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Weighting procedures are commonly applied in surveys to compensate for nonsampling
errors such as nonresponse errors and coverage errors. Two types of weight-adjustment
procedures are commonly used in the context of unit nonresponse: (i) nonresponse propensity
weighting followed by calibration, also known as the two-step approach and (ii) nonresponse
calibration weighting, also known as the one-step approach. In this article, we discuss both
approaches and warn against the potential pitfalls of the one-step procedure. Results from a
simulation study, evaluating the properties of several point estimators, are presented.
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1. Introduction

Weighting procedures are commonly applied in surveys to compensate for nonsampling

errors such as nonresponse errors and coverage errors. Brick (2013) provides an excellent

overview of weighting in the presence of unit nonresponse; see also Kalton and

Flores-Cervantes (2003). Two types of weight-adjustment procedures are commonly used

in the context of unit nonresponse: (i) nonresponse propensity weighting followed by

calibration, also known as the two-step approach and (ii) nonresponse calibration

weighting, also known as the one-step approach. In this article, our focus is to warn against

the potential pitfalls of the one-step procedure.

The two-step approach consists of adjusting the weights in two distinct steps: the basic

(design) weights of respondents are first multiplied by a nonresponse adjustment factor,

which is defined as the inverse of the estimated response probability. The adjusted weights

are further modified so that survey-weighted estimates agree with known population totals.

In the first step, survey statisticians aim at reducing the nonresponse bias, which may be

appreciable when respondents and nonrespondents are different with respect to the survey

variables. Whether or not one will succeed in achieving an efficient bias reduction depends

on the availability of powerful auxiliary information (Särndal and Lundström 2005),

which is a set of variables available for both respondents and nonrespondents. In the

second step, some form of calibration (e.g., poststratification) is performed in order to

ensure consistency between survey-weighted estimates and known population totals.
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Calibration procedures require that the auxiliary variables (called calibration variables) are

available for the respondents and that their population totals are known. In practice, the

calibration variables are often specified by survey managers, who wish to ensure

consistency with respect to some important variables (e.g., age and sex). Moreover, if the

calibration variables are related to the characteristics of interest, the resulting calibration

estimators tend to be more efficient than the noncalibrated ones.

The one-step approach pursues the same three goals as the two-step approach: reduce

the nonresponse bias, ensure consistency between survey estimates and known population

totals and, possibly, reduce the variance of point estimators. However, the weighting

process is performed in a single step and does not require explicit estimation of the

response probabilities.

In the absence of nonsampling errors, calibration consists of determining a set of

calibrated (or final) weights as close as possible to the basic weights, while satisfying

calibration constraints. A calibrated weight is expressed as the basic weight multiplied by

a calibration adjustment factor, which depends on a calibration function. Commonly used

calibration functions include the linear function, the exponential function, the truncated

linear function and the logit function; see Section 2. Deville and Särndal (1992) showed

that calibration estimators are asymptotically design consistent and that all the distance

functions are asymptotically equivalent in the sense that they all lead to calibration

estimators that are asymptotically equivalent to the calibration estimator based on the

linear calibration function. The calibration function is usually chosen so that the

distribution of the calibrated weights is “cosmetically attractive”. For example, a problem

that can be encountered with the linear function is the occurrence of negative weights,

which can be prevented by using the exponential function that ensures positive weights.

However, the latter may lead to extreme weights, which in turn may contribute to increase

the instability of point estimators for characteristics of interest weakly correlated with the

calibration variables. In this case, functions such as the truncated linear function or

the logit function can be used in order to ensure that the calibration adjustment factors lie

between prespecified lower and upper bounds.

How to choose the calibration function in the presence of unit nonresponse? In the case

of the two-step approach, calibration is performed after the weights have been adjusted for

nonresponse. As a result, the choice of the calibration function can be essentially made

using the same criteria as in the complete response case. This is discussed further in

Section 3. The situation is more intricate with the one-step approach, as different

calibration functions may lead to calibration estimators with substantially different

properties in terms of bias and mean square error. As a result, the choice of the calibration

function is generally important when calibration is used for treating nonresponse. While

the choice of calibration variables has been widely discussed in the literature (e.g., Särndal

and Lundström 2005 and Särndal 2011), the issues of how to select an appropriate

calibration function in the context of the one-step approach and the effect of function

misspecification on the properties of the resulting estimators have not received a lot of

attention. Two notable exceptions are Kott (2006) and Kott and Liao (2012). In this article,

we argue that, even though the one-step approach does not use estimated response

probabilities in the construction of point estimators explicitly, a wrong choice of the

calibration function can have inadvertent and detrimental effects, even in the presence of
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high association between the auxiliary variables and the study variable. The matter

deserves more careful attention than what it seems has hitherto been noticed in the

literature; see Section 4. In Section 5, we show empirically that an inappropriate

calibration function may lead to biased calibration estimators (sometimes exhibiting a bias

larger than that of unadjusted estimators). This is especially true in the presence of

quantitative auxiliary variables. The paper ends with a discussion in Section 6.

2. Calibration Weighting in the Complete Data Case

Let U ¼ {1, 2, : : : , N} be a finite population consisting of N elements. Most surveys

conducted by statistical agencies are multipurpose surveys, which are designed to provide

statistics for a possibly large number of variables. For simplicity, we use the generic

notation y to denote a characteristic of interest. In this paper, we are interested in

estimating a population total ty ¼
P

k[U yk, where yk denotes the k-th value of the

characteristic of interest y, k ¼ 1, : : : , N. A sample s, of size n, is selected from U

according to a given sampling design p(s). Let pk denote the first-order inclusion

probability of unit k in the sample and dk ¼ 1/pk denote its design weight. Applying the

basic weighting system, {dk; k [ s}, to a y-variable leads to the well-known Horvitz-

Thompson estimator

t̂yp ¼
k[s

X
dkyk: ð1Þ

The estimator (1) is design unbiased for ty regardless of the characteristic of interest y

being estimated. That is, Ep(t̂yp) ¼ ty, where Ep(�) denotes the expectation with respect to

the sampling design.

In practice, auxiliary information is often available at the estimation stage. Let

xi ¼ (x1i, : : : , xJi)
` be a J-vector of auxiliary variables attached to unit i. We assume that

the vector of population totals, tx ¼ ðtx1
; : : : ; txJ

Þ`, is known without error, where

txj
¼
P

i[U xji. While the basic weighting system ensures unbiasedness, that is, Epð t̂xpÞ ¼

tx; it does not generally produce an exact estimate for each of the J auxiliary variable; that

is, t̂xp – tx, in general. To overcome the problem, we seek a calibrated weighting system

{wk; k [ s} such that the weights wk are “as close as possible” to the design weights dk

while satisfying the calibration constraints

k[s

X
wkxk ¼ tx:

The resulting calibrated weight wk is given by

wk ¼ dkFðl̂`xkÞ; ð2Þ

where F(�) is a monotonic and twice-differentiable function such that F(0) ¼ 1 and

F 0(0) ¼ 1 and l̂ is a J-vector of estimated coefficients (Deville and Särndal 1992).

The weight wk in (2) is the product of the design weight dk and the calibration adjustment

factor F(l̂`xk). The calibration factor F(l̂`xk) depends on (i) the calibration function

F(�), (ii) the characteristics of unit k through xk and (iii) the vector of estimated

coefficients l̂, which can be viewed as a measure of sample imbalance. Under mild
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regularity conditions, Deville and Särndal (1992) showed that l̂! 0 in probability as

n ! 1 and N ! 1.

The resulting calibration estimator is

t̂C ¼
k[s

X
wkyk: ð3Þ

Several calibration functions F(�) are used in practice, each corresponding to a particular

calibration method. The most popular calibration methods are: (i) the linear method

FðuÞ ¼ 1þ u; ð4Þ

(ii) the exponential method

FðuÞ ¼ expðuÞ; ð5Þ

(iii) the truncated linear method

FðuÞ ¼

1þ u L 2 1 # u # M 2 1

M u . M 2 1

L u , L 2 1;

8
>><

>>:
ð6Þ

where L and M are the prespecified lower and upper bounds, respectively; and (iv) the

logit method

FðuÞ ¼
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ
; ð7Þ

where

A ¼
M 2 L

ð1 2 LÞðM 2 1Þ
:

Assuming that the inverse of
P

k[s dkxkx`
k exists, the linear method leads to a closed-

form solution. In contrast, Methods (5)–(7) require some numerical methods that may fail

to converge in some situations. However, the linear method may produce negative

calibration adjustment factors, F(l̂`xk), resulting in negative calibrated weights. On the

other hand, the exponential method ensures that the calibration adjustment factors are

positive, although some could be extreme. To avoid unduly large calibration adjustment

factors, one can specify lower and upper bounds through the use of the truncated linear and

logit methods. Deville and Särndal (1992) showed that the calibration estimator (3) is

design consistent and approximately design unbiased for ty regardless of the characteristic

y being estimated and that all the calibration methods are asymptotically equivalent in the

sense that they all lead to the calibration estimator based on the linear method.

We now discuss two important situations that are frequently encountered in practice.

Let x1 and x2 be two categorical variables with J1 and J2 categories, respectively. The

population U is then divided into J1 £ J2 cells. Let Nj1 j2
be the population count

corresponding to the ( j1, j2) cell, j1 ¼ 1, : : : , J1 and j2 ¼ 1, : : : , J2. Two cases may occur

in practice: (i) the population counts Nj1 j2
are known. This case corresponds to a standard
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poststratification based on a vector of auxiliary information of size J ¼ J1 £ J2. It is worth

noting that, in this case, the choice of the calibration function F(�) is unimportant as all the

calibration functions lead to the same calibrated weighting system {wk; k [ s}. (ii) The

individual cell counts Nj1 j2
are not known but the population margins Nj1† ¼

PJ2

j2¼1 Nj1j2

and N†j2 ¼
PJ1

j1¼1 Nj1 j2 are known, leading to a vector of auxiliary information of size

J ¼ J1 þ J2. In this context, Deville et al. (1993) showed that the use of the exponential

method (5) leads to the raking ratio estimator. Unlike case (i), different calibration

functions generally lead to different calibrated weighting systems in case (ii). This

discussion can be extended to more than two categorical variables. In this instance, case

(ii) is often referred to as generalized raking procedures. We revisit both situations in

Section 6 in the context of nonresponse adjustment.

3. The Two-Step Approach: Nonresponse Propensity Weighting Followed by

Calibration

In the presence of unit nonresponse, the characteristics of interest are observed for a

subset, sr , of the original sample s. Let fk be the unknown response propensity attached to

unit k. We assume that fk . 0 for all k and that units respond independently of one

another. We postulate the following nonresponse model

fk ¼ mðzk; gÞ; ð8Þ

where m(�) is a given function, zk is a vector of auxiliary variables available for both

respondents and nonrespondents and g is a vector of unknown parameters. In this article,

we assume that the z-vector is correctly specified but not necessarily the functional form of

(8). The choice of the z-vector is discussed in Little and Vartivarian (2005).

In the first step, an estimate of fk is f̂k ¼ m(zk,ĝ), where ĝ is a suitable estimator of g.

The adjusted weight for nonresponse attached to unit k is defined as w̃k ¼ dk/f̂k for k [ sr ,

leading to a weighting system adjusted for nonresponse, {w̃k; k [ sr}. The factor f̂21
k is

often called the nonresponse adjustment factor for unit k. Applying the weighting system

{w̃k; k [ sr} to a characteristic of interest y leads to the Propensity-Score Adjusted (PSA)

estimator of ty (e.g., Lee 2006):

t̂PSA ¼
k[sr

X
dkf̂

21
k yk ¼

k[sr

X
~wkyk: ð9Þ

The rationale behind this type of weighting procedure is similar in spirit to weighting for

two-phase sampling.

Estimates of the fk’s may be obtained through the use of a parametric model; for

example, a logistic regression model as found in Ekholm and Laaksonen (1991). In the

context of parametric nonresponse models, Kim and Kim (2007) showed that the PSA

estimator (9) is asymptotically unbiased and consistent for ty regardless of the

characteristic y being estimated if (8) is correctly specified. However, parametric methods

are rarely used in practice because some estimates f̂k may be very small, leading to

extreme nonresponse adjustment factors, ultimately resulting in highly dispersed weights ~wk.

Moreover, parametric methods are vulnerable to the misspecification of m(�).
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In practice, nonparametric methods are preferred. A popular method, called the score

method (Haziza and Beaumont 2007), consists of first obtaining preliminary estimated

response probabilities ~fk using a parametric model (e.g., the logistic regression model)

and partitioning the sample into homogeneous weighting classes formed on the basis of the
~fk’s. The basic weight of a respondent in a given class is then adjusted using the observed

response rate within the same class (e.g., Little 1986; Eltinge and Yanaseh 1997). Other

nonparametric methods include smoothing methods such as kernel and local polynomial

methods (e.g., Giommi 1987; Da Silva and Opsomer 2006, 2009) and regression trees

(e.g., Phipps and Toth 2012). Nonparametric methods are expected to provide some

robustness if the form of m(�) is misspecified and protect (to some extent) against the

noninclusion of predictors accounting for curvature or interactions in the z-vector.

In the second step, the adjusted weights w̃k are further modified so that survey-weighted

estimates agree with known population totals. More specifically, we assume that a vector

of calibration variables x* is available for k [ sr and that the vector of population totals

tx* ¼
P

k[U x*
k is known. The x*-vector may contain one or more z-variables that were

used in (8). The final weighting system is given by {wk; k [ sr}, where

wk ¼ ~wkF l̂`x*
k

� �
ð10Þ

and l̂` is a vector of estimated coefficients. The final weights wk satisfy the calibration

constraints

k[sr

X
wkx*

k ¼ tx*: ð11Þ

The weight wk in (10) is the product of the adjusted weight w̃k and the calibration

adjustment factor F l̂`x*
k

� �
.

For example, the linear method (4) leads to

wk ¼ ~wk 1þ l̂`x*
k

� �
;

whereas the exponential method leads to

wk ¼ ~wk exp l̂`x*
k

� �
:

Alternative weighting methods are discussed in Kott and Liao (2012). Applying the

final weighting system, {wk; k [ sr}, to a characteristic of interest y leads to the two-step

calibration estimator

t̂C;2 ¼
k[sr

X
wkyk ¼

k[sr

X
dkf̂

21
k F l̂`x*

k

� �
yk: ð12Þ

We make the following remarks: (i) if the nonresponse model (8) is correctly specified

(and so the estimator (9) is asymptotically unbiased for ty for every characteristic of

interest), the two-step calibration estimator t̂C,2 is asymptotically unbiased for ty regardless

of the characteristic y being estimated. (ii) If the x*-vector is linearly related to y, then t̂C,2

is expected to be more efficient than t̂PSA. (iii) As for the complete data case, l̂ ! 0 in

probability as n ! 1 and N ! 1 if the nonresponse model (8) is correctly specified. (iv)

In the two-step approach, the calibration function is chosen using the same criteria as those
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encountered in the complete-data case. Most often, the distribution of the calibration

adjustment factors F l̂`x*
k

� �
drives the choice of the function F(�).

4. The One-Step Approach: Nonresponse Calibration Weighting

Following Särndal and Lundström (2005), we distinguish between two levels of auxiliary

information:

(1) U-level: a vector of auxiliary variables x*
k is minimally available for k [ sr and the

vector of population totals tx* ¼
P

k[U x*
k is known.

(2) s-level: a vector of auxiliary variables xo
k is available for k [ s but the vector of

population totals,
P

k[U xo
k , is unknown. Instead, the vector of complete-data

estimators, t̂xo ¼
P

k[s dkxo
k , is available.

We define the stacked vector of auxiliary variables for unit k as xk ¼
� x*

k

xo
k

�
and the

corresponding vector of totals tx ¼
� tx*

t̂xo

�
. The x o-variables are believed to be associated

with nonresponse and, possibly, with some characteristics of interest. Their role is similar to

that of the z-variables in the two-step approach: contribute to reducing the nonresponse bias.

The final weighting system is {wk; k [ sr}, where

wk ¼ dkF l̂
`

r xk

� �
; ð13Þ

and l̂ r is determined so that the calibration constraints

k[sr

X
wkxk ¼ tx

are satisfied. The final weight wk in (13) is the product of the design weight dk and the

nonresponse/calibration adjustment factor F l̂
`

r xk

� �
. Applying the final weighting

system, {wk; k [ sr}, to a characteristic of interest y leads to the one-step calibration

estimator

t̂C;1 ¼
k[sr

X
wkyk ¼

k[sr

X
dkF l̂

`

r xk

� �
yk: ð14Þ

Note that, unlike the two-step approach, the vector of estimated coefficient l̂r does

not converge towards 0 as n ! 1 and N ! 1. This is due to the fact that F l̂
`

r xk

� �
is

essentially an estimate of f21
k .

We now compare the one-step and the two-step approaches. To that end, note that it is

sufficient to compare the PSA estimator (which is the estimator resulting from the first step

in the two-step approach) and a calibration estimator based on the x o-variables only. The

second step in the two-step approach or the use of the x*-variables in the one-step

approach strive to make survey estimates and known population totals agree, which is not

the focus here. Below, we argue that the one-step based on the x o-variables imposes a

parametric model for the relationship between the response propensity and the vector of

auxiliary variables, which makes the resulting estimator vulnerable to a misspecification

of the calibration function.
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Recall that t̂PSA is asymptotically unbiased for ty regardless of the characteristic y being

estimated, provided that the nonresponse model (8) is correctly specified. Therefore, for

t̂C,1 in (14) to be asymptotically unbiased for ty regardless of the characteristic y being

estimated, we require

F l̂`
r xk

� �
¼ f̂21

k :

The previous expression suggests that the adjustment factor F l̂
`

r xk

� �
can be viewed

as an implicit estimate of f21
k .

Next, we examine the bias of t̂C,1, where the bias is defined as Bias(t̂C,1) ¼

EpEq(t̂C,1js) 2 ty, and the subscripts p and q refer to the sampling design and the

nonresponse mechanism respectively. Using a first-order Taylor expansion and ignoring

the higher-order terms, the bias of t̂C,1 can be approximated by

Biasðt̂C;1Þ < 2
k[U

X
ð1 2 f kFkÞ yk 2 x`

k Bf f

� �
; ð15Þ

where

Bf f ¼
k[U

X
f kf kxkx`

k

0

@

1

A

21

k[U

X
fkf kxkyk

with Fk ; F l`
N xk

� �
, f k ; F 0 l`

N xk

� �
and lN denotes the probability limit of l̂r.

In the case of linear weighting (4), Expression (15) reduces to

Biasðt̂C;1Þ < 2
k[U

X
ð1 2 fkÞ yk 2 x`

k Bf

� �
; ð16Þ

where

Bf ¼
k[U

X
f kxkx`

k

0

@

1

A

21

k[U

X
f kxkyk:

Expression (16) is identical to Expression (9.14) in Särndal and Lundström (2005). Note

that the more general expression (15) does not appear in Särndal and Lundström (2005),

where the focus is placed on linear weighting.

Expression (15) is interesting because it sheds some light on the conditions required for

asymptotic unbiasedness:

(1) On the one hand, the asymptotic bias (15) vanishes if the finite population covariance

between the residuals ek ¼ yk 2 x`
k Bf f

� �
and dk ¼ fkFk 2 1 is equal to zero.

This condition is satisfied if

yk ¼ x`
k bþ ek ð17Þ

with

EðekjxkÞ ¼ 0 ð18Þ
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and if the response probability fk is not related to yk after conditioning on x k. The

latter condition is essentially the customary MAR assumption (Rubin 1976).

In multipurpose surveys, it is unrealistic to presume that Model (17) holds for every

characteristic of interest y, in which case some estimates may suffer from bias. In fact, in

household and social surveys, most characteristics of interest are categorical, in which

case (17) is generally not appropriate.

(2) On the other hand, the asymptotic bias of t̂C,1 is equal to zero if

Fk ¼ f21
k : ð19Þ

Hence, selecting a calibration function F(�) such that (19) is satisfied ensures that

the one-step calibration estimator is asymptotically unbiased regardless of the

characteristic of interest y being estimated, even if (17) and (18) do not hold. For

linear weighting, it follows from (19) that t̂C,1 is asymptotically unbiased for ty for

every y if

f21
k ¼ 1þ l`xk for all k [ U; ð20Þ

for a vector of unknown constants l (see Särndal and Lundström 2005, ch. 9). For

exponential weighting, we require

f21
k ¼ exp l`xk

� �
for all k [ U; ð21Þ

see also Kott and Liao (2012) for a discussion of alternative weighting methods. In other

words, both the linear and exponential methods correspond to specific parametric

nonresponse models, which suggests that selecting either one is somehow equivalent to

(implicitly) selecting a nonresponse model. This begs the following question: how is t̂C,1

affected if (20) (respectively (21)) is not an appropriate description of the relationship

linking the x-vector and the fk’s, that is, if the calibration function is misspecified? This

aspect is investigated in Section 5.

A key aspect here is to realize that each calibration function corresponds to a specific

parametric nonresponse model. By choosing a given calibration function, one is

effectively making a strong statement about the underlying nonresponse mechanism.

Therefore, in order to avoid an incorrect functional form, a complete modeling exercise is

needed to validate the form of the function linking the response propensity fk to the vector

of auxiliary variable x k. Failing to do so may result in biased estimators. Furthermore,

there may be no calibration that corresponds to the inverse of the estimated response

probabilities. For instance, suppose that the relationship between the response probability

and a single auxiliary variable x is described by a nonmonotonic function. In this case, it

may be difficult to find a calibration function that provides an adequate description of the

relationship between the inverse of the response propensity and the x-vector.
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5. Simulation Study

We conducted a simulation study to illustrate the importance of carefully selecting a

calibration function F(�) in the context of a one-step approach. We generated a population

of size N ¼ 1,000, which consisted of an auxiliary variable x and four variables of interest

y1, y2, y3 and y4. The x-values were first generated from a uniform distribution (0, 80).

The y1-values were generated according to the linear model

yk1 ¼ 1;000þ 10xk þ 1k1;

where the errors 1k1 were generated from a normal distribution with mean 0 and variance

300. The y2-values were generated according to the exponential model

yk2 ¼ expð20:1þ 0:1xkÞ þ 1k2;

where the errors 1k2 were generated from a normal distribution with mean 0 and variance

300. The y3-values were generated according to the logistic model

yk3 , Bð1; pkÞ;

where pk ¼ [exp{20.5 (xk 2 55)} þ 1]21. The y4-values were generated according to

the quadratic model

yk4 ¼ 1;300 2 ðxk 2 40Þ2 þ 1k4;

where the errors 1k4 were generated from a normal distribution with mean 0 and standard

deviation 300. The relationships between yj and x are displayed in Figure 1, j ¼ 1, : : : , 4.

In order to focus on the nonresponse error, we considered the census case; that is,

n ¼ N ¼ 1,000 and dk ¼ 1 for all k. In each population, units were assigned a response

probability fk according to a given nonresponse mechanism. We simulated nonresponse

according to four nonresponse mechanisms, all presented in Table 1; see also Figure 2.

For each mechanism, the parameters were set so that the overall response rate was
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Fig. 1. Relationships between the characteristics of interest and x
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approximately equal to 50%. The response indicators Rk for k [ U were generated

independently from a Bernoulli distribution with parameter fk, resulting in a population of

respondents Ur of size Nr. The nonresponse process was repeated M ¼ 5,000 times,

leading to M ¼ 5,000 sets of respondents for each nonresponse mechanism. From Figure 1

and Figure 2, we note that both the response propensity and the characteristics of interest

y1 2 y4 are highly related to x in all the scenarios.

We were interested in estimating the populations totals tyj
, j ¼ 1, 2, 3, 4. For each total,

we computed three estimators: (i) The unadjusted estimator t̂un ¼ Nȳr where

�yr ¼
P

k[Ur
yk=Nr; (ii) The one-step calibration estimator t̂C,1 given by (14) based on

different calibration functions: linear, exponential and logit, given by (4), (5) and (7),

respectively, using xk ¼ (1, xk) as the auxiliary vector. In other words, the estimator t̂C,1

was calibrated on the population size N as well as the population total of x-values, tx;

(iii) the Propensity-Score Adjusted estimator t̂PSA, where the response propensities were

estimated using the score method described in Section 3. To that end, preliminary response

probabilities f̃k were first obtained using a logistic regression model with (1, xk)
` as the

vector of predictors. Then, the sample was partitioned into 20 weighting classes according

the f̃k’s and the response propensity of a unit in a given class was estimated using the

response rate observed within the same class. Although five imputation classes are often

sufficient for an effective bias reduction (Eltinge and Yansaneh 1997; Rosenbaum and

Table 1. Nonresponse mechanisms used for generating nonresponse

Nonresponse mechanism Name fk

1 Inverse linear (1.2 þ 0.024 xk)
21

2 Exponential exp(20.2 2 0.014xk)
3 Logistic type 0.2 þ 0.6{1 þ exp(25 þ xk/8)}21

4 Quadratic 0.7 þ 0.45 (xk/40 2 1)2 þ 0.0025 xk
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Fig. 2. Relationships between the response probability and x
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Rubin 1983), it may not be appropriate when the relationship between the characteristic of

interest and the auxiliary variable is highly nonlinear or contains a quadratic terms as it is

the case for y1 and y4, respectively (see Haziza and Beaumont 2007). This is why we used

20 imputation classes.

As we argued in Section 4, in order to show that one-step calibration is vulnerable to

the misspecification of the calibration function, it is sufficient to compare t̂PSA and t̂C,1

based on the x o-variables only. In other words, there is no need to perform the second step

in the two-step approach or to use x*-type variables in the one-step approach.

As a measure of bias of an estimator û of a parameter u, we used the Monte Carlo

percent relative bias (RB)

RBMCðûÞ ¼
100

M

XM

m¼1

ðûðmÞ 2 uÞ

u
;

where û(m) denotes the estimator û in the m-th repetition, m ¼ 1, : : : , M. We also

computed the percent relative root mean square error (RRMSE) of û:

RRMSEMCðûÞ ¼ 100 £
M 21

XM

m¼1
ðûðmÞ 2 uÞ2

n o

u

1=2

:

The results are shown in Tables 2–5. As expected, the unadjusted estimator was biased

in all the scenarios. This can be explained by the fact that the response probability was

related to the characteristics of interest via the auxiliary variable x and that the unadjusted

estimator did not account for x.

We now turn to the variable y1, which was linearly related to the variable x. We see from

Tables 2–5 that the resulting one-step calibration estimator t̂C,1 showed negligible bias

regardless of the calibration method F(�) used. This is consistent with the Expressions

(15)–(18). Furthermore, the choice of calibration method did not affect the efficiency

of the estimator for a given nonresponse mechanism. For example, in Table 2

Table 2. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the inverse linear nonresponse mechanism: Fk ¼ (1.2 þ 0.024 xk)
21

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 24.1 0.0 0.0 0.0 20.0
(linear) (4.2) (0.7) (0.7) (0.7) (0.8)

y2 228.1 20.1 2.8 3.3 20.1
(exponential) (28.7) (5.5) (6.1) (6.4) (3.0)

y3 227.5 20.1 1.7 2.1 20.1
(logistic) (27.9) (3.4) (3.6) (3.8) (2.3)

y4 24.8 0.1 22.0 22.4 20.1
(quadratic) (5.3) (2.8) (3.3) (3.5) (1.4)
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(which corresponds to the inverse linear nonresponse mechanism), the RRMSE of t̂C,1 was

equal to 0.7 for all the calibration methods. Finally, the PSA estimator showed virtually no

bias in all the scenarios corresponding to the y1-variable and showed the same efficiency as

that of t̂C,1, except in Table 2, where we note a slight loss of efficiency.

For the variables y2-y4 that were not linearly related to the x-variable, we note that the

resulting one-step calibration estimator was generally biased, except when the calibration

method F(�) was appropriate; see Expression (19). For example, in Table 2 (which

corresponds to the inverse linear nonresponse mechanism), the one-step calibration

estimator t̂C,1 showed no bias for the three variables under the linear calibration method

F(u) ¼ 1 þ u. These results are consistent with (20). On the other hand, the other

calibration methods (exponential and logit) led to some bias with an absolute RB ranging

Table 3. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the exponential nonresponse mechanism: Fk ¼ exp(20.2 2 0.014xk)

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 24.9 20.0 0.0 0.0 20.0
(linear) (4.9) (0.8) (0.8) (0.8) (0.8)

y2 235.1 24.0 20.0 0.7 20.1
(exponential) (35.5) (7.1) (5.8) (5.9) (3.2)

y3 233.8 22.5 0.0 0.6 20.1
(logistic) (34.1) (4.3) (3.3) (3.3) (2.3)

y4 23.6 2.9 0.0 20.6 20.0
(quadratic) (4.3) (4.2) (2.7) (2.8) (1.6)

Table 4. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the logistic nonresponse mechanism: Fk ¼ 0.2 þ 0.6 {1 þ exp(25 þ xk/8)}21

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 27.3 20.3 20.2 20.2 20.1
(linear) (7.3) (0.9) (0.9) (0.9) (0.9)

y2 251.5 210.0 20.4 0.9 20.2
(exponential) (51.7) (12.3) (7.0) (7.1) (3.7)

y3 253.4 212.1 25.6 24.5 20.3
(logistic) (53.5) (12.9) (6.7) (5.8) (3.0)

y4 21.0 11.7 4.3 3.1 20.0
(quadratic) (2.3) (12.3) (5.3) (4.3) (1.8)
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from 1.7% to 3.3%. Similarly, in Table 3 (which corresponds to the exponential

nonresponse mechanism), the one-step calibration estimator t̂C,1 showed no bias for the

three variables under the exponential calibration method F(u) ¼ exp(u). These results are

consistent with (21). On the other hand, the other calibration methods (linear and logit) led

to some bias with an absolute RB ranging from 0.6% to 4.0%.

In Tables 4 and 5, we note that the one-step calibration estimator showed some bias in

all the scenarios, which can be explained by the fact that none of the calibration methods

(linear, exponential or logit) provided an adequate description of the relationship

between the inverse of the response probability and the x-variable. For example, in

Table 5, all the calibration methods led to substantial bias with an absolute RB ranging

from 11.4% to 19.7%. It is worth noting that the one-step calibration estimator was

significantly more biased than the unadjusted estimator for the variables y2 and y3, which

illustrates that a poor choice of F(�) may result in significant biases, which can be larger

than that of the unadjusted estimator. Finally, the PSA estimator showed negligible

biases in all the scenarios corresponding to y2-y4. Moreover, its RRMSE was

considerably smaller than that of the one-step calibration estimator for these variables.

These results suggest that the score method, which is nonparametric in nature, is robust

to the misspecification of the form of the function m(�) in (8).

The results presented here suggest that a high association between the characteristic

variable and the auxiliary variables is not necessarily enough for the one-step calibration

method to yield good results, as in the cases of the variables y2 and y3. Also, as shown in

Table 5, the fact that various calibration functions yield about the same estimate is not

necessarily a sign that any of the choices will work well.

6. Discussion

In this article, we have discussed two weighting approaches in the presence of unit

nonresponse: the one-step approach and the two-step approach, the latter being the

Table 5. Monte Carlo percent relative bias and percent relative root mean square error (in parenthesis) of

several estimators under the quadratic nonresponse mechanism: Fk ¼ 0.7 þ 0.45 (xk/40 2 1)2 þ 0.0025 xk

t̂yC,1

F(u) ¼

t̂un 1 þ u exp(u)
LðM 2 1Þ þMð1 2 LÞ exp ðAuÞ

M 2 1þ ð1 2 LÞ exp ðAuÞ t̂PSA

y1 1.3 20.2 20.2 20.2 0.0
(linear) (1.4) (0.5) (0.5) (0.5) (0.5)

y2 28.3 219.7 219.2 219.0 20.4
(exponential) (9.4) (19.9) (19.5) (19.3) (2.3)

y3 20.5 211.8 211.5 211.4 20.1
(logistic) (3.2) (12.0) (11.7) (11.6) (1.0)

y4 13.1 13.7 13.4 13.2 0.2
(quadratic) (13.2) (13.8) (13.5) (13.4) (1.1)
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customary approach to weighting in statistical agencies. Although it is more complex to

implement than the one-step approach as two distinct weighting procedures must be

applied, the two-step approach offers several advantages: first, it makes it possible to

assess the impact of nonresponse adjustment and calibration adjustment on the distribution

of the weights separately. Furthermore, when multiple characteristics are collected, survey

statisticians prefer modeling the response probability to the survey as it does not require a

different model for each characteristic of interest. In this case, complete reliance is placed

on the nonresponse model in order to achieve an efficient bias reduction for every y. In

statistical agencies, the response propensities are typically estimated through

nonparametric methods such as weighting classes based on estimated response

probabilities or regression trees, as both types of methods provide protection against

misspecification of the functional and account for curvature and interactions. This is

especially important when the auxiliary variables are continuous and their association with

the response probability is not monotonic.

In contrast, the single-step calibration approach is simple to implement as the whole

weighting process is performed in a single step. Furthermore, it does not make explicit use

of estimated response probabilities, unlike the two-step approach. However, as we have

illustrated empirically, the choice of the calibration function F(�) is generally important.

In the simulation study conducted in Section 5, where we considered the case of a

quantitative variable x, the results suggested that the one-step calibration estimator

suffered from significant bias if the calibration function is inappropriate. Would the results

be similar if the calibration results were categorical? We revisit the case of two categorical

variables x1 and x2 described in Section 2. Let Nj1 j2
be the individual cell counts available

at the sample level (Info-s). Matching the individual cell counts results in a poststratified-

type estimator, in which case the choice of the calibration function is unimportant as

different F(�) would result in the same estimator. In other words, as long as the variables

x1 and x2 are related to nonresponse, the one-step calibration estimator should exhibit no

bias. In fact, in this case, the latter is identical to the PSA estimator based on weighting

classes obtained by cross classifying x1 and x2. On the other hand, if calibration is

performed to match the margins Nj1†
and N†j2

available at the sample level, choosing the

appropriate calibration function becomes an issue once again, as different F(�) would lead

to different one-step calibration estimators. In their Remark 10.1, Särndal and Lundström

(2005) suggest that categorizing the x-variables when the latter are quantitative may bring

some robustness. For a poststratification-type situation, we agree with this recommen-

dation. However, when calibration is performed on margins only, the extent to which the

one-step calibration estimators would be robust to the misspecification of the calibration

function F(�) is not so clear-cut.

Although the PSA estimator based on the score method performed well in all the

scenarios presented in Section 5, we are not suggesting that it would perform well in any

type of situations. If a causal relationship exists between one or more characteristics of

interest and the response propensity, some residual nonresponse bias will remain.

Furthermore, we have considered the case of a single quantitative variable x. Additional

studies are needed to investigate how the score method would perform in the presence of

multiple quantitative variables with, possibly, quadratic or cubic terms. The results simply

suggest that nonparametric methods are attractive from a practical point of view as they
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bring some robustness if the nonresponse model is not correctly specified. This is not true,

in general, for the one-step approach that imposes an implicit parametric model.

7. References

Brick, M.J. 2013. “Unit Nonresponse and Weighting Adjustments: A Critical Review.”

Journal of Official Statistics 29: 329 – 353. Doi: http://dx.doi.org/10.2478/

jos-2013-0026.

Da Silva, D.N. and J.D. Opsomer. 2006. “A Kernel Smoothing Method of Adjusting for

Unit Non-Response in Sample Surveys.” The Canadian Journal of Statistics 34:

563–579.

Da Silva, D.N. and J.D. Opsomer. 2009. “Nonparametric Propensity Weighting for Survey

Nonresponse through Local Polynomial Regression.” Survey Methodology 35:

165–176.

Deville, J.-C. and C.-E. Särndal. 1992. “Calibration Estimators in Survey Sampling.”

Journal of the American Statistical Association 87: 376–382. Doi: http://dx.doi.org/10.

1080/01621459.1992.10475217.

Deville, J.-C., C.-E. Särndal, and O. Sautory. 1993. “Generalized Raking Procedures in

Survey Sampling.” Journal of the American Statistical Association 88: 1013–1020.

Doi: http://dx.doi.org/10.1080/01621459.1993.10476369.

Ekholm, A. and S. Laaksonen. 1991. “Weighting via Response Modeling in the Finnish

Household Budget Survey.” Journal of Official Statistics 7: 325–337.

Eltinge, J.L. and I.S. Yansaneh. 1997. “Diagnostics for Formation of Nonresponse

Adjustment Cells, with an Application to Income Nonresponse in the U.S. Consumer

Expenditure Survey.” Survey Methodology 23: 33–40.

Giommi, A. 1987. “Nonparametric Methods for Estimating Individual Response

Probabilities.” Survey Methodology 13: 127–134.

Haziza, D. and J.-F. Beaumont. 2007. “On the Construction of Imputation Classes in

Surveys.” International Statistical Review 75: 25–43. Doi: http://dx.doi.org/10.1111/j.

1751-5823.2006.00002.x.

Kalton, G. and I. Flores-Cervantes. 2003. “Weighting Methods.” Journal of Official

Statistics 19: 81–97.

Kim, J.K. and J.J. Kim. 2007. “Nonresponse Weighting Adjustment Using Estimated

Response Probability.” The Canadian Journal of Statistics 35: 501–514. Doi: http://dx.

doi.org/10.1002/cjs.5550350403.

Kott, P. 2006. “Using Calibration Weighting to Adjust for Nonresponse and

Undercoverage.” Survey Methodology 32: 133–142.

Kott, P.S. and D. Liao. 2012. “Providing Double Protection for Unit Nonresponse With a

Nonlinear Calibration-Weighting Routine.” Survey Research Methods 6: 105–111.

Lee, S. 2006. “Propensity Score Adjustments as a Weighting Scheme for Volunteer Panel

Web Surveys.” Journal of Official Statistics 22: 329–349.

Little, R.J.A. 1986. “Survey Nonresponse Adjustments for Estimates of Means.”

International Statistical Review 54: 139–157.

Little, R.J.A. and S. Vartivarian. 2005. “Does Weighting for Nonresponse Increase the

Variance of Survey Means?” Survey Methodology 31: 161–168.

Journal of Official Statistics144

http://dx.doi.org/10.2478/jos-2013-0026
http://dx.doi.org/10.2478/jos-2013-0026
http://dx.doi.org/10.1080/01621459.1992.10475217
http://dx.doi.org/10.1080/01621459.1992.10475217
http://dx.doi.org/10.1080/01621459.1993.10476369
http://dx.doi.org/10.1111/j.1751-5823.2006.00002.x
http://dx.doi.org/10.1111/j.1751-5823.2006.00002.x
http://dx.doi.org/10.1002/cjs.5550350403
http://dx.doi.org/10.1002/cjs.5550350403


Phipps, P. and D. Toth. 2012. “Analyzing Establishment Nonresponse Using an

Interpretable Regression Tree Model With Linked Administrative Data.” Annals of

Applied Statistics 6: 772–794. Doi: http://dx.doi.org/10.1214/11-AOAS521.

Rosenbaum, P.R. and D.B. Rubin. 1983. “The Central Role of the Propensity Score in

Observational Studies for Causal Effects.” Biometrika 70: 41–55. Doi: http://dx.doi.

org/10.1093/biomet/70.1.41.

Rubin, D.B. 1976. “Inference and Missing Data.” Biometrika 63: 581–590. Doi: http://dx.

doi.org/10.1093/biomet/63.3.581.

Särndal, C.-E. 2011. “Three Factors to Signal Non-Response Bias With Applications

to Categorical Auxiliary Variables.” International Statistical Review 79: 233–254.

Doi: http://dx.doi.org/10.1111/j.1751-5823.2011.00142.x.

Särndal, C.-E. and S. Lundström. 2005. Estimation in Surveys with Nonresponse.

New York: John Wiley and Sons.

Haziza and Lesage: A Discussion of Weighting Procedures for Unit Nonresponse 145

http://dx.doi.org/10.1214/11-AOAS521
http://dx.doi.org/10.1093/biomet/70.1.41
http://dx.doi.org/10.1093/biomet/70.1.41
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1111/j.1751-5823.2011.00142.x

