] DE GRUYTER
OPEN

G

Journal of Official Statistics, Vol. 32, No. 1, 2016, pp. 231-256, http://dx.doi.org/10.1515/J0S-2016-0011

Synthetic Multiple-Imputation Procedure for Multistage
Complex Samples

Hanzhi Zhou', Michael R. Elliott, and Trivellore E. Raghunathan®

Multiple imputation (MI) is commonly used when item-level missing data are present.
However, MI requires that survey design information be built into the imputation models.
For multistage stratified clustered designs, this requires dummy variables to represent strata
as well as primary sampling units (PSUs) nested within each stratum in the imputation
model. Such a modeling strategy is not only operationally burdensome but also
inferentially inefficient when there are many strata in the sample design. Complexity only
increases when sampling weights need to be modeled. This article develops a general-
purpose analytic strategy for population inference from complex sample designs with
item-level missingness. In a simulation study, the proposed procedures demonstrate
efficient estimation and good coverage properties. We also consider an application to
accommodate missing body mass index (BMI) data in the analysis of BMI percentiles
using National Health and Nutrition Examination Survey (NHANES) III data. We argue
that the proposed methods offer an easy-to-implement solution to problems that are not
well-handled by current MI techniques. Note that, while the proposed method borrows
from the MI framework to develop its inferential methods, it is not designed as an
alternative strategy to release multiply imputed datasets for complex sample design data,
but rather as an analytic strategy in and of itself.

Key words: Finite population Bayesian bootstrap; Haldane prior; stratified sample; clustered
sample; sample weights.

1. Introduction

Stratified multistage sampling is the most common type of sample design for large-scale
surveys conducted by the U.S. federal statistical agencies. This type of sample design
combines the advantages of both stratification (for statistical efficiency) and cluster
sampling (for cost and logistical efficiency). Under this design, the primary sampling units
(PSUs) are stratified in such a way that they are homogeneous with respect to a stratum-
level aggregate of the variable(s) of interest. To permit a maximum degree of stratification
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and thus variance reduction, it is common practice to define a large number of strata where
only a small number of PSUs are selected in each stratum.

Multiple imputation (MI) (Rubin 1976, 1987) is a method commonly used when
item-level missing data are present. However, MI requires that survey design
information be built into the imputation models. Reiter et al. (2006) demonstrated the
importance of simultaneously accounting for stratum effects and clustering effects in
multiple imputation. They showed that when design features were ignored in the
imputation model, biases would occur on the estimated parameter, even if a design-
based analysis method was applied to the imputed data. Current MI methods typically
include dummy variables to represent strata as well as PSUs nested within each
stratum in the imputation model. When necessary, they also identify statistically
significant interactions between these dummies with other covariates through routine
variable selection procedures such as stepwise regression (Reiter et al. 2006; Schenker
et al. 2006). Such a modeling strategy is not only operationally burdensome but also
inferentially inefficient when there are hundreds of strata in the sample design and the
sample in each stratum consequently becomes sparse. For example, the Census
Bureau’s Current Population Survey design groups 1,768 nonself-representing PSUs
into 220 strata.

Possibly a better strategy is to consider clusters as random effects while treating strata as
either fixed (using dummies) or random effects. However, many of the popular software
packages that implement multiple imputation (e.g., SAS MI procedure, R packages mice
or mi, and IVEware) cannot be adapted easily to such an approach. While a few recent
software modules (such as R package pan and MLwiN module REALCOM-IMPUTE)
have started to incorporate mixed effects or multilevel modeling for imputation purposes,
they typically assume normal or latent normal distribution for variables with missing data.
Their performances for missing categorical variables (binary in particular) are unclear.
Moreover, there has been only little research that formally investigates their use in
incorporating strata as well as clusters.

To circumvent these problems with fully parametric model-based imputation
techniques, we develop a two-step semiparametric MI method. The idea is to separate
the need to account for complex sample designs from the treatment of missing data. In the
first step, sample designs are “reversed” through synthetic population data generation
using a weighted finite population Bayesian bootstrap (FPBB) (Cohen 1997; Little and
Zheng 2007; Dong et al. 2014). In the second step, missing values are imputed in the
created synthetic population based on a parametric model that assumes identically
independently distributed (IID) data elements. To account for stratum effects, we combine
a replication variance estimation method (Efron 1979; Kovar et al. 1988; Rao and Wu
1988; Rao et al.1992; Rust and Rao 1996) with the weighted FPBB. Under a standard
missing at random (MAR) assumption (Little and Rubin 2002), our method requires
neither complicated modeling of strata and clusters nor design-based analyses of the
imputed data. Note that while the proposed method borrows from the multiple-imputation
framework to develop its inferential methods, it is not designed as an alternative strategy
to release multiply imputed datasets for complex sample design data. Rather, it is intended
an alternative analytic strategy for population inference from complex sample design data
with item-level missingness.
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In this article, we focus on the estimation of two quantities: quantile estimates for a
continuous variable, and estimates of rare proportions and their associated logistic
regression estimates. We consider a stratified two-stage sample design and investigate a
full range of quantiles including tail behaviors. While design-based methods for quantile
estimation from complex survey data have been developed (Francisco and Fuller 1991;
Woodruff 1952), quantile estimation after imputation is less commonly addressed in the
literature. (A recent exception that considers nonparametric fractional imputation outside
of the complex sample design setting is Yang et al. 2013.) This is the case despite the rapid
development and increasing popularity of MI. We also consider MI for incomplete binary
variables, with a focus on rare outcomes. It is well known that maximum-likelihood
estimation of logistic regression models typically suffers from small sample bias, the
degree of which is strongly dependent on the number of sample cases in the less frequent
of the two categories (King and Zeng 2001). Thus when the dependent binary variable
represents the occurrence of rare events, the logistic regression coefficients can be
substantially biased even with a simple IID data structure. Random effects logistic models
are commonly used for fitting clustered binary data; however, these models rely heavily on
asymptotic theory assumptions, which may not be met in sparse samples. All these issues
might extend naturally to the missing-data context. As shown by Zhao and Yucel (2009),
sequential MI for binary data missing completely at random in a multilevel setting suffers
from severe bias and poor coverage in estimating probabilities that are close to 0 or 1,
particularly when the intraclass correlation is high.

The objectives of this article are: i) to develop a two-step synthetic MI method as a way
to simultaneously account for stratification, clustering, and unequal inclusion probability;
and ii) to demonstrate the effectiveness of the new method with respect to quantile
estimation and logistic regression for binary rare events data as compared with existing
fully parametric imputation strategies. Section 2 discusses the imputation strategies under
three different models: simple random sample, fixed effects for clusters/strata, and random
effects for cluster/strata. Section 3 introduces the newly proposed procedure and the MI
inference rules for quantile estimation under this method. Section 4 presents a Monte
Carlo simulation study as the validation tool to assess the repeated sampling properties
of MI under the various approaches. Section 5 applies different MI procedures to the
analysis of body mass index on youth data from the third National Health and Nutrition
Examination Survey (NHANES III). Some concluding remarks follow in Section 6.
We focus on the two-PSU-per-stratum design in this chapter, although the methods we
develop can accommodate any number of PSUs per stratum.

1.1.  Fully Parametric Imputation Methods for the Two-PSU-per-Stratum Design

Here we briefly describe fully parametric multiple-imputation techniques with complex
sample design features incorporated to different degrees. We assume the missing data Y; is
a member of the exponential family, and that there are fully observed covariates X;
(a (p + 1)-dimension vector) such that g(E(Y;|X;)) = X,;8 for a known link function g(-)
(e.g., g(u) = log(u/(1 — u)) for binary outcomes (logistic regression), g(u) = log(u) for
count outcomes (Poisson regression), or g(u) = u for continuous outcomes (Gaussian
regression)).



234 Journal of Official Statistics

1.1.1. Standard Regression Model Assuming SRS

Based on the maximum-likelihood estimates [§ and the associated asymptotic covariance
matrix V(B) for the generalized linear model g(E(Y;|X;)) = X;8, the posterior predictive
distribution of the parameters can be constructed, which is then used to impute the missing
values (Rubin 1987, 169—170). Point and variance estimates of the regression parameters
can then be obtained using the usual MI combining rules (Rubin 1987, 76). For the p "
component of the regression parameter:
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where m = 1,. . ., M imputations are taken from draws widely separated to practically

eliminate autocorrelation. Multivariate combining rules for the joint distribution of B are
available as well (Schafer 1997, 112-118).

1.1.2. Fixed-Effects Model (FX_APR)

Compared to the predictive model using standard generalized linear regression, we can add
dummy variables indicating stratum and cluster memberships to account for stratification
and clustering effects. Note that we also need to include the log transformation of sampling
weight as a predictor if the missing-data mechanism depends on weights to make the
imputation model truly appropriate. The model takes the following form:

g(E(YilX)) = XiB+ Diy + Em+ [{log (w)], 4)

where D; is a 1 X (H — 1) row vector of dummies representing the H strata, and E; is a
1 X Q row vector of dummies representing the clusters nested within each stratum. Note
that Q = Y ,0,, — H, where Q,, is the number of clusters in each stratum; in the case of the
two-PSU-per-stratum case, Q = H. The parameter space under this model is expanded as
0 = (B.v,m,{), and the steps for imputation are similar to those in the SRS setting.

1.1.3. Mixed-Effects Model (RE_APR)

As there are only two PSUs selected from each stratum, it is not feasible to model clusters
as random effects separately within each stratum. Here we pool all Q + H clusters in the
sample and model them using a single random-effect term. The imputation model is
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specified as follows:
g(E(YjIX)) = X;B+ Djy+ u; + [Llog (wy)], )

where u; ~ N (O, aﬁ) is a random intercept term representing cluster effects, for
i=1,...,(Q+ H), and oﬁ denotes the between cluster variance. Other terms are as
previously defined. (In the two-PSU-per-stratum case, Q + H = 2H.)

2. Synthetic MI Using the Weighted FPBB for Stratified Samples

In this section, we develop the two-step multiple-imputation methodology for a stratified
two-stage sample design where a combination of complex sampling techniques are
considered, namely, stratification, clustering, and unequal inclusion probability. We
develop methods for an unrestricted number of clusters per stratum, but for our simulations
and application we focus on the special case of two PSUs selected per stratum, which
mimics the form of a public-use dataset that is commonly released for analyses.

2.1. Synthetic Data Generation to Account for Complex Sample Designs

Consider a finite population P, which is stratified into H strata with N), PSUs in the /"
stratum, and hence the population size of PSUs is ZleN » = N.Forthe h th stratum, select
n;, PSUs with/without replacement from some probability sampling plan, independently
across strata, and hence the total sample size of PSUs is Zlenh = n. Subsampling of my,;
elements (treated as the ultimate sampling units in this example) from a total of M, is then
conducted within the i " sampled PSU of the & * stratum fori = 1,. . .,n,,h = 12,. . . H.
Hence the overall sample size and population size of elements are Zf:lzl'.ilmhi =
Zthlmh =m and EhH:IZ?QIMh,- = Z;’:]Mh = M, respectively, where my, and M, are
the sample size and population size of elements for the 2™ stratum, respectively. The
population consists of four types of survey variables: a single outcome Y, a single covariate
X, a design matrix Z = [S,C,w] including the stratum indicators (S), the cluster indicator
(C) and the sample weight (w), and the response indicator R. Let D = (Dy, D,,) =
{(Ynij, Xnijs Znij, Ruig),h =1, . .., Hii=1,... Ny, j=1,...,My} denote the popu-
lation of values measured on the survey variables, which is divided into the sampled
component (D;) and the nonsampled (D,,;) component.

We generate synthetic populations using a two-stage procedure. The first stage
accommodates stratification and clustering and the second weighting. We have two broad
approaches. The first, which we term SYNI, assumes that first-stage (cluster-level) and
second-stage (element-level) sample weights are available for the analysis and implements
a weighted FPBB at each level to generate the synthetic population. The second, which we
term SYN2, assumes that only final weights are available for the analysis; it uses a
Bayesian bootstrap to account for stratification and clustering at the first stage and the
weighted FPBB to account for the final weight at the second stage.

2.1.1. Double-Weighted Finite Population Bayesian Bootstrap (SYN1)

For the h"™ stratum, let ten and t,,, index the sampled and nonsampled clusters,
respectively, and {b Looobh . b g=1,...,r,) bethe r, (1 =r,=N,) distinct
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matrices of real numbers each of dimension 5% | X [b? | with no row vectors in common.
Each cluster in the stratum can take the form of one of b %s. Let t;,; = g when the i i " cluster
takes on the values of b7, for i=1,...,N, Assume n, = r;, and my; = ||b™"|| (the
number of distinct row vectors in b **) for convenience of exposition. Let wy (i) be the
sample weight of the i”" sampled cluster in the ™ stratum which equals b9, for
i=1,...,m. Alsoletw, .,D;;(j) be the sample weight of the j th sampled element in the
i sampled cluster which equals b;j'h", forj=1,...,my. Finally, let c, (¢) and c, (q) be
the number of sampled and nonsampled clusters that equal b4, and C; D, h(k) and c "D, h(k)
be the number of sampled and nonsampled elements that equal b i
It can be shown (cf. Zhou 2014) that, within a stratum h, the Polya posterior for the
counts of distinct unobserved elements D, ;, is given by

{10, {rov @)/mom, @} }
{T@W/Tu}

{1m, {Tovy o, 00/T0v,0,60 } |
* {TM)/T(my) } '

P (Dns,h |Ds,h) =

(6)

where wy(q) = w,, (q) + cts (q) and w,/D h(k) Wi D, \h(k)+cthD ](k) for my, =

c ,h’ p,, (k) and m, = =Y c th D, (K)- The full posterior is then given by
the product of the posterlors w1th1n each stratum, since these strata are independent and all
strata in the population are in the sample:

mlD Hl 1 ns,thx,h) . (7)

A Monte Carlo procedure to simulate from this posterior distribution is then given as
follows:

(i) Draw the N, — n;, nonsampled clusters in the population based on the Polya
posterior distribution independently for each stratum. Each of the sampled clusters is
resampled with probability

N —
w,,\.,,,<i)—1+lh,-,k_1><( - ””)
h k=1,... Ny—nm+1, (8)

N, — ) )
Nh—nh+(k—1)><<hnh)
ny,

Shi =

where [, is the number of times that the i ™ cluster in the 2™ stratum has been
" sampled
cluster in the & stratum which is normalized to sum up to the total number of clusters,
that is, ", wy (i) = Np.

(11) From Step 1, form a populatlon of clusters {ci1, C12s -+ o5 Clpp c?], 612, R
C]NI —nys - s CHI CHD, « + o CHnyp cH],cm, .. CHNH b Record the number of times

resampled at the (k — 1)”' resampling, and Wt%h(l') is the weight for the i

each of the clusters from the original sample appears in the FPBB population of clusters,
denoted by 7,,i=1,...,n,h=1,...,H., and ZhHZIZ;LTm = N. Then update
the within cluster element-level conditional weights as follows: W;Ihi = Wilpi X Thi,
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i=1,...,n,h=1,... H, where wy,, is the inverse of the conditional probability
that element j is selected given cluster i in stratum / is selected. Now pool all elements
from these clusters together and treat them as a single FPBB sample (i.e., as if they
have no stratum or cluster boundaries). Note that this FPBB sample has the same
sample size m = ZhH:, > i my; as the original sample, but different sampling weights.
We then once more apply the weighted FPBB to these pooled elements to generate
M — m units from the m units in the FPBB sample. We resample from each of the
resampled clusters M — m elements, cycling through M — m times and resampling
with probability

s M—-—m
Wi ~ 1+ lhij,k*l X
k=1

m
A = =1,...,.(M—m+1), C)]

M—m\’
M—m+(k—1)><( >
m

where [,;;x is the number of times that the j " element in the i " cluster in the & ™ stratum
has been resampled at the k ” resampling, and Wjri s the updated conditional weight for
the j ™ element in the i " cluster in the i ™ stratum. Again, they are normalized to sum up
to the total number of units in the entire population, that is, Zlez?il ;":hl Wi = M.
Thus we create a single synthetic population. Repeat Step 2 B times to obtain B FPBB
synthetic populations.

(iii)) Repeat Steps 1-2 L times to obtain L bootstrap samples, yielding L X B

FPBB populations Pj,) = (Pff’b")obs,Pf}Z’)m), I=1,...,L b=1,. . .B, each of which
consists of both responding elements and nonresponding elements on a vector of
variables {Y,X,Z,R}.

2.1.2. Bootstrap — Weighted Finite Population Bayesian Bootstrap (SYN2)

Because we often do not know the first- and second-stage weights in public-use datasets,
we consider an alternative to the procedure proposed in Subsection 2.1.1. Rather than
obtaining a sample of clusters from a draw from a Polya posterior, we use replication
methods (Rust and Rao 1996) to capture the cluster-level sampling variance. The final
sampling weights instead of the adjusted element-level conditional weights are then used
directly as input in the second-stage weighted FPBB. We use Rao and Wu’s (1988)
rescaling bootstrap, which is a generalized extension of McCarthy and Snowden’s (1985)
“with replacement bootstrap”. Once the PSUs have been sampled, we continue with
the weighted FPBB approach to complete the synthetic population data generation.
The proposed procedure is as follows:

(1) Select a sample of nh = n, — 1 PSUs from the parent sample in each stratum via
SRSWR sampling;

(ii) Apply the “ultimate cluster principle” (Wolter 2007), that is, once a PSU is taken
into the bootstrap replicate, all elements in that PSU are taken into the replicate also.
Thus we obtain our first bootstrap sample;

(iii) Repeat the previous steps L times to obtain L bootstrap samples {Boot_l,
I=1,...,L};
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(iv) Within each bootstrap sample, update the element-level sampling weights as:
= J—’_’lwhij, if the i PSU selected in the bootstrap sample
Whii = Whij X (Thi %) =

h

= 0, if the i” PSU not selected in the bootstrap sample

As th] itself implicitly carries over the strata and PSU information in addition to
unequal inclusion probability, we can drop the subscripts hi henceforth by pooling all
elements in the bootstrap sample regardless of which stratum and PSU they originally
came from. Normalize w;s to sum up to m : Zmzlw] =m’, where m s the bootstrap
sample size.

(v) For the 1™ bootstrap sample, [ = 1,. . .,L, apply the weighted FPBB algorithm to
create an entire population D = (Dm, DS) based on the posterior predictive distribution

of elements in the nonsampled population D, = {(Y,X;,Z;, R).j=m +1,....M}
given the elements in the bootstrap sample D; = {(Yij/’aZij/‘)vj =1,... 7m}
Operationally, we draw a Polya sample of size M =M —m from
mult(M*;)\l, .. .,)\K) where the selection probability A,k =1,...,K is a function
of w;:
. M
A = L k=1,.... M +1, (10)

M*+(k—1)x(£>
m

Repeat Step (v) for B times to obtain L X B FPBB populations.

2.2.  Imputation of the Synthesized Populations

Once the set of FPBB synthetic populations P®" = {Pg);, l=1,...,L,b=1,... 78},
where PEIbg = (Y Eégmis,P&;obs) are creat@d using either the SYN1 method or the SYN2
method, we generate imputations P"7 = {Pglb)a),lz 1,....L,b=1,...,B,a=1,...,A

from the posterior predictive distribution p(Yg,;misng,))obx) based on a parametric model
that does not condition on sample design features, that is, a model taking a form similar to
the SRS model given in Subsection 2.1. We consider imputations based on the covariate
(X) only (SYNI1_srs or SYN2_srs) or imputations that include the log of the sample

weights in the linear predictors (SYN1_Iwt or SYN2_Iwt).
To obtain the MI inference, denote the observed set of synthetic populations by Pg =

{P&;ahs,b =1,...,B,l=1, .. .,L} and the imputed set of synthetic populations by
Py = {Yzlbgl)mml: I,...,L,b=1,...,Bja=1,...,A}. The MI point estimator for

the population statistic of interest Q (mean, regression estimator, quantile) is then given by
the mean of the /ba ™ point estimators:

O =773 3 e an

b b
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The MI variance estimator is:

Vi =(1+L" "YWL =(0+L" ‘)—Z 01— Owr)’, where (12)

~ 1 ~
0= ﬂzh:zu:tha-

We then construct the 95% interval estimate for quantiles based on ¢ reference distribution
with degrees of freedom equal to min{vwm =y — H, vy, =L— 1}. These results
arise from the fact that, by the standard Rubin (1987) MI combining rules, we have

OIP"™ ~t; (0, (1 + L™ HV,), (13)
- ~ - \2 A
where QO = %ZI oV, v, = ﬁZI(Q(” — Q) and Q0¥ = hmB—moBLzb:za:lea.

Replacing O with its finite simulation estimator 0, replaces Q; with Ou and gives
the results above. A complete theoretical justification for (13) is provided in Dong et al.
(2014) and Zhou (2014). Some intuition of the result can be gained by noting that the
generation of the synthetic population sets the within imputation variance to 0 so that the
posterior variance of Q can be obtained using the between-bootstrap variance only.
Moreover, (11) assumes that E(G,,) = O — a result guaranteed by our Bayesian bootstrap
estimator if the imputation model is also correct — as well as a sufficiently large sample
size for the ¢ approximation is reasonable.

Lo (1988) showed that the variance estimator for the FPBB mean in a simple random
sample setting should be inflated by the factor (ﬁ). In the double-weighted FPBB (SYN1)
setting, a small sample correction to the variance estimate thus needs to be used when the
number of clusters per stratum is small. When n;, = a is a constant across all strata, we use
””“(1 + L") V,; otherwise we suggest "”“(1 + LY vy, where i1, = H 'S .

The Appendix provides the sample R code used to conduct the analyses in the
application in Section 4 and can easily be adapted to other settings.

3. Simulation Study

We conducted a simulation study to investigate the performance of the proposed method
for incorporating stratified cluster-sampling effects in multiple imputation. We targeted
three population statistics: 1) population quantiles, 2) proportions of binary event data, and
3) logistic regression parameters relating the covariate to the binary data. The simulation is
a 2 X 2 factorial design based on the following factors:

1) keeping the first-stage sampling plan constant, we let the subsampling rate f> of
elements within sampled clusters be
a) independent of or
b) dependent on the stratum effects, and
2) assume that
a) the missingness on the Y-variable (continuous or binary) depends only on the
covariate (X) (MAR_X), or
b) depends on both X and the final sampling weight WIMAR_X,W).
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We focus on a two-PSU-per-stratum sample design, both because it is a common design,
especially in public-use settings, and because it is a “limiting case” in terms of the number
of PSUs per stratum. In addition to the two variants of our synthetic MI estimators, we
consider standard parametric MI under the SRS, appropriate fixed-effect (FX_APR), and
appropriate random-effect (RE_APR) models.

3.1. Data Generation

Let i be the index for strata, j be the index for clusters, and k be the index for elements.
Suppose there are 50 strata in the population. First, the number of PSUs in each stratum is
randomly determined according to a uniform distribution, that is, C; ~ Unif(2,54),
i=1,...,50; second, the number of population elements within PSUs is randomly
generated as N;; ~ Unif(20,80),i=1,...,50,j=1,. . .,C;. Thus we obtain a population
of size N = 67385. The complete data for four survey variables ¥ = (¥ Y5, Y3, YT are
generated from a superpopulation model according to a two-step process, In the first step,
Y, and Y, are randomly selected from a bivariate linear mixed-effects model; let N,(-)
denote a bivariate normal distribution function:
gl o2
3= l ] (14)
o2 On

Let B; = B, = 15 be the fixed covariate effects, S; = ébe the fixed stratum effects, and let

B1 + S + ur; + e

Yiijk s
~ N(u,2), where u =
Yo 2, 2) * Bo + uoj + &2k

.. 1T .. 1T
[”111 ”21]} and [81111( 82Uk] be the random cluster effects and random error terms

drawn from two independent bivariate normal distributions: N,(0,%,) and N,(0,,).
Elements of 2, are set as: oﬁ] =4, oﬁz =1, 0y, = 0.2, and elements of X, are set as:
0%1 =4, 0'3:2 = 3, 04, = 1.732. This results in conditional intraclass correlations (ICC)
of Y, and Y, as py, = 0.5 and py, = 0.25 (note that the unconditional ICC for the two
variables may be smaller than these values). In the second step, a random-effects logistic
regression model (Anderson and Aitkin 1985; Stiratelli, et al. 1984) is used to simulate two
binary outcome variables Y3 and Y, as a function of Y,. Under this model, a random effect
is added to the linear part of the logistic regression model for each element in the cluster.
The conditional mean of Y35 and Yy is

e aptaSitarYojtu. i

e = E(Y el Yo, u.i7) = Pr(¥ e = WYy, u.5) = 1 1 cantaS tatatuy’

s)

where us; ~ N(0,62), Usij ~ N(O,102) and o = (ao,al,az)T is the vector of fixed covariate
effects. We fix a, = 1.5 and vary g and «; to obtain two different binary variables Y3,
and Yu;, with either moderate (ap= —5,0; = —1.5) or rare probabilities
(ap = —8,a; = —6). Given u.; the Y. s in the cluster are independent Bernoulli
variables, that is, Y. lu.; ~ Bern(y).

Figure 1 shows the correlations between variables in the simulated population, with the
different shades of grey representing different degrees of association between any of the
two variables. The darker shades indicate higher correlation. All survey outcome variables
(Y1,Y3,Y4) have a moderate to strong (0.2~ 0.8) stratum effect (H or strID) and clustering
effect (U,,U;,Uy), indicating that accounting for these effects in the analysis of missing
data is essential.
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Fig. 1. Correlation between variables in the simulated population (darker shades = higher correlation)
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3.2. Sample Design

Within each stratum, we draw a two-stage cluster sample according to the following
procedure: first, we draw a sample of two PSUs without replacement with probability
proportional to the cluster size fi; = 221\17\/, Second, we sample elements from each

sampled cluster using two different subsaﬂlpling schemes:

1) sampling probability independent of S; which is defined in (14): SRS with an equal
sampling fraction of f; = 1/5; and

2) sampling probability related to S;: SRS with varying sampling fractions across strata,
that is for; = expit(—0.8 — 0.127S;), where expit(x) = 1/(1 + e ().

An average of 1,122 elements are selected in each of the 200 simulation replications. The
distributions of sampling weights are shown in Figure 2. The distributions of sampling
weights under the two subsampling schemes are generally very similar with somewhat
more skewness under subsampling scheme 2.

3.3.  Imposing Missingness

Throughout the simulation study, we assume that Y, is always completely observed and we
impose missing values on Y, Y3, and Y, independently according to the following deletion
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Fig. 2. Distribution of weights under the two subsampling schemes

function conditional on Y, and/or log transformation of the weight:

Ap + AxYo + Al
Pr(R=O|Y2,W)— exp (Ag + A1*Y; + Axxlog (W))

= 16
1 +exp (Ao + A1*Y2 + A log (W)’ (16)

where R is the response indicator and W is the overall sample weight. Setting A, = 0, we
obtain the first MAR mechanism (i.e., MAR_X, note that we treat Y, as a covariate X here),
under which we further set Ag = 3.42, A} = —0.2 and Ay = —2.58, A; = 0.2 for deleting
values on Y, and Y3, Y4, respectively. Setting A, = — 0.6, we obtain the second MAR
mechanism (i.e., MAR_X,W), under which we fix A; =0.2 and set two values on
Ao (= —0.274 or —0.33) for deleting values independently on all three outcome variables
under subsampling scheme 1 and subsampling scheme 2, respectively. All deletion
functions result in approximately 40% missingness on each variable.

3.4.  Parametric Multiple Imputation

Both simple random sample SRS (including SRS, SYN1_srs and SYN2_srs) and fixed-
effects model FX_APR can be implemented in R (R Core Team 2013) using mice routines;
for the logistic model associated with the binary outcome, the method ‘logreg’ must be
specified. We use the pan package in R for the mixed-effects imputation (RE_APR) for the
missing continuous outcome; logistic mixed-effects imputation is programmed in SAS for
the missing binary outcome, as there is no missing-data software package readily available
for use.
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3.5.  Parameters of Interest and Inference

We focus on inference for the following population parameters: the mean of the
continuous variable Y;, the mean of the binary variables Y; and Y, (i.e., Bernoulli
proportions), linear regression coefficients of Y} on Y5, logistic regression coefficients of
Y; (or Y,) on Y,, and the population percentiles of the continuous variable Y;.

Weighted analyses and sandwich variance estimators accounting for strata and clusters
are used to estimate smooth statistics (including proportions and regression parameters)
under the three fully parametric MI methods. For estimating quantiles of the distribution of a
continuous survey variable, we construct the sample-weighted point estimator with
confidence intervals based on the test-inversion method (Francisco and Fuller 1991). We
chose the test-inversion method instead of Woodruff’s method (Woodruff 1952) despite the
computational intensity, because the literature suggests that it may outperform Woodruff in
heavily stratified samples or in small-to-moderate-sized samples (Kovar et al. 1988). Based
on the ¢ imputed dataset, the empirical distribution function can be written as

lz Wh,'j[ (yzzb < y) + Z Wh,'j[ (y;g]) < y)]
Sr Sz
2w 7
N

where Sp and S; are subsets of the sample data S, consisting of respondents and
nonrespondents respectively. The estimator F(y) and its associated estimated variance
v(F(y)) can then be obtained using the variance estimator proposed by Francisco and
Fuller (1991) together with standard Rubin combining rules as previously described.
The sample y™ quantile estimator thus is Gy = (F)~!(y), with 95% asymptotic confidence
interval (CI) given by

[L,U] = [[F]‘ (y — to.0os/ var (ﬂq»)) ,[F17! (7 + fo.005/ var (F(qw))] . (18)

F@(y) = (17)

3.6. Results

Table 1 compares the average width X 102 and average coverage rates of the 95% CI of
q(a), where o = 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95, corresponding to seven
selected population quantiles. Among all methods considered, the SRS imputation model
yields the poorest coverage. This results from the compounding effects of biases and
variance underestimation, due to ignoring stratum effects and clustering effects
respectively. As we increase the dependence of both the sampling mechanism and
response mechanism on stratum effects and sampling weights, the performance of SRS
becomes even worse, as exhibited by the markedly increased RelBias and decreased
coverage rates. In addition, ignoring stratum and/or weight effects that are highly relevant
to either mechanism seems to impact the median and second and third quartiles more than
the tail quantiles under SRS, as evident in the relatively lower coverage rates in the right
part of Table 1.
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The FX_APR model (Reiter et al. 2006; Rubin 1996; Schenker et al. 2006), generally
performs fairly well in our simulation study with respect to the estimation of population
quantiles. There is some modest underestimation of the small percentile quartiles with the
second-stage sampling constant. The RE_APR model also performs well, with the
exception of moderate to high overcoverage when the second-stage sampling probability
is associated with the stratum mean and the missingness mechanism.

In contrast, our synthetic MI (SYN?2 in particular) compares favorably with all of its
competitors, and in most cases yields results comparable to the RE_APR, which is
regarded as a “gold standard” as it is compatible with the data-generating mechanism
(Meng 1994). There is some undercoverage when the stratified double-weighted FPBB
estimator (SYN1) is used, perhaps due to the fact that the Lo small-sample adjustment is
not as accurate when n, = 2. However, use of a stratified bootstrap-weighted FPBB
estimator (SYN2) generally eliminates this issue. Although an imputation model assuming
SRS suffices for the synthetic MI method in most scenarios, we need to include the
sampling weight as a predictor when the outcome Y and the response indicator R are
strongly associated with each other through the sampling mechanism /, as is the case with
the second subsampling scheme, when both the missingness indicator and the second-
stage sampling rate are functions of the stratum mean. .

Tables 2 and 3 compare the absolute relative bias relbias = 100 X % %, RMSE
and 95% nominal CI coverage for the estimated mean/proportions of Yy, Y5 and Y, and the
slopes of the three outcome variables on Y, respectively. (Ocompiere is the estimated
parameter with complete data, and 6 is the estimated parameter under one of the different
MI methods.) As in the estimation of the quantiles, the SRS imputation model is biased
and has poor coverage as it ignores stratum and cluster effects. Again, dependence of
subsampling on stratum effects and dependence of response on sampling weights damage
the performance of SRS even further.

FX_APR generally performs well in estimating the mean of a continuous variable
(Y1) and a regular binary variable (Y3) with moderate probability as well as the slopes.
However, it fails for proportion estimation for rare events data (Y,), yielding biased
point estimates and less than nominal coverage throughout all scenarios. One
interpretation might be that overfitting occurs when too many dummies are included to
account for fixed strata and cluster effects, yielding dummy variables where all
observed cases are 0 or 1. In this case, “complete separation” yields unstable coefficient
estimates, damaging the predictive efficacy when the fitted model is used for drawing
missing values. The problem is particularly prominent when the logistic fixed-effects
imputation model is used along with the current sampling design, where an average of
only ten elements are selected per PSU within each stratum; this results in even more
substantial biases on ¥, than the SRS model. (Use of a Bayesian approach with an
informative prior of the form #,(0,2.5) on the fixed-effect parameters using the mi
function in R (Gelman et al. 2008) reduced but did not remove the impact of complete
separation. A relative bias of 12—13% remained for the estimation of of ¥, under the
MAR_X missingness mechanism, with 95% nominal coverage of 89%, while a relative
bias of 17-22% remained under the MAR_X,W mechanism, with nominal coverage
of 84%.) The random-effects model RE_APR more effectively avoids the overfitting
issue through shrinkage effects: note that under RE_APR, we pooled all PSUs from all
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strata as if there were no strata bounds, and the stratum effects can be thought as being
implicitly modeled in the random intercept term (u; = I), + up ;).

As in the quantile estimation setting, our synthetic MI compares favorably with all of its
competitors, and in most cases yields comparable results to the RE_APR for estimation of
means and logistic regression parameters. In the case of rare events data, our proposed new
method increases the analytical size through generating synthetic population data thus is
even superior to RE_APR, consistently yielding negligible biases and close to nominal
coverage. The impact of ignoring the weights in the imputation (under MAR_X,W
mechanism) is less than in the quantile estimation setting, with the exception of the
estimation of the continuous mean Y, where including the weight is required to obtain
approximately correct coverage.

A disadvantage of the method lies in its relative inefficiency for estimating nonlinear
parameters (regression coefficients) (e.g., the synthetic MI results in unbiased point
estimates but a larger RMSE than the two model-based MI methods). This is typical in that
nonparametric methods cannot typically compete with their fully parametric counterparts
under the correct model, and is a tradeoff made to improve robustness to model
misspecification.

4. Application to NHANES III

We apply our method to the National Health and Nutrition Examination Survey
(NHANES) IIT (1988 —1994), which is designed to provide national estimates of the health
and nutritional status of the civilian noninstitutionalized population of the United States
aged two months and older (National Center for Health Statistics 1996). The data are
obtained from a stratified, multistage area probability sampling design with oversampling
of certain age and ethnicity groups. For confidentiality and computational reasons, the
public-use data provides two pseudo-PSUs per stratum. Another unique feature of
NHANES is that data are collected through both interview and actual physical
examinations of the sampled persons. Both unit- and item-level nonresponse occurs in
both components of the survey, and there is a particularly high missing rate on the body
mass index (BMI) measure for youth data in the physical examination component (30%).
As a popular measure of overweight status and obesity, the percentiles of BMI for children
and youths are of particular interest for public health reasons. The upper percentiles and
the lower percentiles are also closely monitored for overweight and underweight status,
respectively. As a result, we restrict our analysis sample to children and youths from two
months to 16 years of age. The Appendix provides the sample R code used to conduct the
analyses below.

We estimate population quantiles (from 0.05 to 0.95 with an increment of 0.05 along
with two extreme percentiles: 0.03 and 0.97) of BMI for children and youths by gender.
We also estimate the proportion of such a population being covered by health insurance,
overall and by race. To assure congenial inference, we include the following variables that
are either of primary interest in the substantive analysis or are important predictors for
BMI measures in the imputation model: age, gender, race, education, mother’s BMI,
father’s BMI and family income (Yuan and Little 2007). We compared three different
methods in our treatment of the missing data:



Zhou et al.: Synthetic MI Procedures for Complex Samples 249

1) complete case analysis (CC) with design-based estimation;

2) fully parametric model-based MI using design-based estimation, within which we
apply both an imputation model assuming SRS and the appropriate model conditional
on all three sample design features (i.e., dummy variables indicating cluster and stratum
memberships as well as the log transformation of sampling weights); and

3) our proposed finite population Bayesian bootstrap method (using SYN?2 since we do
not have separate weights for the first and second stages of sampling), and including the
log of the weight in the imputation model.

Estimates of the median BMI and the proportion of children with health insurance are
given in Table 4. The CC method appears to overestimate the median of both the BMI
measure and health-insurance coverage for the full sample and race domains relative to the
MI approaches, and yields the widest confidence intervals or largest standard errors as a
result of decreased sample size. Then again, the median of BMI obtained from synthetic
Ml is quite similar to that from the model-based MI, while demonstrating some advantages
in efficiency by yielding shorter intervals. The generally lower health-insurance coverage
estimates under the synthetic MI relative to model-based MI might be attributable to the
fact that the synthetic MI are able to capture certain interactions between the sample
design variables and the regular covariate matrix which are not explicitly modeled in the
fully model-based MI.

Figure 3 displays a visual comparison of the percentile estimation for the three methods
under consideration. We look at how those methods perform in three different percentile
ranges by gender domains: the middle percentiles from 0.5 to 0.75, the upper percentiles
from 0.90 to 0.97 and the lower percentiles from 0.03 to 0.1. We chose these percentile
ranges because the extreme lower and upper percentiles of BMI are typically used to
monitor under- and overweight for children and youths, and there is evidence that gender
difference exists in these BMI percentile ranges (particularly when age is considered, i.e.,
growth patterns in BMI). In general, both MI methods result in very similar BMI estimates,
and they are lower than those obtained from CC analysis. This makes sense since our
comparison of the distributions of age for complete cases and for missing cases on the BMI
measure revealed that younger children are more susceptible to missingness, and therefore
CC analysis tends to overestimate BMI by excluding those younger missing cases. The
inclusion of the age variable as a predictor in the imputation model corrects such an

Table 4. Alternative methods in estimating the median of BMI and the health-insurance coverage rate, for full
sample and by gender and race, respectively

Methods
Variable Domain CC Model-based MI ~ Synthetic MI
BMI Overall 17.2[17.1, 17.4] 17.1[16.9,17.3] 17.0 [16.9, 17.2]
Male 17.2 [16.9,17.4] 17.0[16.7,17.2] 17.0[16.8, 17.2]

Female  17.3[17.0,17.7] 17.1[16.8, 17.4] 17.1 [16.8, 17.3]
Health insurance  Overall 0.785 (0.020) 0.778 (0.019) 0.761 (0.019)

White 0.822 (0.018) 0.815 (0.017) 0.799 (0.016)

Nonwhite  0.645 (0.036) 0.643 (0.033) 0.634 (0.036)
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Fig. 3. Comparison of methods for quantile estimation of BMI, by gender

overestimation. The magnitude of this correction for boys is bigger than that for girls in
estimating the lower percentiles (0.03, 0.05). When examining a report on BMI-for-age
percentiles by gender released by the Center for Disease Control and Prevention (http://
www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf), we find that baby boys (corresponding
to the lower quantiles here) have a relatively higher BMI, which might be at least part of the
explanation.

5. Discussion

While multiple imputation has become a popular option for the analysis of missing data, some
issues remain unresolved in its practical application to complex sample survey data. The
complex features of sampling compounded with nonresponse in survey data often result in a
rather complicated data structure, which prevents the straightforward application of the
standard MI techniques (such as a multivariate normal model assuming simple random
sampling). In this article, we develop a general-purpose approach to account for various
design features in a highly stratified two-stage sample using a two-step synthetic MI
framework. We have focused on evaluating the performance of the new method compared
with existing methods with respect to several missing-data issues frequently encountered in
large population-based socioeconomic and epidemiological studies. These include:
i) accommodating stratification and multistage sampling in the imputation process; ii) the
employment of nonstandard or non-normal imputation models for estimating probabilities of
rare events; and iii) the estimation of population quantiles with multiply imputed data. (For
examples that consider alternative sample designs, such as independent unequal probability of
selection designs, or cluster and weighted designs without stratification, as well as estimators
of quantities such as means and linear regression parameters, see Zhou (2014).
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Although multiple imputation is technically valid only for maximum-likelihood
estimates (Kim et al. 2006), we demonstrate that the coverage properties of the proposed
method are fairly good for nonsmooth statistics. Specifically, our stratified variations of the
weighted Polya posterior exhibits robustness to the loss function for estimating the upper
and lower tails of the distribution function where even the appropriate model-based method
(i.e., FX_APR) fails. In contrast with existing fully parametric MI methods, most of which
perform poorly when applied to rare outcome binary data, the proposed method yields quite
stable parameter estimates regardless of the rarity of the outcome. An alternative approach
for MI estimation of quantiles that relies on estimating the CDF using a smooth regression
curve is given by Wei et al. (2012), and could be used at the second-stage imputation step
after the weighted finite population Bayesian bootstrap has been implemented.

It is worth stressing that our method requires only the most straightforward form of
imputation modeling and combining rules for inference. This is because the effects of the
complex sample design and the effect of estimating the nuisance parameters in imputation
(e.g., regression parameters when the main quantity of interest is a quantile of Y) are both
correctly reflected in the replication variance estimation given the design-reversed and
multiply imputed synthetic populations. Any higher-level and nonlinear interactions in the
covariate data, including those with the weights, clusters, or strata, will automatically be
captured in the synthesizing step. However, when the imputation is conducted
parametrically, as it is here, such design-variable interactions will still need to be
considered if they are associated with the missingness mechanism, although the impact of
misspecification will generally be attenuated. Similarly, not-missing-at-random
mechanisms that are dependent on the missing values are not accommodated in this
framework. Finally, we note that assuming SRS for imputation results in correct inference
only at the population level: correct inference for domain estimation requires that the
domains be included in the imputation model. For example, if variables X and Y are
positively correlated in stratum A but negatively correlated in stratum B, this interaction
will be correctly averaged over for the population inference using weighted FPBB, but if
this interaction is of direct interest, it will be attenuated unless incorporated in the
imputation model for the synthetic population. Further, imputing under SRS does not
absolve the imputer from correctly modeling the data. To give a trivial example, assume
data are sampled from two strata denoted by Z = {1,2}, where P(Z=1)=P(Z=2)= .5
in the population, and Y|Z=1 ~ N(5,1) and Y|Z=2 ~ N(—5,1), and stratum 1 is
oversampled with P(I|Z = 1) oc .8 The method proposed here will correct the imbalance
between the strata, and assuming a two-component normal mixture model will allow
imputations of Y that maintain the correct marginal distribution of Y with equal-sized
components. This will allow for correct estimation of percentiles, whereas simply
assuming a unimodal normal distribution will only consistently estimate the mean. Correct
estimation of percentiles within the strata will require also conditioning on the strata, as
mentioned above. We note that one advantage of the proposed method is that, with design
issues cleared out of the way, more focus can be given to developing missing-data models.

We also note that the method developed here does not allow for the release of a small
number of multiply imputed datasets to be combined using the standard Rubin rules.
It would be possible to publically release all L X B X A multiply imputed datasets to be
analyzed using the methods developed here, although this would typically involve
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hundreds to thousands of datasets. Methods to allow a more modest release, with minimal
impact on inference, are a topic for future research.

Future research will investigate the inferential properties of the proposed method in
situations where auxiliary information on all population units is available, using a
constrained version of the Polya posterior. Two other possible research directions include:
(i) extending the two-step synthetic MI framework to deal with unit nonresponse problems,
and (ii) extending it to deal with generating synthetic data for disclosure risk limitation.

Appendix: R Code for Using the Proposed Two-step MI Method on NHANES III

require(survey)
require(mice)
require(polyapost)
set.seed(seed #)

syn_bmi < -function(dt, N, Btl, Bt2, Mt){

##Step 1: Generate synthetic populations with missing data;
#Stage 1: Create bootstrap samples from the parent sample;

dsgn <- svydesign(ids = ~ predcl, strata = ~ pstrat, nest = TRUE, data =
dat, weights = ~ predwt)

dsgn.RW < -as.svrepdesign(design = dsgn, type = “subbootstrap”, replicates
= Btl)

dim(dsgn.RW$repweights)
repwt<<-as.matrix(dsgn.RWS$repweights)
repwt[repwt = =0]<-NA

dim(repwt)

#set up arrays to hold point estimates from bootstrap samples;
btm< -matrix(0,nrow = Btl,ncol = 3)

btqt<<-matrix(0,nrow = Btl,ncol = 21)
btqtm<<-matrix(0,nrow = Btl,ncol = 21)
btqtf<-matrix(0,nrow = Btl,ncol = 21)

for (j in 1:Bt1){
st.bb < -cbind(dat,repwt[,j])
#delete those units with zero weights for each bootstrap sample;
st.BB < -na.omit(st.bb)
#recode those 999 back to NA so that the mice package can be used for
imputation;
st. BB$pybmi[st.BB$pybmi = = 999] < -NA

#need to calculate the replicate weights;
Samwt < -st. BB[,9]*st.BB[,13]
#normalize again the adjusted weights;
Samwts < -Samwt*N/sum(Samwt)

np < -nrow(st.BB)
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ids < -seq(np)
ns < -N-np

##Stage 2: Create unweighted synthetic populations within each bootstrap sample;
#Set up arrays to hold point estimates from imputed unweighted synthetic populations;
fbm < -matrix(0,nrow = Bt2,ncol = 3)
fbqt < -matrix(0,nrow = Bt2,ncol = 21)
fbqtm < -matrix(0,nrow = Bt2,ncol = 21)
fbqtf < -matrix(0,nrow = Bt2,ncol = 21)

for(boott in 1:Bt2){
1 < -vector()
smp < -wtpolyap(ids, Samwts, ns)
#input the adjusted weights in the weighted Polya sampling algorithm;
for (k in 1:np){

1 < -c(Llength(smp[smp = = kJ))

}
#check if the vector of 1 sums up to the number of synthetic population size;
sum(l);

predY1 < -c(rep(st.BB[,1],1)) #bmi

predY2 < -c(rep(st.BB[,2],1)) #race

predY3 < -c(rep(st.BB[,3],1)) #gender
predY4 < -c(rep(st.BB[,4],1)) #income
predY5 < -c(rep(st.BB[,5],1)) #education
predY6 < -c(rep(st.BB[,6],1)) #mother’s bmi
predY7 < -c(rep(st.BB[,7],1)) #father’s bmi
predY8 < -c(rep(st.BB[,8],1)) #age

predwtl < -c(rep(st.BB[,9],1))

predlwt < -log(predwtl) #log of sample weight
predCID < -c(rep(st.BB[,12],1)) #cluster ID
predSTID < -c(rep(st.BB[,11],1)) #stratum ID

##Step 2: Multiple imputation of the unweighted synthetic populations;

#use the imputation model including log of weight as a predictor (syn_lwt);
templ < -data.frame(cbind(predY1, predY2, predY3, predY4, predY5, predY6,
predY7, predYS8, predlwt))

templ_imp < -mice(templ,method = “norm”, m = Mt)

ml < -complete(templ_imp, ‘long’)

ml$bmit < -exp(ml$predY1) #back transform bmi to its normal scale
mlmale < -subset(ml, predY3 = = 1)

mlfem < -subset(ml, predY3 = = 2)

multm < -cbind(as.vector(by(ml$bmit,ml$.imp,mean)),
as.vector(by(mlmale$bmit,mlmale$.imp,mean)),
as.vector(by(mlfem$bmit,mlfem$.imp,mean)))
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multqt < -sapply(with(ml,by(ml,.imp,function(x)quantile(x$bmit,
¢(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)
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multqtm < -sapply(with(mlmale,by(mlmale,.imp,function(x)quantile(x$bmit,

¢(0.03,seq(0.05,0.95,0.05),0.97)))),as.vector)

multqtf < -sapply(with(mlfem,by(mlfem,.imp,function(x)quantile(x$bmit,

¢(0.03,5eq(0.05,0.95,0.05),0.97)))),as.vector)
fbm[boott,] < -t(apply(multm,2,mean))
fbqt[boott,] < -t(apply(multqt,1,mean))
fbqtm[boott,] < -t(apply(multqtm,1,mean))
fbqtf[boott,] < -t(apply(multqtf,1,mean))
print(boott)
}

btm[j,] < -t(apply(fbm,2,mean))
btqt[j,] < -t(apply(fbqt,2,mean))
btqtm([j,] < -t(apply(fbqtm,2,mean))
btqtf(j,] < -t(apply(fbqtf,2,mean))
print(j)

}

smpm < -apply(btm,2,mean)

smpv < -(1 + 1/Btl)*apply(btm,2,var)
smpse < -sqrt(smpv)

smpqt < -apply(btqt,2,mean)

smpqtv < -(1 4 1/Btl)*apply(btqt,2,var)
smpqtse < -sqrt(smpqtv)

smpqtm < - apply(btqtm,2,mean)
smpqtvm < -(1 + 1/Btl)*apply(btqtm,2,var)
smpqtsem < -sqrt(smpqtvm)

smpqtf < -apply(btqtf,2,mean)

smpqtvf < -(1 4 1/Btl)*apply(btqtf,2,var)
smpqtsef < -sqrt(smpqtvf)

tt < -cbind(smpqt,smpqtm,smpqtf,smpqtse,smpqtsem,smpqtsef)

ss < -cbind(smpm,smpse)

write.table(tt,file = “D:/Dissertation/paper3/nhanes/synbmiqt_lwt.csv”,row.
names = FALSE,sep = ")

write.table(ss,file = “D:/Dissertation/paper3/nhanes/synbmimn_lwt.csv”,
row.names = FALSE,sep = ")

}

##Example##

syn_bmi(dt = dt, N = 100000, Btl = 50, B2 = 5, Mt = 5)
dt < -read.csv(“D:/Dissertation/paper3/nhanes/synbmi.csv’)

#Set the synthetic population size about 10 times the sample size;
N < -100000
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#Normalize the weights to sum up to the assumed synthetic population size;
dt[,“predwt”] < -dt[,“predwt”’]N/sum(dt[,“predwt”])

sum(dt$predwt)

#Recode the missing values to 999;

dat[is.na(dat)] < -999

6. References

Anderson, D. and M. Aitkin. 1985. “Variance Component Models With Binary Response:
Interviewer Variability.” Journal of the Royal Statistical Society, Series B: Statistical
Methodology 47: 203-210.

Cohen, M. P. 1997. “The Bayesian Bootstrap and Multiple Imputation for Unequal
Probability Sample Designs.” In Proceedings of the Section on Survey Research
Methods, American Statistical Association (ASA), Anaheim, CA, 1997, 635-638.

Dong, Q., M.R. Elliott, and T.E. Raghunathan. 2014. “A Nonparametric Method to
Generate Synthetic Populations to Adjust for Complex Sample Design.” Survey
Methodology 40: 29-46

Efron, B. 1979. “Bootstrap Methods: Another Look at the Jackknife.” Annals of Statistics
7: 1-26.

Francisco, C.A. and W.A. Fuller. 1991. “Quantile Estimation With a Complex Survey
Design.” Annals of Statististics 19: 454—469.

Kim, J.K., M.J. Brick, W.A. Fuller, and G. Kalton. 2006. “On the Bias of the Multiple-
Imputation Variance Estimator in Survey Sampling.” Journal of the Royal Statistical
Society, Series B: Statistical Methodology 68: 509—-521. Doi: http://dx.doi.org/10.1111/
j-1467-9868.2006.00546.x.

King, G. and L. Zeng. 2001. “Logistic Regression in Rare Events Data.” Political Analysis
9: 137-163.

Kovar, J.G., JN.K. Rao, and C.F.J. Wu. 1988. “Bootstrap and Other Methods to Measure
Errors in Survey Estimates.” Canadian Journal of Statistics 16: 25-45.

Little, R.J. and D.B. Rubin. 2002. Statistical Analysis with Missing Data, (2nd ed.).
New York: Wiley and Sons, New York.

Little, R.J. and H. Zheng. 2007. “The Bayesian Approach to the Analysis of Finite
Population Surveys.” Bayesian Statistics 8: 283-302.

Lo, A.Y. 1988. “A Bayesian Bootstrap for a Finite Population.” The Annals of Statistics
16: 1684—-1695.

McCarthy, P.J., and C.B. Snowden. 1985. “The Bootstrap and Finite Population
Sampling. Vital and Health Statistics.” Data Evaluation and Methods Research, Series
2, No. 95. Public Health Service Publication 85—1369, U.S. Government Printing
Office, Washington

Meng, X.L. 1994. “Multiple Imputation Inferences With Uncongenial Sources of Input.”
Statistical Science 9: 538—-558. Doi: http://dx.doi.org/10.1214/ss/1177010269.

National Center for Health Statistics. 1996. Analytic And Reporting Guidelines: The Third
National Health and Nutrition Examination Survey, NHANES III (1988—94). National
Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville,


http://dx.doi.org/10.1111/j.1467-9868.2006.00546.x
http://dx.doi.org/10.1111/j.1467-9868.2006.00546.x
http://dx.doi.org/10.1214/ss/1177010269

256 Journal of Official Statistics

Maryland. Available at: http://www.cdc.gov/nchs/data/nhanes/nhanes3/nh3gui.pdf
(accessed May 22, 2014)

Rao, J.N.K. and C.F.J. Wu. 1988. “Resampling Inference With Complex Survey Data.”
Journal of the American Statistical Association 83: 231-241. Doi: http://dx.doi.org/10.
2307/2288945.

Rao, J.N.K.C.F,, J. Wu, and K. Yue. 1992. “Some Recent Work on Resampling Methods
for Complex Surveys.” Survey Methodology 18: 209-217.

Reiter, J.P., T.E. Raghunathan, and S.K. Kinney. 2006. “The Importance of Modeling the
Sampling Design in Multiple Imputation for Missing Data.” Survey Methodology 32:
143-149.

Rubin, D.B. 1976. “Inference and Missing Data.” Biometrika 63: 581-592.

Rubin, D.B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Rubin, D.B. 1996. “Multiple Imputation After 18-+Years.” Journal of the American
Statistical Association 91: 473-489. Doi: http://dx.doi.org/10.2307/2291635.

Rust, K. and J.N.K. Rao. 1996. “Variance Estimation for Complex Estimators in Sample
Surveys.” Statistics in Medical Research 5: 381-397.

Schafer, J.L. 1997. Analysis of Incomplete Multivariate Data. London: Chapman and Hall.

Schenker, N., T.E. Raghunathan, P. Chiu, D.M. Makuc, G. Zhang, and A.J. Cohen. 2006.
“Multiple Imputation of Missing Income Data in the National Health Interview
Survey.” Journal of the American Statistical Association 101: 924-933. Doi: http://dx.
doi.org/10.1198/016214505000001375.

Stiratelli, R., N. Laird, and J. Ware. 1984. “Random-Effects Models for Serial
Observations With Binary Response.” Biometrics 40: 961-971. Doi: http://dx.doi.org/
10.2307/2531147.

Wei, Y., Y. Ma, and R.J. Carroll. 2012. “Multiple Imputation in Quantile Regression.”
Biometrika 99: 423-438. Doi: http://dx.doi.org/10.1093/biomet/ass007.

Wolter, K.M. 2007. Introduction to Variance Estimation. New York: Springer.

Woodruff, R. 1952. “Confidence Interval for Medians and Other Position Measures.”
Journal of the American Statistical Association 47: 635—646. Doi: http://dx.doi.org/10.
1080/01621459.1952.10483443.

Yang, S., J.K. Kim, and D.W. Shin. 2013. “Imputation Methods for Quantile Estimation
under Missing at Random.” Statistics and Its Interface 6: 369-377.

Yuan, Y. and R.J. Little. 2007. “Parametric and Semiparametric Model-Based Estimates
of the Finite Population Mean for Two-Stage Cluster Samples With Item Nonresponse.”
Biometrics 63: 1172—1180. Doi: http://dx.doi.org/10.1111/j.1541-0420.2007.00816.x.

Zhao, E. and R.M. Yucel. 2009. “Performance of Sequential Imputation Method in
Multilevel Applications.” In Proceedings of the Section on Survey Research Methods,
American Statistical Association ASA, August, Washington D.C., 2800-2810.

Zhou, H. 2014. “Accounting for Complex Sample Designs in Multiple Imputation Using
the Finite Population Bayesian Bootstrap.” Unpublished PhD Thesis

Received June 2014
Revised April 2015
Accepted April 2015


http://www.cdc.gov/nchs/data/nhanes/nhanes3/nh3gui.pdf
http://dx.doi.org/10.2307/2288945
http://dx.doi.org/10.2307/2288945
http://dx.doi.org/10.2307/2291635
http://dx.doi.org/10.1198/016214505000001375
http://dx.doi.org/10.1198/016214505000001375
http://dx.doi.org/10.2307/2531147
http://dx.doi.org/10.2307/2531147
http://dx.doi.org/10.1093/biomet/ass007
http://dx.doi.org/10.1080/01621459.1952.10483443
http://dx.doi.org/10.1080/01621459.1952.10483443
http://dx.doi.org/10.1111/j.1541-0420.2007.00816.x

