull. We suppose that for each unit random

classification errors occur, independently across units, according to a known (or

previously estimated) transition matrix Pi ¼ ð pghiÞ, with pghi ¼ Pðŝi ¼ hjsi ¼ gÞ. Note

that – following, for example, Kuha and Skinner (1997) – we consider the true industry

code as fixed and the observed industry code as stochastic.

In this article, we consider the relatively simple case where classification errors are the

only errors that affect the publication figures. We are interested in the total turnover per

industry: Yh ¼
PN

i¼1 ahiyi, with

ahi ¼ Iðsi ¼ hÞ ¼
1 if si ¼ h;

0 if si – h:

(

In practice, Yh is estimated by Ŷh ¼
PN

i¼1 âhiyi, with âhi ¼ Iðŝi ¼ hÞ. Now we would like

to assess the bias and variance of Ŷh as an estimator for Yh, that is,

B Ŷh

� �
¼ E Ŷh 2 Yh

� �
¼
XN

i¼1

E âhið Þ2 ahif gyi; ð1Þ

V Ŷh

� �
¼
XN

i¼1

V âhið Þy2
i ; ð2Þ

where in (2) we used the assumption of independent classification errors across units.

Given the transition matrix Pi, it is not too difficult to derive analytical expressions for

the bias and variance of Ŷh in the situation considered here (Appendix and Burger et al.

2015). Here, we focus on an alternative approach to estimate the accuracy and use

bootstrap resampling. In future applications we would like to assess the bias and variance

of estimates due to other nonsampling errors besides classification errors, such as

measurement, linkage, and coverage errors, as well as combinations thereof (van Delden

et al. 2014). The bootstrap method can be generalised to handle these more complex

situations.

In the bootstrap approach, following Burger et al. (2015), we apply the transition

matrix Pi to the observed ŝi, which results in a new industry-assignment variable, denoted

by ŝ*
i . That is to say, we consider realisations of the alternative classification-error model

given by

P ŝ*
i ¼ hjŝi ¼ g

� �
; P ŝi ¼ hjsi ¼ g

� �
¼ pghi: ð3Þ

We also define: â*
hi ¼ I ŝ*

i ¼ h
� �

. By repeating this procedure R times (for some large R),

we obtain a set of so-called bootstrap replications of the estimated total turnover in
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industry h: Ŷ
*

hr ¼
PN

i¼1 â*
hiryi (r ¼ 1; : : : ;R). The bootstrap bias and variance are then

estimated as follows (Efron and Tibshirani 1993):

B̂
*

R Ŷh

� �
¼ mR Ŷ

*

h

� �
2 Ŷh; ð4Þ

V̂
*

R Ŷh

� �
¼

1

R 2 1

XR

r¼1

Ŷ
*

hr 2 mR Ŷ
*

h

� �n o2

: ð5Þ

with mR Ŷ
*

h

� �
¼ 1

R

PR
r¼1 Ŷ

*

hr:Details about the assumptions and computations can be found

in Burger et al. (2015).

In practice, the total number of industries in Hfull is large – about 300 in the

Netherlands – and often one will be interested only in the accuracy of turnover estimates

for a limited subset of target industries, rather than for all industries at once. In the

remainder of this article we useH to denote the set of target industries, for which we want

to compute (4) and (5), and HfullwH to denote the other industries.

2.2. Modelling Classification Errors

2.2.1. Introduction to Modelling Classification Errors

To apply the above bootstrap method, we first need to estimate the matrix of classification-

error probabilities. For simplicity, Burger et al. (2015) introduced three assumptions for

this that we want to relax here. First, they assumed that the subset of target industries forms

a ‘closed’ population, with only misclassifications among this subset. In terms of Burger

et al.’s case study of the car trade, they assumed misclassifications only among the nine

underlying industries within the car trade but no misclassifications between the car trade

and other types of industry. Secondly, they assumed that the probabilities of

misclassification are the same for all units in all industries; that is, Pi ¼ P and all

diagonal elements of P are equal. Thirdly, they assumed that misclassified units are

distributed uniformly over the remaining industries; that is, all off-diagonal elements of

P are also equal. In the current article we use a more realistic approach. We still assume

random classification errors, but we now estimate the transition probabilities pghi by means

of an audit sample.

Suppose that each unit in the population has a transition matrix Pi with elements pghi as

in Table 1, where g; h [ {1; : : : ;H} stands for the target set of industries H for which

Table 1. Transition probabilities (subscript i omitted).

Observed industry

True industry 1 2 H H þ 1

1 p11 p12 : : : p1H p1;Hþ1

2 p21 p22 : : : p2H p2;Hþ1

..

. ..
. ..

. . .
. ..

. ..
.

H pH1 pH2 : : : pHH pH;Hþ1

H þ 1 pHþ1;1 pHþ1;2 : : : pHþ1;H pHþ1;Hþ1
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we want to estimate the accuracy of the totals Ŷh, and industry H þ 1 represents the union

of all industries outside that target set, that is, the union of all industries inHfullwH. In our

case (see Section 3), we are interested in estimating totals of H ¼ 9 industries in the car

trade; the other industries outside the car trade but within the total set of possible NACE

codes are summarised as a tenth ‘industry’.

To reduce the number of parameters to estimate, we split up the estimation of Pi into

three parts: 1) the diagonal elements p̂ggi with g [ {1; : : : ;H}, 2) the off-diagonal

elements p̂ghi (g – h and g; h [ {1; : : : ;H}), and 3) the elements of row and column

H þ 1. To begin with, we ignore the last row and column of the matrix and focus on the

submatrix with g; h [ {1; : : : ;H}. We separate the estimation of the diagonal and

nondiagonal elements as follows. Consider the contingency table of si and ŝi in the

population and let Ngh denote the stochastic number of units in cell ðg; hÞ. The

corresponding expected value Mgh is given by

Mgh ¼
XN

i¼1

Pðŝi ¼ hjsi ¼ gÞ�Iðsi ¼ gÞ: ð6Þ

Denote the probability that unit i is classified correctly as pi ¼ Pðŝi ¼ gjsi ¼ gÞ. The

transition probabilities for g – h are then given by:

P ŝi ¼ hjsi ¼ g
� �

¼ P ŝi ¼ h; ŝi – gjsi ¼ g
� �

¼ P ŝi ¼ hjsi ¼ g; ŝi – g
� �

�P ŝi – gjsi ¼ g
� �

¼ P ŝi ¼ hjsi ¼ g; ŝi – g
� �

�ð1 2 piÞ

ð7Þ

where P ŝi ¼ hjsi ¼ g; ŝi – g
� �

is the conditional probability that unit i receives the code

ŝi ¼ h, given that this is a wrong code (si ¼ g – h). From Equations (6) and (7) it follows

that

Mgg ¼
XN

i¼1

piIðsi ¼ gÞ;

Mgh ¼
XN

i¼1

ð1 2 piÞP ŝi ¼ hjsi ¼ g; ŝi – g
� �

Iðsi ¼ gÞ; ðg – hÞ:

ð8Þ

We now introduce separate models for estimating the diagonal probabilities pi and the

conditional off-diagonal probabilities P ŝi ¼ hjsi ¼ g; ŝi – g
� �

.

2.2.2. Modelling the Diagonal Probabilities

To estimate the diagonal elements of the H £ H submatrix, we introduce the assumption that

the probabilities pi can be modelled by a logistic regression (McCullagh and Nelder 1989)

on a number of independent variables. We estimate the parameters of the model by taking an

audit sample of size n p N from the population, for which both ŝi and si are observed.

2.2.3. Modelling the Off-Diagonal Probabilities

Similarly to the diagonal probabilities, the off-diagonal probabilities might in reality also

vary with i. However, the off-diagonal probabilities concern a large number of parameters
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and it would lead to a lack of degrees of freedom in the audit data if we also modelled those

as a function of independent variables. To estimate the off-diagonal elements of the H £ H

submatrix, we therefore introduce the additional assumption that, given that a unit is

misclassified, the conditional off-diagonal probabilities are independent of i:

P ŝi ¼ hjsi ¼ g; ŝi – g
� �

¼
P ŝi ¼ hjsi ¼ g
� �

1 2 pi

; cðg; hÞ; ðg – hÞ: ð9Þ

From (8) it now follows that

Mgh ¼ cðg; hÞ
XN

i¼1

ð1 2 piÞIðsi ¼ gÞ ¼ cðg; hÞ Mgþ 2 Mgg

� �
; ðg – hÞ ð10Þ

where Mgþ ¼ Ngþ ¼
PN

i¼1 Iðsi ¼ gÞ stands for a fixed but unknown row total. Hence we

obtain:

c ðg; hÞ ¼
Mgh

Mgþ 2 Mgg

; ðg – hÞ: ð11Þ

Note that, within each row, we have
P

h–g cðg; hÞ ¼ 1.

Now suppose that, in our audit sample, we count ngh units in cell ðg; hÞ. In principle, we

could estimate cðg; hÞ by substituting these observed counts directly into Expression (11).

However, this would yield unreliable estimates in practice, unless the audit sample was

very large or H was very small. Therefore, we propose reducing the number of parameters

further by using a log-linear model.

Denote: mgh ¼ EðnghÞ. The information in the audit sample for the off-diagonal cells

can be described completely by the following saturated log-linear model:

log mgh ¼ uþ u1ðgÞ þ u2ðhÞ þ u12ðghÞ; ðg – hÞ; ð12Þ

with the identifying restrictions
PH

g¼1 u1ðgÞ ¼
PH

h¼1 u2ðhÞ ¼
PH

g¼1 u12ðghÞ ¼
PH

h¼1

u12ðghÞ ¼ 0. Log-linear models can be used to describe and test effects in contingency

tables (Bishop et al. 1975).

Clerical reviewers know from their practical experience that some specific

misclassifications of NACE codes occur more often than others. To reduce the number

of parameters to estimate, we have asked experts to appoint each off-diagonal cell to a

cluster q [ {1; : : : ;Q}, where cells within the same cluster are supposed to have a

comparable probability of misclassification and Q is small compared to the total number

of off-diagonal cells. Denote dqðg; hÞ [ {0; 1} as the variable indicating whether cell ðg; hÞ

is appointed to cluster q. Note that
PQ

q¼1 dqðg; hÞ ¼ 1 for all g; h [ {1; : : : ;H} with

g – h. Instead of the saturated model, we now use the following log-linear model:

log mgh ¼ uþ u2ðhÞ þ
XQ

q¼1

dqðg; hÞu3ðqÞ; ðg – hÞ; ð13Þ

using the identifying restrictions
PH

h¼1 u2ðhÞ ¼
PQ

q¼1 u3ðqÞ ¼ 0. This model can be

understood as follows. Firstly, the number of units may differ between industries, leading

to different expected values mgh. This is accounted for by the column effect u2ðhÞ in the
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model. (We have a practical reason for taking the column effect rather than the row effect;

see the end of this subsection.) In addition we account for the effect of the clusters dqðg; hÞ.

Similarly to the sparse classification-error model by Zhang (2005), the simplifying

assumptions used to derive (9) and (13) aim to provide an adequate description of the

effects of the classification errors, rather than the mechanisms by which these errors arise.

Note that the diagonal probabilities are close to one in most cases (see Subsection 4.1), so

the assumption is therefore adequate.

Model (13) has a slightly unusual form, but it can be rewritten as a standard log-linear

model with only main effects by embedding the original contingency table in a three-

dimensional table with cells ðg; h; qÞ, treating all cells for which g ¼ h or dqðg; hÞ ¼ 0 as

structural zeros. The parameters of Model (13) may then be estimated by maximum

likelihood (Bishop et al. 1975), which gives the estimated values:

m̂gh ¼ exp ûþ û2ðhÞ þ
XQ

q¼1

dqðg; hÞû3ðqÞ

( )

; ðg – hÞ: ð14Þ

By substituting these values into (11), with m̂gg ¼ 0, we obtain estimates of the conditional

probabilities cðg; hÞ ¼ m̂gh=
PH

h¼1 m̂ghðg – hÞ.

In practice, it may be useful to draw the audit sample as a stratified sample by observed

NACE code (i.e., stratified by column in the above contingency table). In that case, we

need to take the sampling fractions into account when estimating the classification

probabilities. Suppose that column h has a sampling fraction of nþh=Nþh, with nþh ¼PH
g¼1 ngh and Nþh ¼

PH
g¼1 Ngh. We can estimate the population count in the cell ðg; hÞ by

N̂gh;model ¼ m̂gh Nþh=nþh

� �
. Multiplying the left- and right-hand sides of (14) by Nþh=nþh

yields

N̂gh;model ¼ exp v̂þ v̂2ðhÞ þ
XQ

q¼1

dqðg; hÞv̂3ðqÞ

( )

; ðg – hÞ; ð15Þ

with v̂ ¼ û, v̂3ðqÞ ¼ û3ðqÞ and v̂2ðhÞ ¼ û2ðhÞ þ log Nþh 2 log nþh. The conditional

probabilities cðg; hÞ are now estimated by

ĉmodelðg; hÞ ¼
N̂gh;model

N̂gþ;model

; ðg – hÞ; ð16Þ

where N̂gþ;model ¼
PH

h¼1 N̂gh;model and N̂gg;model ¼ 0. Under the assumption that the

transition probabilities are comparable per cluster, this yields an efficient and robust

estimation of cðg; hÞ. Note in particular that m̂gh (and thus N̂gh;model) can be positive even

when ngh ¼ 0.

2.2.4. Modelling the Probabilities in Industry H þ 1

Recall that the set of target industries {1; : : : ;H} is only a small subset of all possible

industry types in the BR. Estimating transition probabilities among all possible industry

combinations within the BR from an audit sample is not realistic, as this would require an

extension of the sample to all (several hundred) industries in the NACE domain. Instead

we looked into the yearly updates of the NACE codes within the BR. Denote the observed

van Delden et al.: Accuracy of Mixed-Source Statistics 625



industry of unit i in year t as ŝt
i. Some of the units switch between industries in year t þ 1

compared to year t: ŝt
i ¼ h and ŝtþ1

i ¼ g. We believe that there is at least some association

between the (unknown) classification-error probabilities pghi and the temporal transition

probabilities in the BR. The latter reflect natural changes in economic activity, and we

know that administrative delays in implementing these changes are an important cause of

classification errors in the BR.

Data on yearly updates showed that the distribution of temporal transitions within the

BR varies considerably among the h [ {1; : : : ;H} industries. From these data we

concluded that it is not realistic to use a two-level model whereby we estimate high

granular (say one-digit) NACE code transitions within the whole BR as the first level and

transitions within the underlying (more detailed) industries as the second level. Instead, we

used an alternative two-level model. In the first level we estimate the overall probabilities

pg;Hþ1 and pHþ1;h (the last column and row of Table 1), and in the second level we model

the transitions to specific industries within industry H þ 1.

For the first level, consider the row in Table 1 with the transition probabilities of units

with true industry H þ 1 (outside the target set of industries) that are observed in industry

h – H þ 1 (inside the target set of industries). Some of these units are observed in the

audit sample, so these probabilities can be estimated simply by extending the log-linear

model from the previous subsection to the last row. (We assume here that the off-diagonal

cells in the last row and column can be appointed to one of the clusters q [ {1; : : : ;Q}

just like the other off-diagonal cells.) Next, we consider the column in Table 1 with the

transition probabilities of units with true industry h – H þ 1 that are observed in industry

H þ 1. This type of classification error cannot be observed in our audit sample. To obtain a

result, we assume here that the total number of “missed units” in the true industries

{1; : : : ;H} is equal to the number of “wrong units” in the observed industries

{1; : : : ;H}, that is, that
PH

g¼1 Ng;Hþ1 ¼
PH

h¼1 NHþ1;h. Note that if this assumption does

not hold, the size of the observed population in the industries {1; : : : ;H} is structurally

too high or too low.

Under the above assumption it should hold that

N̂þ;Hþ1;model ;
XH

g¼1

N̂g;Hþ1;model ¼
XH

h¼1

N̂Hþ1;h;model ; N̂Hþ1;þ;model: ð17Þ

Using this assumption, we can extend Expression (15) to h ¼ H þ 1, where the cluster

parameters v̂3ðqÞ are estimated on the cells ðg; hÞwhere h [ {1; : : : ;H}. In fact, we cannot

estimate the effect v̂2ðHþ1Þ in (15) directly from the audit sample. However, taking the sum

of (15) with h ¼ H þ 1 over all cells in this column we obtain:

XH

g¼1

N̂g;Hþ1;model ¼ exp v̂2ðHþ1Þ

� �XH

g¼1

exp v̂þ
XQ

q¼1

dqðg;H þ 1Þv̂3ðqÞ

( )

ð18Þ

According to (17), the left-hand sum should be equal to N̂Hþ1;þ;model, which is known

after the estimation of the log-linear model, including row H þ 1. In that case v̂ ¼ û and

the cluster effects v̂3ðqÞ ¼ û3ðqÞ are also known. Hence, v̂2ðHþ1Þ can be solved from

Expression (18). Next, the underlying estimates N̂g;Hþ1;model can be obtained from (15).

Journal of Official Statistics626



Finally, we can use all estimated counts N̂gh;model to obtain estimates of ĉmodelðg; hÞ as in

(16). This completes the first level of the model for industry H þ 1.

2.2.5. Subdividing Units in H þ 1 Into Underlying Industries

The model from the previous subsection allows us to estimate P ŝi [ HfullwHjsi ¼ h
� �

and

P ŝi ¼ hjsi [ HfullwH
� �

, with h [ H. During bootstrap simulation, these probabilities

refer to the events of, respectively, a unit moving from a given target industry to an

unspecified industry outside the target set (“outflow of turnover”) and vice versa (“inflow

of turnover”). For the purpose of quantifying the accuracy of turnover estimates for our

target set of industries, it is not necessary to model the “outflow of turnover” in more

detail. We do need a more detailed model for the “inflow of turnover”. We applied a

second-level model in which:

. the transition probabilities P ŝi ¼ hjsi ¼ g
� �

with h [ H and g [ HfullwH are

proportional to the corresponding yearly transitions in the BR, that is, the transitions

from h [ H at t 2 1 to g [ HfullwH at time t; and

. the turnover of those units are drawn from a log-normal distribution. For the log-

normal distribution we made a distinction between units with size class 0–3 and other

units.

The exact procedure for drawing from the second-level model and estimating its

parameters is given in van Delden et al. (2015a).

2.3. Bias Correction

Burger et al. (2015) explain that B̂
*

R Ŷh

� �
in (4) is a biased estimator of B Ŷh

� �
in (1). This can

be understood, since the bootstrap replications start from the observed ŝi ¼ h rather than the

true si ¼ g values. In the more simple situation described in Burger et al. (2015) this bias

could be corrected easily. In our case it is also possible to compute an unbiased bootstrap

estimator of B Ŷh

� �
; see the Appendix. In terms of the notation in the Appendix, we denote

the original (biased) estimator B̂
*

R Ŷh

� �
as B̂

*

0R Ŷh

� �
and the corrected (unbiased) estimator by

B̂
*

1R Ŷh

� �
. A disadvantage of B̂

*

1R Ŷh

� �
is that it may have a large variance in practice. We

therefore introduce a combined estimator, denoted by B̂
*

lR Ŷh

� �
:

B̂
*

lR Ŷh

� �
¼ lB̂

*

1R Ŷh

� �
þ ð1 2 lÞB̂

*

0R Ŷh

� �
ð19Þ

where the relative weight l is determined by minimising the mean squared error of B̂
*

lR Ŷh

� �
.

The exact procedure actually involves optimal weights at a more detailed level than

indicated in (19); see Expression (25) in the Appendix. More details are given in van Delden

et al. (2015a). The results of our case study in Section 4 and Section 5 below were obtained

using this combined bootstrap estimator for the bias.

The bootstrap variance V̂
*

R Ŷh

� �
in (5) is also a biased estimator of V Ŷh

� �
in (2), but this

bias is expected to be small in practice compared to that of B̂
*

R Ŷh

� �
(cf. van Delden et al.

2015a for more details). Therefore we did not attempt to correct this bias in our case study;

the results below were obtained using Estimator (5) for the variance.

Note that our bias correction is specifically derived for classification errors affecting a

level estimate, so the approach cannot be applied directly to more difficult problems
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(considering, for example, a combination of classification errors and measurement errors).

A more general strategy for bias correction might be based on a ‘double’ bootstrap method

(Efron and Tibshirani 1993; Hall and Maiti 2006).

3. Case Study: Data

The case study concerns estimates of quarterly turnover levels in the industry car trade

(NACE rev. 2 code 45) for the first quarter (Q1) of 2012 until Q2 of 2014. The outcomes of

the car trade are subdivided into nine industries. The quarterly turnover is estimated from a

mixed-source production system (e.g., van Delden and de Wolf 2013).

Turnover in the small enterprises is derived from value-added tax (VAT) data. These

enterprises are referred to as the complexity class simple units. On 1 January 2013 there

were about one million simple units in the Netherlands, of which 28,605 were classified as

car traders. The remaining units are observed in a census survey. There were 8,403 such

enterprises within the whole domain of economic activities and 239 within the car trade

(1 January 2013). For a subset of this group, there is a special business unit at Statistics

Netherlands (CBS) with centralised data collection and data editing. This concerned 2,305

enterprises within the whole domain of economic activities and 49 within the car trade.

This latter subset is referred to as the complexity class most complex units. The other units

receiving survey data but not treated by this special business unit are referred to as the

complex units.

The quarterly outcomes are published in different releases: 30 days (flash), 60 days

(early), 90 days (late) and one year (final) after the end of the reference period. The

computations in the current article concern the most recent releases available. For 2012

and 2013 this concerns the final release and for Q1 and Q2 of 2014 this concerns the late

release. The available microdata covered nearly the complete target population. In late

releases, quarterly nonrespondents are missing, as are units that report their VAT on a

yearly basis. The latter group corresponds to 2–3% of the total turnover. Missing values

are imputed. In the final release, the imputed quarterly turnover values of units that report

VAT on a yearly basis are calibrated upon their reported yearly turnover values. We treat

imputations here as if they are observed values, that is, we do not compute the effect of the

imputation process on the accuracy.

The nine industries within the car trade vary considerably in the number of enterprises,

total turnover and turnover per enterprise (van Delden et al. 2015a). In the first quarter of

2013, total turnover varies from 7,749 million euros (code 45112) to 51 million euros

(code 45194). The division of total turnover in the different complexity classes also varies

considerably across the nine industry codes (see Figure 1; the more detailed probability

classes will be explained shortly). Note that throughout the article the industry classes are

ordered from the largest to the smallest total turnover per industry.

The parameters of the classification-error model were estimated using three sources:

. We took an audit sample from the population of the simple enterprises within the car

trade that existed on 1 July 2014 according to our BR. We randomly sampled 25

enterprises from each of the nine industries. Next, the true NACE codes were

determined by two experts, examining the Chamber of Commerce information and

Internet data and contacting the enterprise in case of doubt.
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. For the complex and most complex enterprises we consulted experts at CBS who are

responsible for the editing process of the car-trade industry and experts from a special

business unit at CBS that deals with the large and complex units. We used expert

knowledge for those enterprises, because quality studies reported in 2000 and 2003

that 97% of these enterprises were expected to have a correct three-digit NACE code

(Burger et al. 2015). Therefore the transition probabilities for these units are close to

0 and 1, and estimating such small probabilities would have required a very large

audit sample and too many resources. The experts were used to estimate the relative

levels of classification error and the largest levels were set at five percent, which is in

line with a Service Level Agreement that states that the three-digit NACE codes

should be correct for 95% of the enterprises (Burger et al. 2015).

. In addition, we used data from our BR on the yearly transitions in NACE code of the

enterprises for the years 2009–2014. From these data we computed the relative

number of units that are observed in industry g in year t (ŝt
i ¼ g) given they are

observed in h in year t 2 1 ŝt21
i ¼ h

� �
averaged over 2009–2014. The motivation

behind this approach was given in Subsubsection 2.2.4. Based on the results of the

temporal transitions, we have asked experts to appoint each cell ðg; hÞ to a cluster

q [ {1; : : : ;Q}, where cells within the same cluster have a comparable probability

of misclassification.

Details about how these sources were used to estimate the probabilities are given in the

next section.
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Fig. 1. Distribution of quarterly turnover among the different probability classes (Symbols appear at the upper

side of the corresponding bar; Top bar is always the Supplement).
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4. Results

4.1. Estimated Probabilities

Diagonal elements. Recall that for the diagonal elements of the H £ H submatrix we try to

explain differences in classification-error probabilities between units from their properties.

Based on consultations with experts, we identified the following variables that are

available for all units in the population and that might affect the level of classification-

error probabilities: observed industry, number of legal units, legal form, size class of the

enterprise, and being observed in a sample survey (yes/no).

The audit sample contained no classification errors among the simple enterprises with

size class 4 or larger (ten working persons or more). We therefore used the audit sample

only to estimate the diagonal probabilities for the simple enterprises with size classes 0–3

(0–9 working persons).

We investigated all possible combinations of the background variables using subset

selection. To compare the performance of the models, we computed the AIC and deviance

values (based on log-likelihood). Table 2 displays the best-fitting models with one, two,

and three predictor variables. The fourth column gives the p value of a chi-square test of

decrease in deviance (cf. McCullagh and Nelder 1989). Among the three best-fitting

models, the model with industry and legal units led to a significant (p ¼ 0.04) increase in

model fit compared to a model with only industry, whereas adding additional terms did not

significantly improve model fit despite a small decrease in AIC. We also verified the model

selection results by cross validation (not shown). Taking all results into account, we

selected the model with industry and legal units to estimate the diagonal probabilities for

the remainder of this study.

The estimated probabilities are given in the bottom two rows of Figure 2. The numbers

in the labels “0–3, 4, 5, 5þ , 6þ ” stand for the size classes and 1–2 LU and 3þ LU stand

for the number of legal units per enterprise. The diagonal probabilities of the upper nine

rows of Figure 2 were based on experience of editing experts at CBS. Concerning the

background variables affecting those probabilities, we limited ourselves to the complexity

and size class of the units and supplementary editing (see below). From now on, the strata

defined by these background variables, as shown in Figures 1 and 2, are referred to as

probability classes.

The probability class ‘supplement’ in Figure 2 concerns the enterprises that are edited

thoroughly by the statistical division at CBS responsible for the output. Enterprises that

belong to the probability class ‘supplement’ have transition probabilities of 1.0 on the

Table 2. Three best-fitting logistic regression models for the audit sample, size classes 0–3. (Dev ¼ Deviance;

df ¼ degrees of freedom).

Model terms Dev (df) DDev (Ddf) p value AIC

0 NULL 257.27 (210) 259.27
1 Industry 170.94 (202) 86.34 (8) ,0.0001 188.94
2 Industry þ Legal units 166.51 (201) 4.43 (1) 0.04 186.51
3 Industry þ Legal units þ

Observed (Y/N)
164.36 (200) 2.15 (1) 0.14 186.36
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main diagonal (first row of Figure 2), regardless of the further characteristics of the unit.

For each target industry the size of this supplement was set to the 25 enterprises with the

largest turnover, which approximately resembles the actual situation at the statistical

division.

Off-diagonal elements. Using the average of the yearly transitions of the NACE codes

over 2009–2014, experts appointed four clusters. Based on these Q ¼ 4 clusters, we fitted

a log-linear model to the off-diagonal numbers found in the audit sample, according to

Equation (13). The model fitted well with a likelihood ratio of 85.92 with p ¼ 0.082 at 69

degrees of freedom (df). The likelihood-ratio statistic compares the fit of the posited model

to that of a saturated log-linear model, which reproduces the original table exactly (Bishop

et al. 1975, 125); nonsignificant values indicate that all relevant factors are included in the

model. There was one outlier that dominated the values for cluster 4. We therefore placed

that outlying value in a separate fifth cluster. The model adjusted for this outlier had a

likelihood ratio of 43.44 ( p ¼ 0.991 at 68 df). The adjusted model had expected numbers

that fit the observed numbers in the audit sample better. Using those expected numbers and

the sampling fractions nþh=Nþh, the off-diagonal probabilities were estimated according

to Equations (15) and (16) (Figure 3). Recall that the probabilities for the ðH þ 1Þth

industry (column) were derived from Equation (17)–(18).

Results show that there are pairs of industries with relatively high conditional

classification-error probabilities. For instance, a unit from industry 45310 (wholesale trade

of motor vehicle parts and accessories) has a probability of 0.53 – given that it is
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misclassified – of being observed as 45320 (retail trade of motor vehicle parts and

accessories). Likewise, misclassified units from industry 45320 have a probability of 0.33

of being observed as 45310. Similar high conditional probabilities of misclassification

exist between the industries 45401 (wholesale trade in maintenance and repair of motor

cycles) and 45402 (retail trade in maintenance and repair of motor cycles). Finally, note

that in six of the nine car trade industries, misclassified units have a probability over 0.30

of being observed outside the car-trade.

Probabilities for the industries outside the car trade. We applied the approach of

Subsubsection 2.2.5 to estimate the parameters of the second-level model. Details can be

found in van Delden et al. (2015a).

4.2. Simulation of Accuracy

Having modelled the probabilities of classification errors for the data in our case study, we

applied the bootstrap method from Subsection 2.1. We applied 10,000 bootstrap replicates.

We implemented this method within the R environment for statistical computing. The

code used for these simulations is available from the authors upon request.

We summarised the results in terms of the following accuracy measures, derived from

(4) and (5):

. the relative bias (RB) B̂
*

R Ŷh

� �
=Ŷh,

. the coefficient of variation (CV)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂

*

R Ŷh

� �q
=Ŷh,

. the relative root mean squared error (RRMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B̂
*

R Ŷh

� �h i2

þV̂
*

R Ŷh

� �
	 
s

=Ŷh.
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These results are shown in Figure 4 (expressed as percentages). The RRMSE varies

from about 1.0% for the industries 45401 and 45310 to about 60% for industry 45320.

The variance (CV) dominates in the industries 45191X, 45401, 45402, and 45194, in the

other industries the bias dominates. The industries 45112 and 45310 both have a negative

bias. A negative bias means that the values of bootstrap simulations Ŷ
*

hr

� �
are smaller on

average than the estimated value (Ŷh), which in turn implies that Ŷh underestimates the

(unknown) true target value Yh.

We found that industry 45320 has a very large RRMSE: on average 62% (Figure 4).

This industry has a relatively large probability of classification error on the diagonal

elements (Figure 2) of the complexity class “simple”, and this class constitutes about one

third of the total turnover in this industry (Figure 1). Industry 45111 has an even larger

probability on classification errors in the complexity class “simple” (Figure 2) but does not

have a large RRMSE. The latter is because the turnover of the simple enterprises in

industry 45111 is very small compared to the other complexity classes (Figure 1). The

RRMSE for the car trade as a whole is about 0.33% and was relatively stable over the ten

periods (Figure 5). The CV was also relatively stable (about 0.29%). The RB varied most

and ranged between 20.2% and 20.1%.

The RRMSE for the car trade as a whole is judged as acceptable by the owner of the

production process, whereas that of industry 45320 is far too large. Fortunately, turnover

levels for industry 45320 are not published separately but combined with industry 45310.

The combined quarterly turnover-level estimates have an average RRMSE of 1.9% (see

industry 45300 in Figure 2 by van Delden et al. 2015b). The least accurate industry that is
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actually published is 45200 with an RRMSE for the quarterly turnover slightly larger than

ten percent. CBS aims to have a maximum uncertainty margin of three percent points on

turnover levels. This means that in the car trade, an additional editing effort is needed to

improve industry 45200. Below we investigate different selective editing strategies.

5. Editing Scenarios

5.1. Scenarios of Editing

We would also like to study to what extent the accuracy is improved when the editing

effort is increased. An exact computation of those results is in fact only possible when we

actually have a set of data that are free of classification errors. That information is needed

because we need to know the true NACE code for each of the individual units. Since we do

not have a data set for the whole population that is error free, we used an approximation.

We assumed that with additional editing effort, those units that are checked and edited (on

top of the starting situation) have a diagonal transition probability of 1, in other words

a classification-error probability of zero. The edited units are called the “supplement”

(Figure 1). They are called supplement because they are edited by the clerical reviewers of

the production unit supplementary to the editing that is done by our central business unit

on large and complex units. The exact difference between our approximation and the (true)

effect of editing is explained in van Delden et al. (2015a). Nonetheless, we are convinced

that our approximation is good enough to compare different editing scenarios in a

qualitative way.

We compared four levels of supplementary editing, namely 0, 225, 450, and 675 edited

enterprises in the car trade (relative editing effort 0, 1, 2, and 3). Since our results on

accuracy were reasonably consistent over the ten quarters, we only computed the results
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for one quarter: the first quarter of 2013. The second level, 225 units, corresponds

reasonably well to the actual situation at CBS. We distinguished between two editing

scenarios that differ in how those enterprises are allocated over the nine industries:

1. Fixed: each industry is allocated an equal number of enterprises for supplementary

editing. So the four levels are equal to 0, 25, 50, and 75 enterprises per industry.

2. Pro rata: the number of enterprises to be edited per industry nE
h

� �
is in proportion to

the product of RMSE
�

Ŷh

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffin
B̂

*

R Ŷh

� �h i2

þV̂
*

R Ŷh

� �o
r

and the population size per

industry ðNhÞ:

nE
h ¼

RMSE Ŷh

� �
Nh

XH

h¼1
RMSE Ŷh

� �
Nh

nE; ð20Þ

where nE denotes the total number of units to be selected for supplementary editing. Note

that Equation (20) resembles the so-called Neyman allocation of a survey sample over its

underlying industries (e.g., Cochran 1977, 98–99). Because of this analogy, one might

expect the accuracy of the estimated turnover for the car trade as a whole to improve more

under the pro-rata scenario than under the fixed scenario. For the RMSE Ŷh

� �
values in

Equation (20) we used the bootstrap estimates when 25 enterprises per industry were

edited. Within each industry h, we selected the nE
h units with the largest quarterly turnover

for editing.

5.2. Simulation of Editing

The change in the accuracy measures with increased relative editing effort and the two

editing scenarios showed several interesting results (Figure 6). First of all, as expected, the

CV decreased with increased relative editing effort. Moreover, the absolute value of the

RB) often decreased with increased editing effort. However, there were also many

examples of situations where this relative bias increased. A prominent example is industry

45401, where the absolute RB clearly increased between the relative editing effort 1 and 2

for the fixed scenario, and between the relative editing effort 2 and 3 for the pro-rata

scenario. The overall effect of the change of CV and RB with increased editing effort is

that the RRMSE does not always decrease with increased editing effort.

We can understand this surprising phenomenon by analysing the transition of units

among the industries. To this end we distinguish between inflow and outflow of turnover in

industry h. Inflow of turnover occurs when units that were originally observed in another

industry enter industry h in bootstrap replication r. Outflow of turnover occurs when units

move to another industry from industry h where they were observed. The bias of a turnover

estimate for an industry is the net result of the effects of the turnover inflow and outflow.

Accordingly, when there are no classification errors (as a result of perfect editing of the

units in all existing industries), the inflow and outflow components are zero and there is no

bias. Likewise, when the transition probabilities happen to be such that turnover inflow

and outflow to industry h are perfectly balanced, there is also no bias. In van Delden et al.

(2015a) we describe and quantify the observed bias (and variance) patterns in each of the

industries as the net result of inflow and outflow. In some industries we found a reasonable
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balance between inflow and outflow, while for others the total error is mainly determined

by inflow (see Figure 4.4.5 in van Delden et al. 2015a). By changing the number of

edited units in an industry, we can control the expected size of the outflow from that

industry – that is, how many errors remain in industry h – but not the inflow. Due to this

effect, the balance between outflow and inflow can become less favourable, leading to an

increased bias.

In the above example, as the total amount of editing is increased, the absolute level of

inflow in industry 45401 will decrease because the outflow from all the other car-trade

industries will be reduced. Nonetheless, the balance in industry 45401 between out- and

inflow on the bias becomes less favourable (van Delden et al. 2015a). In fact, with

increased overall editing effort the turnover inflow in 45401 decreased at a smaller rate

than the outflow, resulting in an increased bias. This effect is enhanced under the pro-rata

scenario, because industry 45401 has the largest turnover inflow from industry 45402,

which is more accurate than industry 45401 to begin with.

Figure 6 shows that in some industries the pro-rata scenario reduces the RRMSE further

than the fixed scenario, while in other industries the opposite is the case. This is of course

due to differences in editing effort per industry in the pro-rata scenario. Surprisingly, the

decrease of the RRMSE for the car trade as a whole (sum of nine industries) is larger for

the fixed scenario than for the scenario pro rata (Figure 7). This can be understood as

follows. The pro-rata scenario, inspired by the Neyman allocation, assumes that the errors

Ŷh 2 Yh are independent of each other. This assumption, however, does not hold in the
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case of classification errors, since many off-diagonal transition probabilities are larger

than zero. We conclude that a simple ‘fixed’ scenario is more effective in reducing the

overall RRMSE than the pro-rata approach. It remains to be seen whether a more efficient

scenario than ‘fixed’ can be found, without introducing complexities that render the

approach impractical.

6. Discussion

The long-term aim of our research is to develop a practical method for assessing as well as

improving the accuracy of register-based estimates affected by nonsampling errors. In this

article, we have estimated the accuracy of register-based outcomes for classification errors

using a bootstrap method. Others have also used resampling to estimate the accuracy of

statistical outcomes for certain error types, such as Zhang (2011), Lumme et al. (2015),

and Chipperfield and Chambers (2015). A key challenge is to obtain good estimates of the

parameters of the postulated error model.

How to handle the complex and most complex units in this respect is a difficult question.

We have relied on expert knowledge when setting the diagonal probabilities of these units

in our study. This is a relatively small group of units for which classification errors are

rare. Furthermore, these units are not ‘mutually interchangeable’, given their large

individual shares in the total turnover. Fundamentally, it may be asked whether a random

classification-error model is appropriate for the group of complex and most complex units.

For the simple units where the model parameters can be estimated empirically, audit

data can only be obtained at some additional cost. The question is then how to combine

editing and estimation efficiently in practice. An option could be to use information
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obtained during regular production instead of audit data to estimate the model parameters,

similarly to the use of paradata in social surveys (Kreuter 2013). Maybe we can combine

selective editing for the most influential units with a probability sample of less influential

units. The result of this two-phase design can be used to estimate the bias and the variance

of the resulting estimator as a result of the editing process (e.g., Ilves and Laitila 2009).

Such an approach might also offer the possibility of extending the procedure to other

industries. The development of a robust and efficient selective editing strategy for

classification errors, which accounts for the in- and outflow components of the target

variable due to misclassified units, is a point for future research.

Two key extensions are still needed to achieve our long-term aim. These are the

extension to other types of estimators and the extension to other sources of nonsampling

errors. The use of an overarching modelling framework in which the observations reflect

measurements of unobserved (true) values, like in latent class models and like the

Bayesian approach by Bryant and Graham (2015), might be helpful in this respect.

Appendix

Bias Correction

Correction for the Bias in B̂
*

R Ŷh

� �

We use the notation that was introduced in Section 2. In addition, let ai denote the vector

a1i; : : : ; aHþ1;i

� �T
that contains the values of the indicator variable ahi ¼ Iðsi ¼ hÞ of

which one element per unit i is equal to 1. Similarly, we define âi and â*
i on the basis of ŝi

and ŝ*
i . Recall that Pi stands for the ðH þ 1Þ £ ðH þ 1Þ matrix with the transition

probabilities for unit i. Under the classification-error model, the expectation of âi for

enterprise i equals E âið Þ ¼ PT
i ai. Similarly it holds that E â*

i jâi

� �
¼ PT

i âi. Denote the

vectors with the true, observed and bootstrap values for the total turnover per industry as

y ¼
PN

i¼1 aiyi, ŷ ¼
PN

i¼1 âiyi and ŷ* ¼
PN

i¼1 â*
i yi. Using an argument similar to that in

Burger et al. (2015), the following expressions may be derived for the true bias and

variance-covariance matrix of ŷ as an estimator for y:

Bð ŷÞ ¼ Eð ŷÞ2 y ¼
XN

i¼1

PT
i 2 I

� �
aiyi; ð21Þ

Vð ŷÞ ¼
XN

i¼1

diag PT
i aiy

2
i

� �
2 PT

i diag aiy
2
i

� �
Pi

� �
; ð22Þ

where I stands for the ðH þ 1Þ £ ðH þ 1Þ-identity matrix. Here, we use the assumption

that only the observed classifications âi may be erroneous, while the other components of ŷ

are fixed.

In the bootstrap approach, the above bias and variance are estimated by the conditional

bias and variance of ŷ* as an estimator for ŷ. Letting R ! 1 in Expressions (4) and (5),

we would obtain:

B̂
*

1ð ŷÞ ¼ Bð ŷ*j ŷÞ ¼ Eðŷ*jŷÞ2 ŷ ¼
XN

i¼1

PT
i 2 I

� �
âiyi; ð23Þ
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V̂
*

1ð ŷÞ ¼ Vð ŷ*j ŷÞ ¼
XN

i¼1

diag PT
i âiy

2
i

� �
2 PT

i diag âiy
2
i

� �
Pi

� �
; ð24Þ

cf. Burger et al. (2015). In our case study, we did not use these analytical formulas directly.

We preferred to use Monte Carlo simulation to have more flexibility in the modelling of

classification errors, in particular for industry H þ 1. (Note that the sum in Expressions

(23) and (24) is over all units in the BR, including all industries outside the target set.)

Focussing on the bias, we see that E B̂
*

1ðŷÞ
n o

¼
PN

i¼1 PT
i PT

i 2 I
� �

aiyi. This implies

that B̂
*

1ð ŷÞ is biased as an estimator for Bð ŷÞ; the same follows for B̂
*

Rð ŷÞ based on a

finite number of replications.

Now assume that the matrix PT
i can be inverted and denote its inverse as Qi ¼ PT

i

� �21
.

It follows directly that b̂i ¼ Qiâi is an unbiased estimator for ai:

Eðb̂iÞ ¼ EðQiâiÞ ¼ QiEðâiÞ ¼ QiP
T
i ai ¼ ai:

Similarly for b̂
*

i ¼ Qiâ
*
i it holds that E b̂

*

i jb̂i

� �
¼ E b̂

*

i jâi

� �
¼ QiP

T
i âi ¼ âi. Analogously

to ŷ and ŷ*, we can define the turnover-related vectors ẑ ¼
PN

i¼1 b̂iyi and ẑ* ¼
PN

i¼1 b̂
*

i yi.

Now, consider the conditional bias of ẑ* as an estimator for ẑ:

Bðẑ*jẑÞ ¼ Eðẑ*jẑÞ2 ẑ ¼
XN

i¼1

E b̂
*

i jb̂i

� �
2 b̂i

n o
yi ¼

XN

i¼1

ðâi 2 b̂iÞyi:

It follows that E{Bðẑ*jẑÞ} ¼
PN

i¼1 {EðâiÞ2 Eðb̂iÞ}yi ¼
PN

i¼1 PT
i 2 I

� �
aiyi ¼ BðŷÞ. Hence

Bðẑ*jẑÞ is an unbiased estimator for the bias of ŷ.

In our case study the population is divided into a limited number of probability classes

(PCs) with the same transition matrix. We can exploit this to compute ẑ and ẑ* in an

efficient manner. Divide the population into the PCs of units U1; : : : ;UK , where the

transition matrix for the k th PC is denoted by Pk, with the corresponding inverse being

Qk ¼ PT
k

� �21
. Now ẑ can be computed according to:

ẑ ¼
XN

i¼1

b̂iyi ¼
XK

k¼1 i[Uk

X
b̂iyi ¼

XK

k¼1

Qk

i[Uk

X
âiyi ¼

XK

k¼1

Qkŷk ;
XK

k¼1

ẑk;

with ŷk ¼
i[Uk

P
âiyi the vector of industry-turnover totals for the k th PC. Analogously, ẑ* can

be computed as ẑ* ¼
PK

k¼1 ẑ*
k ;

PK
k¼1 Qkŷ*

k , with ŷ*
k ¼

i[Uk

P
â*

i yi. Some other practical

issues related to the computation of the bootstrap estimator and its bias correction are

discussed in Appendix A2 of van Delden et al. (2015a).

Similarly to the bias, the bootstrap estimator of the variance is also biased. In section A4

van Delden et al. (2015a) derive a formula for this bias, explain how it can be corrected

and argue that this bias is likely to be small. We therefore did not apply the bias correction

for the variance.

Adjusted Bias Correction for “increased Accuracy”

The corrected bootstrap estimator for the bias Bðẑ*jẑÞ is unbiased, but may yield

inaccurate estimates of Bð ŷÞ in practice. Unbiased bootstrap estimation of Bð ŷÞ may come

at the cost of an increased variance, to such a degree that the bias correction is not an
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improvement in all cases. Results on simulated data (not shown here) suggest that the bias-

corrected bootstrap estimator tends to be unstable when some of the probabilities of

classification errors are large.

In fact, it turns out that when some of the diagonal probabilities in Pk are much smaller

than 1, the so-called condition number cond PT
k

� �
¼ jjP

T
k jj jjQkjj can become much larger

than 1. Here, the symbol jj:jj denotes a matrix norm. Since ŷ*
k ¼ PT

k ẑ*
k , it follows from a

standard result in numerical analysis that

rel: change ẑ*
k

� ��
�

�
� # cond PT

k

� �
£ rel: change ŷ*

k

� ��
�

�
�;

where rel: changeð:Þ denotes a relative change in the value of its argument (e.g., Stoer and

Bulirsch 2002, 211). Hence, when cond PT
k

� �
is large, a small uncertainty in the simulated

values of ŷ*
k can be propagated as a large uncertainty in the derived values of ẑ*

k . This

provides a heuristic explanation for why the bias-corrected bootstrap estimator (based on

ẑ*
k) can be less accurate than the original bootstrap estimator (based on ŷ*

k) in situations

where some units have a relatively large probability of being misclassified.

In Appendix A3 of van Delden et al. (2015a) an alternative correction method is

proposed that uses a combined estimator

B̂
*

l ¼
XK

k¼1

lkB̂
*

1k þ ð1 2 lkÞB̂
*

0k

n o
; ð25Þ

where B̂
*

0k ¼ B ŷ*
kj ŷk

� �
and B̂

*

1k ¼ B ẑ*
kjẑk

� �
denote the original and bias-corrected

bootstrap estimators of the bias of ŷk. It is shown there how the weights lk [ ½0; 1� can be

obtained by minimising the mean square error of the estimated bias.
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