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Respondent-driven sampling (RDS) is often used to estimate population properties (e.g.,
sexual risk behavior) in hard-to-reach populations. In RDS, already sampled individuals
recruit population members to the sample from their social contacts in an efficient snowball-
like sampling procedure. By assuming a Markov model for the recruitment of individuals,
asymptotically unbiased estimates of population characteristics can be obtained. Current RDS
estimation methodology assumes that the social network is undirected, that is, all edges are
reciprocal. However, empirical social networks in general also include a substantial number
of nonreciprocal edges. In this article, we develop an estimation method for RDS in
populations connected by social networks that include reciprocal and nonreciprocal edges.
We derive estimators of the selection probabilities of individuals as a function of the number
of outgoing edges of sampled individuals. The proposed estimators are evaluated on artificial
and empirical networks and are shown to generally perform better than existing estimators.
This is the case in particular when the fraction of directed edges in the network is large.
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1. Introduction

Hidden or hard-to-reach populations include several groups of importance to public health

research, for example, men who have sex with men (MSM), sex workers (SWs), and

injecting drug users (IDUs). A hidden population is typically characterized by i) strong

privacy concerns due to illicit or stigmatized behavior, and ii) there is no sampling frame,

that is, the size and composition of the population are unknown (Heckathorn 1997).

Therefore, it is in general difficult for survey researchers to access hidden populations and

draw valid conclusions from sampled data. Several methods have been used to sample

from hidden populations, for example, key informant sampling (Deaux and Callaghan

1985), venue-based sampling (Muhib et al. 2001), and snowball sampling (Erickson

1979). However, because of the substantial selection bias inherent in these methods, the
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samples obtained have been considered only for convenience purposes (Magnani et al.

2005). Respondent-driven sampling (RDS) is a more recent sampling methodology for

hidden populations (Heckathorn 1997; Salganik and Heckathorn 2004; Volz and

Heckathorn 2008). RDS combines an improved link-tracing sampling mechanism, similar

to snowball sampling, with a mathematical model that is able to produce asymptotically

unbiased estimates of population characteristics given that some assumptions about the

sampling procedure are fulfilled. Because of these advantages, RDS has become the

primary choice for the study of hidden populations. Some recent examples of RDS studies

includes MSM in Panama (Hakre et al. 2014), Dar es Salaam, Tanzania (Bui et al. 2014),

SWs in Shiraz, Iran (Kazerooni et al. 2013), Kampala, Uganda (Schwitters et al. 2014),

IDUs throughout India (Solomon et al. 2015), methamphetamine users in Cape Town,

South Africa (Hobkirk et al. 2015), unauthorized migrant workers in San Diego (Zhang

et al. 2014), and low-wage workers in US cities (Bernhardt et al. 2013).

In RDS, the social network of the population is used both in the sampling procedure and

for inference. Before we describe RDS in more detail, we will introduce some concepts

from social network theory (for a comprehensive reference on social network theory, see

Wasserman and Faust 1994). Formally, a social network is a (finite) set of actors, for

example, individuals, couples, or organizations, that are connected through some type of

relation, for example, friendship, kinship, or professional agreements. In graph-theoretical

terms, the actors are referred to as vertices and their relations as edges. The relation

between two actors can be reciprocal, that is, the relation is mutual, or it can be

nonreciprocal. For example, an individual may choose another individual as a friend. If the

other individual in turn chooses the first individual as a friend, the relation is reciprocal,

and if that individual does not choose the first one, the relation is nonreciprocal. A

reciprocal edge is called an undirected edge and a nonreciprocal edge is called a directed

edge. A network in which the directions of edges are ignored is referred to as an undirected

network. A network in which the directions of edges are meaningful is referred to as a

directed network. Note that a directed network may include nonreciprocal and reciprocal

edges. In Figure 1, we see three nonreciprocal edges.

One might also consider individual properties of the vertices in the network. The

neighbors of a vertex are the set of vertices to which it connects by an edge. In Figure 1,

the neighbors of vertex v includes all vertices except one to the lower left. The degree of a

vertex refers to the number of neighbors it has in an undirected network. If we ignore the

directions of edges in Figure 1, vertex v has degree four. If the network is directed, one

v

Fig. 1. Sample illustration of a part of a directed social network with six vertices and thirten edges. Vertex v has

an undirected degree of two, an incoming degree of one, and an outgoing degree of one.
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must consider the directions of edges. A directed edge is either incoming to or outgoing

from a vertex. Because a directed network also may include reciprocal edges, one can

identify three types of edges for a vertex w in a directed network, and hence three different

degrees: the undirected degree, which refers to the number of vertices w connects to by an

undirected edge, the incoming degree, which refers to the number of vertices w connects to

by an incoming edge, and the outgoing degree, which refers to the number of vertices w

connects to by an outgoing edge. In Figure 1, vertex v has an undirected degree of two, an

incoming degree of one, and an outgoing degree of one. The out-degree of a vertex is

obtained by adding the undirected degree and the outgoing degree. Similarly, the

in-degree is obtained by adding the undirected degree and the incoming degree. The

distribution of vertex degrees in the whole network is called the degree distribution. In an

undirected network, this distribution is given by the random variable D. In a directed

network, the distributions are given by D (un), D (in), and D (out) for the undirected,

incoming and outgoing degree, respectively. Formally, these random variables are the

degrees of a vertex drawn uniformly at random from the set of all vertices in the network.

An RDS study begins with the selection of a seed group of individuals from the

population. The seeds are typically chosen among population members who are well-

known to researchers and that supposedly have a large number of contacts. Each seed is

provided with a fixed number of coupons, typically between three to five, which are to be

distributed among each seed’s neighbors. The coupons effectively act as tickets for

participation in the study, and each neighbor who has received a coupon is allowed to enter

the study upon presenting the coupon at the study site. Those who have received a coupon

and joined the study (i.e., respondents) are also provided with coupons to be distributed to

their neighbors who have not yet obtained a coupon. This procedure is then repeated until

the desired sample size has been reached. The sampling procedure ensures that the

identities of participating individuals are not revealed, but because the coupons are

numbered, it is possible to obtain the pattern of recruitment throughout the population.

Rewards are given to a respondent for his or her participation and for the participation of

his or her coupon recipients. This results in social pressure on coupon recipients, which is

believed to facilitate effective recruitment. For each respondent, the properties of interest

(e.g., HIV status and number of recent sexual encounters) are recorded. Respondents are

also asked to provide the number of people they know in the population; this corresponds

to the degree in an undirected network and the out-degree in a directed network.

Suppose that we are interested in estimating the proportion of individuals in a

population of unknown size N with a specific trait A (e.g., HIV status), denoted pA. Assume

that we have obtained a sample s from an RDS study on this population. In order to

estimate pA from s, we assume that the RDS recruitment process behaves like a random

walk on the social network of the population. To this end, it is assumed that (i) respondents

recruit peers from their social contacts with equal probability, (ii) each recruitment

consists of only one peer, (iii) sampling is done with replacement, (iv) the degree of

respondents is reported without error, (v) the social network of the population is

undirected, and (vi) the population forms a connected network. Assumption (vi)

essentially means that any vertex in the network can be reached from any other vertex in

the network, that is, regardless of where the sampling procedure starts, it is possible to

sample all members of the population. If the recruitment process has reached equilibrium,
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we may then estimate pA by

p̂VH
A ¼

X
i[s

1iðAÞ=diX
i[s

1=di

; ð1Þ

where 1i(A) equals one if i has trait A and zero otherwise and di is the degree of vertex i

(Volz and Heckathorn 2008). In general, when the random walk is in equilibrium and has a

known stationary distribution {pi; i ¼ 1, : : : , N}, we obtain an unequal probability

estimator for pA as

p̂A ¼

X
i[s

1iðAÞ=piX
i[s

1=pi

: ð2Þ

In an undirected network, the stationary distribution is proportional to degree, that is,

pi / di (Doyle and Snell 1984; Lovász 1993). Hence, the estimator in Equation (1) is

obtained by using this fact to replace pi with di in Equation (2). Note that the estimators in

Eqs. (1) and (2) are the ratio of two Horwitz-Thompson estimators, of the population total

and the population size, respectively, from which asymptotically unbiased estimates can

be obtained (Särndal et al. 1992, ch. 5.6). This follows because we sample from the

random walk model in equilibrium. In practice, Assumptions (i)-(vi) put RDS recruitment

in the framework of an irreducible Markov chain for which equilibrium will be approached

asymptotically. Although asymptotic equilibrium will not be reached in an RDS study, the

recruitment process may come to an approximate equilibrium, and the use of the estimator

in Equation (1) can be motivated. Hence, the Markov model obtained from Assumptions

(i)-(vi) facilitates the transition from a convenience sample of seeds to a probability

sample for which unequal probability estimation procedures can be used.

In most RDS studies, it is not likely that Assumptions (i)-(vi) will hold simultaneously.

In this case, the random walk model of the recruitment process will at best be an

approximation to the true process and the estimator in Equation (1) may be subject to

substantial bias and variance. In recent years, much RDS research has focused on the

sensitivity of RDS estimators to violations of Assumptions (i)-(vi). For example, in Gile

and Handcock (2010) it was shown that the violation of Assumption (iii) from large

sample fractions (.50% of the population) may result in large bias, and in Tomas and Gile

(2011) it was shown that bias can be large when Assumption (i) is violated by differential

recruitment, that is, the tendency of individuals to preferentially recruit neighbors with

certain properties. In Lu et al. (2012), it was found that bias can be substantial if the social

network of the population is directed (violation of Assumption (v)), or if recruitment is

correlated with study variables (violation of Assumption (i)). Moreover, RDS has been

empirically evaluated in, for example, Goel and Salganik (2010), where simulations on

empirical networks showed that variance in RDS estimates can be five to ten times larger

than in estimates from simple random sampling, and in McCreesh et al. (2012), where it

was shown that only 50%–74% of 95% RDS confidence intervals (using bootstrap

variance estimates) covered the true population values in an RDS study on a known

population of male households in rural Uganda. Several attempts have been made to find

new estimators for RDS. In Gile (2011), a successive-sampling estimator that utilizes prior
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information on the population size is derived and in Gile and Handcock (2015), an

estimator utilizing a superpopulation model for the social network is presented. In Lu et al.

(2013), an estimator for RDS on directed social networks utilizing prior information on the

in-degrees of groups of population members is presented. Lu (2013) gives an estimator

that uses additional information on the composition of sampled individuals’ contacts.

Current RDS estimation procedures (except Lu et al. 2013) assume that the social

network of the population is undirected (cf. Assumption (v)). However, real social

networks are directed in general and often include a considerable number of nonreciprocal

edges. Examples of real-life social networks and social networks from online communities,

including e-mail social networks, and their fraction of nonreciprocal edges among the total

number of edges are shown in Table 1. In real-life social networks, such as those listed in

Table 1, network data are often gathered by asking individuals to list, for example, all or

some of their friends (Marsden 1990). Then, if an individual i lists j as his or her friend, but j

does not list i, there will be a directed edge from i to j. For example, in the network of Dutch

college students in Table 1, students were asked to list all their friends among the other

residents (Van De Bunt et al. 1999), and in the dining partners’ network, individuals were

asked to name their two most preferred choices of dining partners. In online social

networks, directed edges typically occur because an individual can add another member of

the social network to his or her friend list without that member adding him or her, and in

the e-mail networks, edges are formed from an individual to another if the latter is present

in the former’s address book (Newman et al. 2002) or if a message has been sent from the

former to the latter (Boldi and Vigna 2004; Boldi et al. 2011).

The presence of directed edges may induce substantial bias and variance in the

estimator in Equation (1) and other RDS estimators. For example, in their evaluation of

RDS by simulations on an empirical network, Lu et al. (2012) found that the presence of

directed edges caused bias as high as 0.06 in estimates from Equation (1); this can be

Table 1. Proportion of directed edges in social networks

Real-life social networks Prop. dir. Online social networks Prop. dir.

High-tech managers 0.71 Googleþ (Oct 2011) 0.62
(Wasserman and

Faust 1994)
(Gong and Xu 2014)

Dining partners 0.76 Flickr (May 2007) 0.55
(Moreno 1960) (Gong and Xu 2014)
Radio amateurs 0.59 LiveJournal (Dec 2006) 0.26
(Killworth and Bernard 1976) (Mislove et al. 2007)
Dutch college students 0.19 Twitter (June 2009) 0.78
(Van De Bunt, Van Duijn,

and Snijders 1999)
(Kwak et al. 2010)

Campus hall residents 0.38 University e-mail 0.77
(Freeman, Webster, and

Kirke 1998)
(Newman, Forrest,

and Balthrop 2002)
Jazz musicians 0.52 Enron e-mail 0.85
(Gleiser and Danon 2003) (Boldi and Vigna 2004)

(Boldi et al. 2011)
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compared with the bias of less than 0.01 induced by violation of the sampling with

replacement assumption in the same study. In Lu et al. (2013), simulations on generated

networks for which the proportion of directed edges was controlled showed that even a

small proportion of directed edges can introduce bias in the estimator in Equation (1) and

that the bias can be large (<0.075) when the proportion of directed edges increases. There

is also evidence of recruitment taking place by nonreciprocal relations in empirical RDS

studies. For example, in an RDS study of IDUs in Sydney, Australia, 29% of participants

described their relationship with their recruiter as “Not very close” (Paquette et al. 2011),

and in an RDS study of IDUs in Tijuana, Mexico, 62% characterized their relationship to

their recruiter as “friend” (Abramovitz et al. 2009). In an RDS study of MSM in Chicago,

13% said that they were “Not at all close” to their recruiter, and 17% characterized the

relationship as “other” (instead of friend/acquaintance/partner/relative/coworker) (Phillips

et al. 2014), and in an RDS study of an aboriginal community in Labrador, Canada, 80% of

those recruited indicated that their recruiter was a “close relative”, “distant relative”,

“close friend”, or “friend” (Dombrowski et al. 2013).

The purpose of this article is to develop an estimator for pA that does not require prior

information on population properties for RDS in populations with directed social

networks. To estimate pA without bias from an RDS sample in such cases, we need to

accurately calculate Equation (2). Because the RDS estimation method assumes a random

walk behavior of the recruitment process, a random walk framework for directed networks

is a key component of this expansion. This is no trivial task, because the random walk

behaves very differently in undirected and directed networks. In particular, the stationary

distribution of the random walk is simply proportional to the degree of the vertex in

undirected networks, whereas it is affected by the entire network structure in directed

networks (Donato et al. 2004; Langville and Meyer 2006; Masuda and Ohtsuki 2009). We

aim to develop such a framework through which we can find estimators for the stationary

distribution {pi} of the random walk on a directed network to be used in Equation (2) to

estimate pA. We will do this in several steps. Initially, we assume that we observe both the

undirected degree, the incoming degree, and the outgoing degree of all vertices that are

sampled. We consider the probability of returning to the same vertex after two steps in the

random walk and use renewal theory to find an estimator for {pi}. Then, we consider this

estimation procedure in the more realistic situation when we only observe the out-degrees

of sampled individuals. First, we derive results for the situation in which the expectations

of the degree distributions are known. Then, we drop this assumption and by assuming a

model for the social network of the population, we can estimate the unknown expectations.

This gives our final estimator. All estimators are then evaluated and compared to existing

RDS estimators by means of simulations.

2. Random Walks on Directed Networks

We consider a directed, strongly connected network G with N vertices. The assumption

that the network is strongly connected is the equivalent of Assumption (vi) for directed

networks, and means that it is possible to go from any vertex v to any other vertex w and

then back (Newman 2010). Let eij ¼ 1 if there is a directed edge from i to j and zero

otherwise. An undirected edge exists between i and j if and only if eij ¼ eji ¼ 1. We denote
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the number of undirected, incoming, and outgoing edges at vertex i by d ðunÞ
i , d ðinÞi , and

d ðoutÞ
i , respectively. The degree distributions are given by the corresponding random

variables D (un), D (in), and D (out). For an undirected network, we obtain d ðinÞi ¼ d ðoutÞ
i ¼ 0,

and refer to the degree of vertex i as di ¼ d ðunÞ
i . Otherwise, the degree of vertex i refers to

the triplet d ðunÞ
i ; d ðinÞi ; d ðoutÞ

i

� �
. Then, d ðunÞ

i þ d ðinÞi and d ðunÞ
i þ d ðoutÞ

i is the in-degree and

out-degree of vertex i, respectively. In this notation, vertex v in Figure 1 has d ðunÞ
v ¼ 2,

d ðinÞv ¼ 1, and d ðoutÞ
v ¼ 1. If the network in Figure 1 was undirected, we would obtain

dv ¼ 4. It should be noted that, during the random walk, we may observe for example the

out-degree d ðunÞ
i þ d ðoutÞ

i , but not the d ðunÞ
i and d ðoutÞ

i values separately.

Consider the simple random walk X ¼ {X(t); t ¼ 0, 1, : : :} with state space S ¼ {1,

: : : , N} on G such that the walker staying at vertex i moves to any of the d ðunÞ
i þ d ðoutÞ

i

neighbors reached by an undirected or outgoing edge with equal probability. We denote the

stationary distribution of X by {pi; i ¼ 1, : : : , N}, where pi ¼ limt!1P(X(t) ¼ i ). The

stationary distribution exists if the network is aperiodic, that is, the walker will not return

periodically to the same vertex repeatedly during the walk. If we sample from the random

walk in equilibrium, we refer to {pi} as the selection probabilities of the vertices in G.

For an arbitrary network, we obtain

pi ¼
XN

j¼1

ejiXN

l¼1
ejl

pj ¼
XN

j¼1

eji

d ðunÞ
j þ d ðoutÞ

j

pj; i ¼ 1; : : : ;N; ð3Þ

where the stationary distribution is fully defined by
PN

i¼1pi ¼ 1. In undirected networks,

we obtain pi ¼ di=
PN

j¼1dj. In contrast, there is no analytical closed-form solution for {pi}

in directed networks. If a directed network has little assortativity (i.e., degree correlation

between adjacent vertices), {pi} is often accurately estimated by the normalized in-degree

(Fortunato et al. 2008; Ghoshal and Barabási 2011) because

pi <
XN

j¼1

eji

d ðunÞ
j þ d ðoutÞ

j

�p/
XN

j¼1

eji ¼ d ðinÞi þ d ðunÞ
i ; ð4Þ

where �p is the average selection probability. Equation (4) depends only on the in-degree of

vertices, that is, it provides a local description of the global solution to Equation (3).

However, the estimate given by (4) is often inaccurate in general directed networks

(Donato et al. 2004; Masuda and Ohtsuki 2009). Moreover, since it is much easier for

individuals to assess their out-degree, that is, how many people they know, than their

in-degree, that is, by how many people they are known, it is common to observe only the

out-degree. In this case, Equation (4) cannot be used with an RDS sample.

3. Estimating Selection Probabilities

We now derive estimators of the selection probabilities for the random walk on directed

networks. We first derive an estimation scheme when the full degree d ðunÞ
i ; d ðinÞi ; d ðoutÞ

i

� �
is

observed for all the vertices i visited by the random walk. Then, we restrict this estimation

to the situation in which only the out-degree dun
i þ dout

i of the visited vertices is observed.

In both situations it is assumed that the degrees are observed without error. Note that the

random walk allows a vertex to be visited multiple times, whereas it is typically not

allowed to be sampled several times in an RDS study.
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3.1. Estimating Selection Probabilities from Full Degrees

In order to estimate {pi}, we assume that X(t0) ¼ i, where t0 is sufficiently large for the

stationary distribution to be reached. We evaluate the frequency with which X(t) visits i in

the subsequent times. If X(t) leaves i through an undirected edge e ðunÞ
i� , where e ðunÞ

i� is one of

the d ðunÞ
i undirected edges owned by i, X(t) may return to i after two steps using the

same edge and repeat the same type of returns m times in total, perhaps using

different undirected edges e ðunÞ
i� . Then, X(t0) ¼ X(t0 þ 2) ¼ · · · ¼ X(t0 þ 2m) ¼ i and

X(t0 þ 2m þ 2) ¼ k for some k – i.

If X(t0 þ 2) ¼ i, the walk first moves from i through an undirected edge to vertex j at

t ¼ t0 þ 1 and returns to i through the same edge at t ¼ t0 þ 2. The probability of this

event is given by d ðunÞ
i = d ðunÞ

i þ d ðoutÞ
i

� �
�1= d ðunÞ

j þ d ðoutÞ
j

� �
. Because the out-degree of

vertex j, that is, d ðunÞ
j þ d ðoutÞ

j , is unknown, we approximate 1= d ðunÞ
j þ d ðoutÞ

j

� �
by

E(1/(D̃ (un) þ D (out))). Here D̃ (un) denotes the undirected degree distribution under the

condition that the vertex is reached by following an undirected edge. This yields a size-

biased distribution for the undirected degree, given by P(D̃ (un) ¼ d ) / dP(D (un) ¼ d )

(Newman 2010). It is also possible to estimate 1= d ðunÞ
j þ d ðoutÞ

j

� �
by 1/E(D̃ (un) þ D (out)),

which however proved to have very little effect in our simulations, and if any, a slightly

worse one. Thus, we estimate the probability of returning to vertex i after two steps by

pðretÞ
i ¼

d ðunÞ
i

d ðunÞ
i þ d ðoutÞ

i

E
1

~D ðunÞ þ D ðoutÞ

� �
: ð5Þ

When t $ t0 þ 2m þ 3, we use Equation (4) to estimate the probability of visiting

vertex i at any time as being proportional to d ðunÞ
i þ d ðinÞi , that is,

pðvisÞ
i ¼

d ðunÞ
i þ d ðinÞi

NðEðD ðunÞÞ þ EðD ðinÞÞÞ
: ð6Þ

Under these estimates, the number of returns after two steps to vertex i, counting the

starting point X(t0) ¼ i as the first return to i, is geometrically distributed with expected

value 1= 1 2 pðretÞ
i

� �
, and the number of steps starting from t ¼ t0 þ 2m þ 2, including this

step, and ending at the time immediately before visiting i with probability pðvisÞ
i is

geometrically distributed with the expected value 1=pðvisÞ
i .

We then have a renewal process, that is, a process which repeatedly regenerates at

random times such that the intervals between them are of independent and identically

distributed lengths. These random times are called renewals. We denote our process

Rn
i ; n $ 1;R0

i ¼ 0
� 	

, with the nth renewal occurring at the random time

Rn
i ¼

Pn
k¼1 2Zk

i þ Yk
i

� �
, where Zk

i , Ge 1 2 pðretÞ
i

� �
and Yk

i , Ge pðvisÞ
i

� �
. In Figure 2, the

behavior of the process during the kth renewal period is shown schematically. Figure 2(a)

shows the behavior of the walk when it makes consecutive returns to i. During this time,

the walker always leaves i through an undirected edge, which is not necessarily the same

edge each time (left part of Figure 2(a)), and returns after two time steps to i via the same

edge (right part of Figure 2(a)). This is repeated such that the walker makes in total Zk
i

consecutive returns to i. The duration of this is 2Zk
i time steps. Figure 2(b) shows the

behavior of the walk when it leaves i and does not return after two time steps. This occurs
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if either the walker leaves i by an outgoing edge, through which it is impossible to return

directly to i, or if the walker leaves i by an undirected edge but does not return to i through

this edge in the next time step. When the walker has left i, the time until its return to i is Yk
i

time steps. The average time step between consecutive renewal events is equal to

2E Zk
i

� �
þ E Yk

i

� �
. The average number of visits to i between two renewal events, with the

visit to i at t ¼ t0 included, is equal to E Zk
i

� �
. Therefore, from renewal theory (see e.g.,

Feller 1950), we obtain an estimate of pi as

pi <
E Zk

i

� �

2E Zk
i

� �
þ E Yk

i

� � ¼

1

1 2 pðretÞ
i

2
1

1 2 pðretÞ
i

þ
1

pðvisÞ
i

¼
pðvisÞ

i

2pðvisÞ
i þ 1 2 pðretÞ

i

: ð7Þ

Because pðretÞ
i ¼ Oð1Þ and pðvisÞ

i ¼ Oð1=NÞ, removing higher-order terms in Equation (7)

yields

p̂i <
pðvisÞ

i

1 2 pðretÞ
i

/
d ðunÞ

i þ d ðinÞi

1 2
d ðunÞ

i

d ðunÞ
i þ d ðoutÞ

i

E
1

~D ðunÞ þ D ðoutÞ

� � : ð8Þ

The proportionality constant is given by imposing that
PN

i¼1p̂i ¼ 1. If the network is

undirected, we obtain p̂i / d ðunÞ
i , such that p̂i coincides with the exact solution used in

Equation (1). If the network is without reciprocal edges, the estimator is proportional to

incoming degree d ðinÞi .

3.2. Estimating Selection Probabilities from Out-Degrees

A common situation in RDS is that only the out-degrees (i.e., d ðunÞ
i þ d ðoutÞ

i ) of respondents

are observed. Then, the estimator of the selection probabilities given by Equation (8)

cannot be used directly. To cope with this situation, we estimate the number of undirec-

ted, incoming, and outgoing edges from the observed out-degrees and substitute

the estimated d̂
ðunÞ

i ; d̂
ðinÞ

i ; d̂
ðoutÞ

i

� �
in Equation (8).

Assume that we have observed the out-degree d ðunÞ
i þ d ðoutÞ

i of vertex i. We estimate

d ðunÞ
i and d ðoutÞ

i by their expected proportions of the observed out-degree, and the incoming

degree by its expectation, as follows:

(a)  Zi consecutive returns to i.

i

k k

j

i

j

(b)  Leaves i for Yi steps.

i

j

Fig. 2. Schematic illustration of the kth renewal period.
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d̂
ðunÞ

i ¼
EðD ðunÞÞ

EðD ðunÞÞ þ EðD ðoutÞÞ
d ðunÞ

i þ d ðoutÞ
i

� �
;

d̂
ðoutÞ

i ¼
EðD ðoutÞÞ

EðD ðunÞÞ þ EðD ðoutÞÞ
d ðunÞ

i þ d ðoutÞ
i

� �
;

d̂
ðinÞ

i ¼ EðD ðinÞÞ:

8
>>>>>>><

>>>>>>>:

ð9Þ

The expectations used in Equation (9) rely on the assumption that we have a random

sample from the network, which is not true in this case. We have evaluated the case of a

size-biased distribution for incoming and/or undirected degrees; however, our numerical

results suggest that this makes little difference, and if any, increases the bias of selection

probability estimators. Therefore, we stay with the estimators given by Equation (9).

When d̂
ðunÞ

i ; d̂
ðinÞ

i ; d̂
ðoutÞ

i

� �
is substituted in Equation (8) in place of d ðunÞ

i ; d ðinÞi ; d ðoutÞ
i

� �
,

the term d̂
ðunÞ

i = d̂
ðunÞ

i þ d̂
ðoutÞ

i

� �
in the denominator is constant. Therefore, the estimator is

proportional to d̂
ðunÞ

i þ d̂
ðinÞ

i and hence equivalent to Equation (4) calculated with the

estimated degrees.

3.3. Estimating Expectations of Degree Distributions

The degree estimators in Equation (9) rely on E(D (un)), E(D (in)), and E(D (out)), which are

not estimable from a typical RDS sample, where only the out-degrees d ðunÞ
i þ d ðoutÞ

i of

respondents are observed. In order to extend the estimation procedure to handle these

unknown expectations, we assume a model for the network by which they can be

estimated.

Specifically, it is assumed that the observed network is a realization of a directed

equivalent of the simple GðN; p ¼ l=ðN 2 1ÞÞ random graph (Erdős and Rényi 1960).

This graph has N vertices and hence
�

N
2

�
pairs of vertices. Given parameters a [ [0, 1]

and l [ [0, N 2 1], each pair of vertices independently forms an edge with probability

l/(N 2 1), which is undirected with probability (1 2 a) and directed with probability a.

When the edge is directed, the direction is selected with equal probability. Because each

vertex may connect to each of the other N 2 1 vertices, it follows that l is the expected

total degree of a vertex. We also have that a is the fraction of directed edges as N ! 1.

Because edges are formed independently of each other, vertex degrees are binomially

distributed. Hence, if N is large, D (un), D (in), and D (out) approximately follow independent

Poisson distributions with parameters (1 2 a)l, al/2, and al/2, respectively. It follows

that the out-degree D (un) þ D (out) and the in-degree D (un) þ D (in) are both Poisson

distributed with parameter (2 2 a)l/2. Consequently, to estimate the unknown

expectations, it is enough to estimate a and l, and substitute the estimated â and l̂ in

the expectations of the (Poissonian) degree distributions.

To find an estimator of a, we again consider the random walk X ¼ {X(t)} on the

network. Assume that eij ¼ 1, X(t0) ¼ i, and X(t0 þ 1) ¼ j, for a large t0. If X(t0 þ 2) ¼ i,

the edge between i and j is undirected, that is, eij ¼ eji ¼ 1, and the random walk leaves

vertex j via eji. The probability that the edge is undirected is set to (1 2 a)/(1 2 a/2), that

is, the probability that an edge selected uniformly at random among all undirected and
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incoming edges is undirected. This will only approximately hold for the random walk, but

simulations show that it is a reasonable approximation. If there is an undirected edge

between i and j (i.e., eji ¼ 1), the random walk leaves j via eji with probability

1= d ðunÞ
j þ d ðoutÞ

j

� �
. Thus, the random walk revisits vertex i at t0 þ 2 under the directed

E-R random-graph model with probability

pðrevÞ
j ¼

1 2 a

1 2 a=2
�

1

d ðunÞ
j þ d ðoutÞ

j

: ð10Þ

Let M be the number of revisits, as described above, during l consecutive steps, where

l is typically equal to the sample size. Then, we have M ¼
Pl

k¼2Mk, where Mk ¼ 1 if a

revisit occurs in step k and Mk ¼ 0 otherwise. Mk is Bernoulli distributed,

Mk , Be pðrevÞ
jk21

� �
, where jk21 is the vertex visited in step k21. We obtain the expected

number of revisits as

EðMÞ ¼
1 2 a

1 2 a=2

Xl21

k¼1

1

d ðunÞ
jk
þ d ðoutÞ

jk

: ð11Þ

If m is the observed number of revisits, we set m ¼ E(M) in Equation (11) to obtain the

moment estimator

â ¼
m 2

Xl21

k¼1
d ðunÞ

jk
þ d ðoutÞ

jk

� �21

m=2 2
Xl21

k¼1
d ðunÞ

jk
þ d ðoutÞ

jk

� �21
: ð12Þ

If the estimated â , 0, we force â¼ 0.

Given â, we estimate l as follows. If a ¼ 0, the network contains only undirected

edges, and the observed out-degree equals the observed undirected degree, which has a

size-biased distribution with Eð ~D ðunÞÞ ¼ lþ 1. If a ¼ 1, the network has only directed

edges, and the expected observed out-degree is well approximated by the expected number

of outgoing edges, l/2. By linearly interpolating the expected observed out-degree

between a ¼ 0 and a ¼ 1, and substituting it with the mean sample out-degree ū, we

obtain ū ¼ l/2 þ (1 2 a)(1 þ l/2), which yields an estimator of l as

l̂ ¼
�uþ â 2 1

1 2 â=2
: ð13Þ

Using â and l̂, we can estimate the expectations of the degree distributions under the

random-graph model. For example, E(D (un)) is estimated by (1 2 â)l̂. By substituting

these estimated expectations in Eqs. (8) and (9), we obtain an estimator of the selection

probability of vertex i as

p̂i / d̂
ðunÞ

i þ d̂
ðinÞ

i ¼
1 2 â

1 2 â=2
d ðunÞ

i þ d ðoutÞ
i

� �
þ

âl̂

2
: ð14Þ

When a ¼ 0 is assumed known and used in place of â, the estimator in Equation (14) is

equivalent to that used in Equation (1). When â¼ a ¼ 1, the estimator is proportional to
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one, and thus equivalent to the sample mean. This reflects the fact that, if a ¼ 1,

the network has no undirected edges, and the out-degree is equal to the outgoing

degree, which does not provide any information on the selection probability of a vertex in

this case.

It should be noted that the construction of the directed Erdős-Rényi graphs results in

vertices having the same out-degree and in-degree on average, which is not likely to occur

in actual populations where RDS is used. This makes estimation of in-degree using only

the observed out-degree feasible, and might possibly favor the performance of the

estimator in Equation (14) for networks generated by this model.

4. Simulation Setup

We numerically examine the accuracy of our estimation schemes on directed Erdős-Rényi

graphs, a model of directed power-law networks (i.e., networks with a power-law degree

distribution), and an online MSM social network. We evaluate both the estimated

selection probabilities and corresponding estimates of pA. As described in Section 1,

real-life directed social networks show a varying fraction of directed edges, corresponding

to a diversity of a values. Therefore, a is varied in the model networks. We also vary l and

other network parameters. We study the performance of our estimators when the full

degree is observed and when only the out-degree is observed, and compare them with

existing estimators. We do not consider RDS estimators that are not based on the random

walk framework because they fall outside the scope of this study.

4.1. Network Models and Empirical Network

The first model network that we use is a variant of the Erdős-Rényi graph with a mixture of

undirected and directed edges, as described in Section 3. We generate the networks with

a [ {0.25, 0.5, 0.75} and l [ {5, 10, 15}. We then extract the largest strongly connected

component of the generated network, which has O(N) vertices for all combinations of

a and l.

The directed Erdős-Rényi networks have Poisson degree distributions with quickly

decaying tails. In fact, many empirical networks have heavy-tailed degree distributions as

represented by the power law (Newman 2010). In other words, there are typically small

numbers of vertices whose degrees are huge, and a majority of vertices have small degrees.

To mimic heavy-tailed degree distributions, we also use a variant of a power-law network

model (Goh et al. 2001; Chung and Lu 2002; Chung et al. 2003). The original algorithm

for generating undirected power-law networks presented in Goh et al. (2001) is as follows.

We fix the number of vertices N and expected degree E(D). Then, we set the weight of

vertex i (1 # i # N) to be wi ¼ i 2t. As specified in the following, wi represents the extent

to which vertex i attracts edges; a large wi value yields a large degree. Parameter

0 # t # 1 controls the power-law exponent of the degree distribution. If t ¼ 0, all wi are

equal such that each vertex is statistically the same. In this case, the degree distribution

produced by the following algorithm will not be heavy-tailed. When t . 0, a vertex with

small i possesses large wi and will in fact have a very large degree. Then, we select a pair

of vertices i and j (1 # i – j # N) with probability proportional to wiwj. If the two vertices

are not yet connected, we connect them by an undirected edge. We repeat the procedure
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until the network has E(D)N/2 edges such that the expected degree is equal to E(D). The

expected degree of vertex i is proportional to wi, and the degree distribution is given by

p(d ) / d 2g, where g ¼ 1þ 1
t

(Goh et al. 2001).

To generate a power-law network in which undirected and directed edges are mixed

with a desired fraction, we extend the algorithm as follows. First, we specify the expected

undirected degree E(D (un)) and generate an undirected network. Second, we define win
i ¼

ðs inði ÞÞ2t in

(1 # i # N), where s in is a realization of the random permutation on 1, : : : , N.

Parameter t in specifies the power-law exponent of the incoming degree distribution.

Similar to the undirected case, a vertex with a small s in(i ) value will have a large

in-degree. Similarly, we set wout
i ¼ ðsoutði ÞÞ2t out

(1 # i # N), where s out is another

realization of the random permutation on 1, : : : , N. Third, we select a pair of vertices with

probability proportional to win
i wout

j . If i – j and there is no directed edge from j to i yet, we

place a directed edge from j to i. We repeat the procedure until a total of E(D (in))N/2 edges

are placed. It should be noted that E(D (in)) ¼ E(D (out)). The incoming degree distribution

is given by p(d in) / (d in)2g in

, where g in ¼ 1þ 1
t in, and similar for the outgoing degree

distribution. Finally, we superpose the obtained undirected network and directed network

to make a single graph. If the combined graph is not strongly connected, we discard it and

start over until a strongly connected network is generated. By construction, a network

constructed from this model is devoid of degree correlation.

In both network models, we vary the probability of a vertex being assigned property A as

proportional to six different combinations of its degree: in-degree, out-degree, undirected

degree, incoming degree, outgoing degree, and directed degree, that is, the sum of

incoming and outgoing degree. Formally, if Pðvertex i has AÞ / g d ðunÞ
i ; d ðinÞi ; d ðoutÞ

i

� �
, we

let g be equal to d ðunÞ
i þ d ðinÞi

� �
, d ðunÞ

i þ d ðoutÞ
i

� �
, d ðunÞ

i , d ðinÞi , d ðoutÞ
i , and d ðinÞi þ d ðoutÞ

i

� �
,

respectively. We refer to these as different ways to allocate property A. We also examined

the case in which we assigned the property uniformly over all vertices. However, because

the performance of the different estimators is similar in this case, we do not show the

results in the following. For all allocations of A, the property is assigned in such a way that

the expected proportion of vertices being assigned A is equal to some fixed value p.

Because A is stochastically assigned, the actual proportion pA of vertices with A will vary

between realized allocations.

We also evaluate our estimators on an online MSM social network, extracted during

Dec 2005-Jan 2006 from www.qruiser.com, which is the Nordic region’s largest

community for lesbian, gay, bisexual, transgender, and queer persons (Rybski et al. 2009).

In this network, an edge represents that at least one message has been sent between the two

vertices connected by that edge. A directed edge occurs if messages have only been sent in

one direction between two vertices. The data set considered here was first described in Lu

et al. (2012) and represents a subpopulation of the original data set consisting of 16,082

male homosexual members in a directed social network that is made up of one strongly

connected component. This network represents the social structure of a hidden population

and makes it possible to evaluate the effect of the presence of nonreciprocal edges in RDS.

It has previously been used to evaluate the performance of RDS estimators under different

violations of Assumptions (i)-(vi) in Lu et al. (2012) and in directed social networks in Lu

et al. (2013). The data set also includes users’ profiles, which are seldom available. From

these, we obtain four dichotomous individual properties: age (born before 1980 or not),
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county (live in Stockholm or not), civil status (married or unmarried), and profession

(employed or unemployed). This makes it possible to evaluate the performance of RDS

estimators of population proportions on this network. The fraction of directed edges in the

network is equal to a ¼ 0.76. The in-degree and out-degree distributions are skewed, and

the mean number of edges l is equal to 27.74 (Lu et al. 2012). Preferably, RDS would be

evaluated on a network which is known to depict that on which the recruitment process in

RDS takes place. Such network data is rare, however, and in its absence, the considered

network is a good option for RDS evaluation.

4.2. Evaluation of Estimators

We compared the performance of our estimators of the selection probabilities with three

other estimators. We refer to our estimator {p̂i} obtained from Equation (8) as p̂
ðrenÞ
i

� 	
,

where ren stands for renewal. This estimator is compared to p̂
ðuniÞ
i

� 	
, which assigns a

uniform probability p̂
ðuniÞ
i ¼ 1=N for all i, p̂

ðoutdegÞ
i

n o
, for which p̂

ðoutdegÞ
i / d ðunÞ

i þ d ðoutÞ
i ,

that is, proportional to out-degree (Equation 1), and p̂
ðindegÞ
i

n o
, where p̂

ðindegÞ
i

/d ðunÞ
i þ d ðinÞi , that is, proportional to in-degree (Equation 4). Note that if the network

is undirected, p̂
ðoutdegÞ
i

n o
and p̂

ðindegÞ
i

n o
are equal. However, typically in RDS the

out-degree is observed and p̂
ðoutdegÞ
i

n o
, which is used in the current RDS estimator in

Equation (1), is the estimator that should be considered in the undirected case. In the

following, we suppress the {} notation.

To assess the performance of an estimator we calculated its estimated selection

probabilities p̂i and the true stationary distribution pi for all the vertices in the given

network. Then, we calculated the total variation distance defined by

DTV ¼
1

2

XN

i¼1

p̂i 2 pij j ð15Þ

(Levin et al. 2009). The stationary distribution pi was obtained using the power method,

which is an iterative method that works as follows (Langville and Meyer 2006). Starting

from an arbitrary nonzero vector of size N, in each iteration the resulting vector is

multiplied with the matrix {eij}, where eij ¼ 1 if there is a directed edge from i to j. Then,

under some conditions that hold for the networks used in this study, the resulting vector

converges to the stationary distribution, which is the eigenvector corresponding to the

largest eigenvalue of {eij}. We use an accuracy of 10210 in terms of the total variation

distance for the two distributions given in the successive two steps of the power iteration.

For p̂ (ren), we considered three variants depending on the information available from

observed degree and knowledge of the expectations of the degree distributions. When the

full degree d ðunÞ
i ; d ðinÞi ; d ðoutÞ

i

� �
was observed, we used Equation (8) to calculate p̂ (ren),

where E(1/(D̃ (un) þ D (out))) is estimated by the mean of the inverse sample out-degrees.

We denote the corresponding estimator with p̂
ðrenÞ
f:d: , where f.d. stands for “full degree”.

When only the out-degree was observed and the expectations of the degree distributions

were known, we used Equation (9). This case is only evaluated for the directed Erdős-

Rényi graphs, and the corresponding estimator is denoted by p̂
ðrenÞ
a;l . If only the out-degree

was observed and the expectations of the degree distributions were unknown, we used

Equations (12), (13), and (14), and the estimator is denoted p̂ (ren).
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We obtained a sample of size ns from each generated network by means of a random

walk starting from a randomly selected vertex. In the random walk, we collected the

degree of visited vertices and observed whether they had property A or not. We estimated

the population proportion pA from the sample by replacing p in Equation (2) by either

p̂ (uni), p̂ (outdeg), p̂ (indeg), or any of the variants of p̂ (ren), yielding estimates p̂ðuniÞ
A , p̂

ðoutdegÞ
A ,

p̂
ðindegÞ
A , or p̂ðrenÞ

A , respectively. Note that p̂ðuniÞ
A yields the sample proportion suggested as an

estimator for RDS in Heckathorn (1997), p̂
ðoutdegÞ
A yields the RDS estimator from Volz and

Heckathorn (2008), where the direction of edges is ignored, and p̂
ðindegÞ
A gives the RDS

estimator for directed networks from Lu et al. (2013).

5. Numerical Results

5.1. Directed Erdős-Rényi Graphs

In Table 2, we show the mean of the total variation distance DTV between the true

stationary distribution and p̂ (uni), p̂ (outdeg), p̂ ðindegÞ, and p̂
ðrenÞ
f:d: , calculated on the basis of

1,000 realizations of the largest strongly connected component of the directed random

graph having N ¼ 1,000 vertices. Because the standard deviation of DTV is similar

Table 2. Mean and average standard deviation (s.d.) of DTV for the directed random

graph when dðunÞ
i ; dðinÞi ; dðoutÞ

i

� �
is observed and moments of the degree distributions

are known. The lowest DTV value is marked in boldface. We set N ¼ 1,000

(a) a ¼ 0.1

l p̂ (uni) p̂ (outdeg) p̂ (indeg) p̂
ðrenÞ
f:d s.d.

5 0.185 0.074 0.042 0.041 0.004
10 0.131 0.045 0.017 0.016 0.002
15 0.106 0.036 0.010 0.010 0.001

(b) a ¼ 0.25

p̂ (uni) p̂ (outdeg) p̂ (indeg) p̂
ðrenÞ
f:d s.d.

0.203 0.134 0.077 0.075 0.005
0.140 0.081 0.031 0.030 0.002
0.112 0.063 0.019 0.019 0.002

(c) a ¼ 0.5

l p̂ (uni) p̂ (outdeg) p̂ (indeg) p̂
ðrenÞ
f:d s.d.

5 0.247 0.225 0.138 0.133 0.009
10 0.160 0.136 0.056 0.055 0.004
15 0.126 0.105 0.034 0.033 0.002

(d) a ¼ 0.75

p̂ (uni) p̂ (outdeg) p̂ (indeg) p̂
ðrenÞ
f:d s.d.

0.303 0.319 0.207 0.201 0.014
0.188 0.201 0.090 0.088 0.005
0.144 0.156 0.055 0.055 0.003
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between the estimators, we show an average over the four estimators. The sample size ns

used in p̂
ðrenÞ
f:d: is 500. We also tried ns ¼ 200, which gave similar results. The DTV value of

p̂ (indeg) and p̂
ðrenÞ
f:d: is much smaller than that of p̂ (uni) and p̂ (outdeg) for all values of a and l.

Furthermore, p̂ðrenÞ
f:d always gives smaller DTV than p (indeg) although the two values are

similar for many combinations of the parameters.

In Table 3, we show the mean and average s.d. of DTV when the out-degree, that is,

d ðunÞ
i þ d ðoutÞ

i , is observed but the individual d ðunÞ
i and d ðoutÞ

i values are not. The

assumptions underlying the network generation are the same as those for Table 2, and

ns ¼ 500. We consider two cases. In the first case, the expectations of the degree

distributions are known, and we use the estimator p̂ðrenÞ
a;l . In the second case, they are not

known, and we use p̂ (ren). Results for p̂ (indeg) are not shown in Table 3 because in-degree

is not observed. Table 3 indicates that DTV for p̂ (ren) is smaller than that for p̂ (uni) and

p̂ (outdeg) when a is 0.5 and 0.75. When a ¼ 0.75, p̂ (outdeg) yields the largest DTV. For

a ¼ 0.1 and 0.25, p̂ (ren) and p̂ (outdeg) yield similar results. For all parameter values p̂ðrenÞ
a;l

slightly outperforms p̂ (ren). We tried ns ¼ 200 (not shown), which gave similar s.d. for

p̂
ðrenÞ
a;l , and similarly for p̂ (ren), except for a ¼ 0.1, where, for example, l ¼ 15 yielded the

s.d. values of 0.0039 and 0.0073 for ns ¼ 500 and ns ¼ 200, respectively.

Table 3. Mean and average s.d. of DTV for the directed random graph when

dðunÞ
i þ dðoutÞ

i is observed. We set N ¼ 1,000

(a) a ¼ 0:1

l p̂ (uni) p̂ (outdeg) p̂
ðrenÞ
a;l p̂ (ren) s.d.

5 0.185 0.074 0.074 0.075 0.004
10 0.131 0.045 0.045 0.047 0.003
15 0.106 0.036 0.035 0.037 0.002

(b) a ¼ 0.25

p̂ (uni) p̂ (outdeg) p̂
ðrenÞ
a;l p̂ (ren) s.d.

0.203 0.135 0.132 0.133 0.006
0.140 0.081 0.079 0.080 0.003
0.112 0.063 0.061 0.063 0.002

(c) a ¼ 0.5

l p̂ (uni) p̂ (outdeg) p̂
ðrenÞ
a;l p̂ (ren) s.d.

5 0.246 0.225 0.214 0.215 0.010
10 0.160 0.136 0.127 0.128 0.004
15 0.125 0.105 0.098 0.099 0.003

(d) a ¼ 0.75

p̂ (uni) p̂ (outdeg) p̂
ðrenÞ
a;l p̂ (ren) s.d.

0.303 0.318 0.294 0.295 0.014
0.188 0.201 0.177 0.178 0.006
0.144 0.156 0.135 0.135 0.004
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To compare estimated pA, we generated 1,000 networks for each combination of the

parameters a [ {0.25, 0.5, 0.75} and l ¼ 10. On each of these networks we in turn

allocate the property A in each of the six ways described in Section 1. The probability of a

vertex having A is denoted by p [ {0.2, 0.5}. For each network and allocation, we

simulate a random walk with length ns [ {200, 500} and calculate the differences

between the estimated and the actual proportions of the population with property A. In

Figure 3, results for a ¼ 0.75, p ¼ 0.5, and ns ¼ 500 are shown. The six groups of

boxplots correspond to the six different ways of allocating A (see Section 1). The six

boxplots in each group correspond to p̂ðrenÞ
Af:d:

, p̂
ðindegÞ
A , p̂ðrenÞ

A , p̂ðrenÞ
Aa;l

, p̂
ðoutdegÞ
A , and p̂ðuniÞ

A ,

respectively.

We see that the bias of p̂ðrenÞ
Af:d

and p̂
ðindegÞ
A is small for all allocations, as is to be expected.

For the estimators utilizing the out-degree, p̂ðrenÞ
A , p̂ðrenÞ

Aa;l
, and p̂

ðoutdegÞ
A , Figure 3 indicates that

the choice of how to allocate A has a significant impact on the performance of the

estimators. When A is allocated proportional to the out-degree (Out-deg. in Figure 3), p̂ðrenÞ
A

and p̂ðrenÞ
Aa;l

yield the most accurate result, and when A is allocated proportional to the

number of directed edges (Dir. in Figure 3), p̂
ðoutdegÞ
A is most accurate. This is true for

almost all parameter combinations. In general, the bias and variance increase with both a

and p for all estimators, and a small ns results in an increased variance, as is to be expected.

In the supplemental data, these findings are further illustrated by numerical results with (a,

p, s) equal to (0.5, 0.2, 500), (0.25, 0.5, 500), and (0.75, 0.5, 200). The supplemental file is

available at: http://dx.doi.org/jos-2016-0023

5.2. Networks With Power-Law Degree Distributions

To generate power-law networks, we set the expected total number of edges for each vertex

to 16, while we set the expected number of undirected and directed edges equal to (E(D (un)),

−0.2
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0

0.05

0.1

0.15

0.2

In−deg. Out−deg. Undir. Incom. Outg. Dir.

pAf.d.

^ (ren)
pA
^ (indeg)

pA
^ (ren)

pAα,λ
^ (ren)

pA
^ (outdeg)

pA
^ (uni)

Fig. 3. Deviations of estimated p̂A from the true value in the directed Erdős-Rényi graphs with N ¼ 1,000,

a ¼ 0.75, l ¼ 10, p ¼ 0.5, and ns ¼ 500. Each group of boxplots corresponds to p̂ðrenÞ
Af :d:

, p̂
ðindegÞ
A , p̂ðrenÞ

A , p̂ðrenÞ
Aa;l

,

p̂
ðoutdegÞ
A , and p̂ðuniÞ

A for one allocation of the individual property A. The abbreviations for the allocations

corresponds to the function g, that is, In-deg. equals d ðunÞ
i þ d ðinÞi

� �
, Out-deg. d ðunÞ

i þ d ðoutÞ
i

� �
, Undir. d ðunÞ

i , Incom.

d ðinÞi , Outg. d ðoutÞ
i , and Dir. d ðinÞi þ d ðoutÞ

i

� �
.
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E(D (in) þ D (out))) ¼ (12, 4), (8, 8), and (4, 12). The three cases yield a ¼ 0.25, 0.5, and

0.75, respectively. For each combination of the parameters, we generate 1,000 networks of

size N ¼ 1,000 and calculate the mean of the DTV. We also calculate the s.d., which is of

magnitude 1023 and therefore not shown. The sample size ns is set to 200 and 500.

The average DTV values for p̂ðrenÞ
f:d: , p̂ (indeg), p̂ (ren), p̂ðrenÞ

a;l , p̂ (outdeg), and p̂ (uni) are shown

in Figure 4 for various a and g values. Figure 4 suggests that p̂ðrenÞ
f:d and p̂ (indeg) are the

most accurate among the four estimators, with p̂
ðrenÞ
f:d being slightly better. When a ¼ 0.25

and 0.5, p̂ðrenÞ
a;l has a lower mean DTV than p̂ (ren), but this difference is not seen when

a ¼ 0.75. p̂ (outdeg) performs better than p̂ (ren) for all values of g when a ¼ 0.25, and the

opposite result holds true when a ¼ 0.75.

In Figure 5, the results for p̂ðrenÞ
Af:d:

, p̂
ðindegÞ
A , p̂ðrenÞ

A , p̂ðrenÞ
Aa;l

, p̂
ðoutdegÞ
A , and p̂ðuniÞ

A when g ¼ 3,

E(D (un)) ¼ 4, E(D (in) þ D (out)) ¼ 12, p ¼ 0.2, and ns ¼ 500 are shown. The figure

indicates that p̂ðrenÞ
Af:d:

and p̂
ðindegÞ
A have small bias across different allocations of A. In contrast,

the magnitude of the bias of p̂ðrenÞ
A , p̂ðrenÞ

Aa;l
, and p̂

ðoutdegÞ
A depends on the allocation type; p̂ðrenÞ

A

has the smallest bias when A is allocated proportional to the undirected degree, and p̂ðrenÞ
Aa;l

(a)   α = 0.25
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Fig. 4. Average DTV between the true stationary distribution and p̂
ðrenÞ
f :d: , p̂ (indeg), p̂ (ren), p̂ðrenÞ

a;l , p̂ (outdeg), and

p̂ (uni) in the power-law networks with N ¼ 1,000, a equal to a) 0.25, b) 0.5, and c) 0.75, and ns ¼ 500.
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Fig. 5. Deviations of estimated pA from the true population proportion in the power-law networks for g ¼ 3,

E(D (un)) ¼ 4, E(D (in) þ D (out)) ¼ 12, p ¼ 0.2, and ns ¼ 500. Each group of boxplots corresponds to p̂ðrenÞ
Af :d:

,

p̂
ðindegÞ
A , p̂ðrenÞ

A , p̂ðrenÞ
Aa;l

, p̂
ðoutdegÞ
A , and p̂ðuniÞ

A , for one allocation of A.
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and p̂
ðoutdegÞ
A when A is allocated proportional to the out-degree. Their relative performance

is hard to assess for other allocations. In general, a large fraction of directed edges, small g,

and large p increase bias and variance, and variance decreases with ns. The supplemental

data contains numerical results for (g, E(D (un)), E(D (in) þ D (out)), p, s) ¼ (4.5, 4, 12, 0.2,

500), (4.5, 4, 12, 0.5, 500), (4.5, 12, 4, 0.5, 500), and (3, 4, 12, 0.2, 200) to further support

these results.

5.3. Online MSM Network

For the Qruiser online MSM network, we first evaluate p̂ðrenÞ
f:d: , p̂ (indeg), p̂ (ren), p̂ (outdeg) and

p̂ (uni). The results are shown in Table 4. Note that p̂ðrenÞ
a;l is not evaluated because a and l

are not known beforehand. For p̂ (uni), p̂ (outdeg), and p̂ (indeg), DTV to the true selection

probabilities is exactly calculated. For p̂ðrenÞ
f:d: and p̂ (ren), we show the mean and s.d. of DTV

on the basis of 1,000 samples of size 500. We see that p̂ðrenÞ
f:d: has smaller DTV than p̂ (indeg),

and that the mean DTV of p̂ (ren) is smaller than that of p̂ (uni) and p̂ (outdeg).

In Figure 6, we show estimates of the population proportions of the age, county, civil

status, and profession properties. The true population proportions are shown by the dashed

lines. The sample size is 500. Figure 6 indicates that p̂ðrenÞ
Af:d:

performs best of all estimators.

Among the estimators utilizing d ðunÞ
i þ d ðoutÞ

i , p̂ðrenÞ
A has the smallest overall bias. Moreover,

the variance of p̂ðrenÞ
A is smaller than for p̂

ðoutdegÞ
A for all properties, in particular the

civil status.

6. Conclusion and Discussion

We developed statistical procedures for the random walk on directed networks to account

for the empirical fact that social networks generally include nonreciprocal edges. The

proposed estimation procedures typically outperformed the considered existing methods

that neglect directed edges in the scenarios investigated in the simulations. In the present

study, the best accuracy of estimation was obtained when undirected, incoming, and

outgoing degree are observed separately for sampled individuals. In this case, our

estimator p̂
ðrenÞ
f:d: should be compared to p̂ (indeg) when the expectations of the degree

distributions are known. In Tables 2 and 4, and Figure 4, it is seen that p̂ðrenÞ
f:d: performs

slightly better than p̂ (indeg) in all the studied situations. The corresponding estimated

proportions given by p̂ðrenÞ
Af:d:

and p̂
ðindegÞ
A in Figures 3, 5, and 6 are very similar. In the more

realistic scenario in which only the sum of undirected and outgoing edges of sampled

individuals is known, all estimation procedures are less precise. In this situation, we

compare our new estimator p̂ ðrenÞ with the estimator p̂ ðoutdegÞ that one would use if ignoring

the direction of edges (Tables 3 and 4, and Figure 4). We also include p̂
ðrenÞ
a;l in the

Table 4. DTV between the true stationary distribution and p̂
ðrenÞ
f :d: , p̂ (indeg), p̂ (ren), p̂ (outdeg)

and p̂ (uni). S.d. is shown in the second row, but only applies to p̂
ðrenÞ
f :d: and p̂ (ren).

p̂
ðrenÞ
f:d: p̂ (indeg) p̂ (ren) p̂ (outdeg) p̂ (uni)

0.2198 0.2248 0.4057 0.4290 0.4484
0.0004 – 0.0048 –
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comparison for the generated networks, and it can be seen that the performance of p̂ðrenÞ
a;l is

only slightly better than that of p̂ (ren). Because p̂ (ren) will deviate further from p̂ (outdeg)

when â increases, as seen in Equation (14), it outperforms p̂ (outdeg) except when the

fraction of directed edges a is small (0.1 in Table 3 and 0.25 in Figure 4). Our simulations

showed that estimators of population proportions were highly sensitive to how the

property of interest is allocated in the social network. For example, Figures 3 and 5

indicate that the results of the estimators p̂ðrenÞ
A , p̂ðrenÞ

Aa;l
, and p̂

ðoutdegÞ
A depend strongly on the

allocation of the property A. We believe that the question of how properties are distributed

in empirical social networks is of interest to further study.

It is generally believed that recruitment does not happen over nonreciprocal edges in

RDS, which is however refuted by the examples in Section 1. Furthermore, recruitment

over nonreciprocal edges may occur on a relatively large scale in the presence of coupon

selling, that is, when respondents trade coupons instead of randomly distributing them

among their peers in order to increase their personal profit from study participation.

Coupon selling is a side effect of the dual incentive system of RDS. It has been observed

by, for example, Scott (2008) in an RDS study of IDUs in Chicago, where interviews with

participants indicated that coupon selling was common and also that it had side effects
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Fig. 6. Estimates of population proportions in the Qruiser network for a) age, b) civil status, c) county, and

d) profession. Each figure shows p̂ðrenÞ
Af :d:

, p̂
ðindegÞ
A , p̂ðrenÞ

A , p̂
ðoutdegÞ
A , and p̂ðuniÞ

A . The true population proportions are

shown by the dashed lines and are equal to 0.77, 0.40, 0.39, and 0.38 for age, civil status, county, and profession,

respectively.
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such as increased risk exposure and violence among participants (see also Broadhead

2008; Ouellet 2008). For additional examples of coupon selling, see Johnston et al. (2008)

and the references therein, where implications of the size of the incentives and the

practical study setup on coupon selling are also discussed. In RDS studies where there is

evidence of coupon selling, it might be difficult to obtain valid information on the

occurrence of nonreciprocal recruitments, and then the possibility of such recruitments

should be taken into account for estimation.

Information on the nonreciprocal edges in the network can be obtained from several

sources. The fraction of directed edges, a, may be known for some social networks, and

then we can estimate the total mean degree l using only the mean sample out-degree in

Equation (13). If a is not known, it may be estimated by utilizing additional information

from an RDS sample. As previously discussed in Section 1, in the majority of RDS studies

respondents quantify the nature of the relationship with their recruiter. Through this, the

proportion of recruitments that occur over nonreciprocal edges (i.e., coupons passed from

strangers) can be obtained and used as an estimate of a in Equation (13). In Gile, Johnston,

and Salganik (2015), an alternative estimation procedure is given. This procedure utilizes

several questions on respondents’ degrees that serve to calculate the differences between

the number of incoming and outgoing edges, which are then used to produce an estimate.

However, as the authors point out, this procedure may be subject to large reporting errors.

Additionally, an alternative to the standard formulation for assessing reciprocation is

given in the same paper. It is also possible to estimate a through information on the

number of revisits m used in Equation (12). This could be done by asking, for example,

“Would you give a coupon to the person who gave you a coupon if he or she had not yet

participated in the study?”. This has been done in RDS studies (e.g., Bui et al. 2014), but

the question may be cognitively difficult for respondents.

An alternative strategy would be to develop a sampling procedure that accounts for a

directed social network of the population, that is, in which it is possible to determine

whether an edge is undirected, incoming, or outgoing from a vertex, and then utilize this

information for estimation. For example, in some RDS studies, the characteristics of

neighbors of respondents have been collected (see Lu 2013 and the references therein).

If such data were also to include, for example, the number of undirected, incoming, and

outgoing edges of an individual, they could be useful in RDS estimation. As previously

noted, however, it is difficult for respondents to provide such data. Alternatively, the

sampling procedure could be adapted to the case of directed social networks by

encouraging respondents to recruit people that are less known to them. Then, one could

expect that recruitment takes place on nonreciprocal edges to a larger extent and

possibly more easily identify and account for these recruitments in estimation. However,

such a sampling scheme may reduce the ability of RDS to successfully penetrate the

population, and may also suffer from difficulties in deciding on edge directions from

sampled data.

In the present study, we considered RDS estimators that are based on the random walk

framework for estimation. It could also be of interest to consider the RDS estimators of

Gile (2011), Gile and Handcock (2015), Lu et al. (2013), and Lu (2013) mentioned in

Section 1 for the situations studied in this article. The estimator of Gile (2011), while not

adapted to the case of directed networks, is in a sense a combination of the p̂
ðoutdegÞ
A and
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p̂ðuniÞ
A estimators. Hence, it can be expected to perform better than our estimator in cases

where a combination of these two estimators would be favorable (e.g., when A is allocated

proportional to out-degree in Figure 5 in the supplemental data), given that prior

information on the population size is available. The model-assisted approach of Gile and

Handcock (2015) incorporates network structural properties through an exponential

random-graph model (ERGM) (e.g., Robins et al. 2007) for the network. Hence, it might

be less sensitive to the different allocations of the property A that were seen to have

relatively large effects on the estimators considered in our simulations. Additionally, the

ERGM should not be difficult to extend to the case of directed networks. The estimator in

Lu et al. (2013) is similar to our estimators in that it is developed for directed networks and

could be expected to perform similarly to p̂
ðindegÞ
A given that prior information on the ratio

of average in-degrees of groups in the network is available. The estimator of Lu (2013) has

performed well in a recent evaluation (Verdery et al. 2015) and it could be of interest to

extend it to the case of directed networks. In future work, it would be of interest to make a

comprehensive evaluation of the performance of the estimators presented in this article

as well as other RDS estimators, both random walk-based and nonrandom walk-based, on

simulated RDS samples and data from actual RDS studies.

The main focus of the present article was on accounting for directed edges in a social

network when performing RDS. There are also other assumptions in existing estimation

procedures (including the current one) worthy of relaxing. For example, the methods

typically assume that participants choose coupon recipients uniformly at random among

their neighbors in the social network. In reality, they probably are more likely to sample

closely connected neighbors, which may bias estimators of selection probabilities.

Extending the RDS methods by allowing weighted edges warrants future work. It should

be noted that our methods allow the two weights on the same undirected edge in the

opposite directions to be different, because our framework targets directed networks.

Alternatively, it is also possible that some of the previously mentioned recently developed

estimators could be extended to the case of directed weighted networks.
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