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Sample coordination seeks to maximize or to minimize the overlap of two or more samples.
The former is known as positive coordination, and the latter as negative coordination. Positive
coordination is mainly used for estimation purposes and to reduce data collection costs.
Negative coordination is mainly performed to diminish the response burden of the sampled
units. Poisson sampling design with permanent random numbers provides an optimum
coordination degree of two or more samples. The size of a Poisson sample is, however, random.
Conditional Poisson (CP) sampling is a modification of the classical Poisson sampling that
produces a fixed-size pps sample. We introduce two methods to coordinate Conditional
Poisson samples over time or simultaneously. The first one uses permanent random numbers
and the list-sequential implementation of CP sampling. The second method uses a CP sample
in the first selection and provides an approximate one in the second selection because the
prescribed inclusion probabilities are not respected exactly. The methods are evaluated using
the size of the expected sample overlap, and are compared with their competitors using Monte
Carlo simulation. The new methods provide a good coordination degree of two samples, close
to the performance of Poisson sampling with permanent random numbers.

Key words: Sample coordination; expected overlap; permanent random numbers; unequal
probability sampling designs.

1. Introduction

Consider samples drawn successively or simultaneously from finite overlapping

populations. Sample coordination seeks to create a dependence between these samples.

This dependence leads to a maximization or to a minimization of the sample overlap. The

former is known as positive coordination, and the latter as negative coordination. Positive

coordination is mainly used for estimation purposes and to reduce data collection costs.

Negative coordination is mainly performed to diminish the response burden of the sampled

units. Changes in population definition pose a significant challenge in sample coordination.

Thus, births, deaths, or splits of units frequently occur. To overcome this problem, an

overall population defined as the union of the overlapping populations is generally used.

Sample coordination methods can be roughly divided into two categories: methods

based on so-called Permanent Random Numbers (PRN) and non-PRN methods (for an

overview, see for example Ernst 1999; Mach et al. 2006, and the references therein).
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PRN methods are based on the following principle: assign to each unit in the

overall population a uniform random number and use this number in all sample selections.

Sample dependence is created based on the use of the same permanent random number of

a unit over different surveys. For an overview of the main PRN methods, see Ohlsson

(1995, 2000).

In the category of non-PRN schemes, methods following to Keytz (1951), Kish and

Scott (1971) or Matei and Tillé (2005b) and methods based on mathematical programming

(e.g., Raj 1968; Arthnari and Dodge 1981; Causey et al. 1985; Ernst and Ikeda 1995; Ernst

1996, 1998; Ernst and Paben 2002; Mach et al. 2006; Matei and Skinner 2009;

Schiopu-Kratina et al. 2014) may be included.

The main difference between PRN methods and non-PRN ones lies in implementation

difficulties. The PRN methods allow a good positive and negative coordination degree,

and, in general, are easy to implement. However, they can provide a random sample size

(e.g., Poisson sampling with PRN), and a lack of optimality (for example, the inclusion

probabilities are not respected in each design) as shown in Mach et al. (2006) and

Nedyalkova et al. (2008). For the non-PRN methods, and most specifically for approaches

based on linear programming, Ernst (1999, 295) noted the following advantages (which

can be generalized for all mathematical programming methods): “easy formulation,

optimality, and flexibility in what to optimize”. The main inconvenience of most of the

mathematical programming methods is their implementation. In general, they can be

employed only for small-size problems.

There is no perfect method of sample coordination that can be applied in all

circumstances. As noted by Nedyalkova et al. (2009, 270), these methods “give partial but

important solutions to real-life problems. However, one drawback of these methods is that

they do not allow the important advances made in the domain of one-sample selection over

the last decades to be integrated. For example, none of these allow one to use maximum

fixed-size entropy sampling (see, e.g., Chen et al. 1994) or balanced sampling (Deville and

Tillé 2004) as a cross-sectional sampling design.”

We consider here the coordination of Conditional Poisson (CP) samples (or

maximum fixed-size entropy samples) over time or simultaneously. As mentioned earlier,

methods to coordinate CP samples have not yet been introduced in the literature. CP

sampling has the maximum-entropy property in the class of fixed-size pps sampling

designs with the same first-order inclusion probabilities, among other desirable properties,

and has recently received considerable attention. We propose two methods here: the first

one is a PRN method that uses the list-sequential implementation of two CP samples; the

second one is a non-PRN method. The first method provides the coordination of two

CP samples. The second method uses a first CP sample, and provides an approximate one

in the second selection because the prescribed inclusion probabilities are not respected

exactly.

The methods are evaluated using the size of the expected sample overlap, and are

compared with their competitors. We focus on positive coordination, but negative

coordination is also possible using the proposed methods. The article is organized as

follows: Section 2 introduces the general framework and the notation; Section 3 provides a

reminder of CP sampling and its main features. Sections 4 and 5 present the two proposed
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methods. Section 6 shows the performance of the proposed methods compared with their

competitors using Monte Carlo simulation. Finally, Section 7 concludes the article.

2. General Framework

Consider two finite overlapping populations. Let U1 and U2 denote the sets of labels of

units in the two populations. Two sampling designs p1 and p2 of fixed size n1 and

n2 are defined on U1 and U2, respectively. Let S1 and S2 be the sets of all

possible samples defined by p1 and p2 on U1 and U2; respectively. Samples defined

on S1 are denoted s1i; i ¼ 1; 2; : : : ;m; while samples defined on S2 are denoted s2j;

j ¼ 1; 2; : : : ; q: Our general notation for samples is s1 [ S1 and s2 [ S2: We note that

p1k ¼
P

s1]k;s1[S1
p1ðs1Þ; k [ U1 and p2k ¼

P
s2]k;s2[S2

p2ðs2Þ; k [ U2 are the first-order

inclusion probabilities of unit k in the two samples, respectively. For simplicity, let

U ¼ {1; : : : ; k; : : : ;N} be the union of U1 and U2: Thus, for units k [ UnU1, we set

p1k ¼ 0; while for k [ UnU2, we set p2k ¼ 0: An overall sampling design p is defined on

S1 £ S2; with marginal designs p1 and p2: The overall sampling design is said to be

coordinated (see Cotton and Hesse 1992; Mach et al. 2006) if

pðs1i; s2jÞ ¼ pij – p1ðs1iÞp2ðs2jÞ;

that is, if the two samples are not selected independently. The joint inclusion probability of

unit k in s1 and s2 is denoted

p
1;2
k ¼ Pðk [ s1; k [ s2Þ ¼

s1i > s2j ] k
s1i [ S1; s2j [ S2

X
pij:

Let cij be the overlap size of samples s1i and s2j

cij ¼ js1i > s2jj;

where jAj denotes the cardinality of a set A: In general, the overlap size cij is random. Let c

denote the random variable called ‘overlap size’. A measure of the coordination degree

between two samples is given by the expected value of c

EðcÞ ¼
Xm

i¼1

Xq

j¼1

cijpij ¼
k[U

X
p

1;2
k :

In positive coordination, the goal is to maximize E cð Þ; while in negative coordination,

we want to minimize it. Bounds for EðcÞ exist. They are determined by the Fréchet bounds

of the joint inclusion probabilities p
1;2
k

k[U

X
max ð0;p1k þ p2k 2 1Þ # EðcÞ #

k[U

X
min ðp1k;p2kÞ: ð1Þ

Matei and Tillé (2005b) called the left-hand-part in (1) the Absolute Lower Bound

(ALB) and the right-hand-part in (1) the Absolute Upper Bound (AUB). Ideally, in

positive coordination we want to achieve the AUB, and in negative coordination the ALB.
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Few methods achieve these bounds. In positive coordination, Poisson sampling with PRN

(Brewer et al. 1972) applied in both selections provides an important property: p
1;2
k ¼

min ðp1k;p2kÞ; and thus the AUB is reached. The sample sizes are, however, random for

s1; s2 and s1 > s2:

While all sample coordination methods seek to increase or decrease the sample overlap,

there are different ways to measure the effectiveness of the positive or negative

coordination (e.g., the size of the expected overlap or the expected load of a unit which is

defined as the sum of its selection probabilities in the surveys). Consequently, there is no

unique definition of optimality in sample coordination. We focus here on methods which

try to reach the AUB.

3. Conditional Poisson Sampling

3.1. General Properties of CP Sampling

Let 0 # pk # 1, k ¼ 1; 2; : : : ;N be given parameters. In Poisson sampling an

independent Bernoulli trial is performed for each unit k, so that unit k is selected in the

sample with probability pk. Hence, Poisson sampling provides random sample size.

Conditional Poisson sampling is a fixed-size pps sampling design. It was introduced

by Hájek (1964) as a modification of the classical Poisson sampling. Different

implementations of CP sampling are available (see e.g., Tillé 2006; Bondesson et al.

2006). The initial implementation of CP sampling given by Hájek (1964, 1981) uses a

rejective algorithm to obtain a sample of size n as follows: draw Poisson samples (with

parameters pk) until we get a sample of size n, that is, we condition the Poisson design

on the fixed sample size n. Usually, it is assumed that
PN

k¼1 pk ¼ n because it

maximizes the probability of obtaining samples of size n. The assumption
PN

k¼1 pk ¼ n

is, however, not restrictive. If it is not satisfied, the pks can be transformed to satisfy

that condition (see eg., Broström and Nilsson 2000 or Tillé 2006, 89). Assume that
PN

k¼1 pk – n, then transformed parameters p0k, k ¼ 1; 2; : : : ;N, with sum n can be

calculated. As long as

p 0k
1 2 p0k

/
pk

1 2 pk

;

the design remains unchanged. We can let p 0k=ð1 2 p 0kÞ ¼ dpk=ð1 2 pkÞ, which implies

that

p 0k ¼
dpk

1 2 pk þ dpk

; ð2Þ

and then find d such that
PN

k¼1p 0k ¼ n. Practically, we can find d by applying the

Newton-Raphson method. If we start the Newton-Raphson method with d ¼ 1, then

usually only a few iterations are needed before convergence.

When implementing CP sampling of size n with parameters pk,
PN

k¼1 pk ¼ n, the true

inclusion probabilities will only approximately equal the pks. Let p
CP nð Þ
k denote the

achieved inclusion probabilities for CP sampling of size n. These probabilities can
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rapidly be calculated recursively with a formula proposed by Chen et al. (1994; see also

Tillé 2006). The formula is

p
CPðnÞ
k ¼ n

pk=ð1 2 pkÞ�ð1 2 p
CPðn21Þ
k Þ

XN

l¼1
pl=ð1 2 plÞ�ð1 2 p

CPðn21Þ
l Þ

; ð3Þ

and the start is given by p
CPð0Þ
k ¼ 0, k ¼ 1; 2; : : : ;N. Similarly, the second-order

inclusion probabilities for CP sampling can be calculated recursively.

It is also possible to adjust the pks to obtain desired inclusion probabilities (Dupacová

1979; Chen et al. 1994; Deville 2000; Aires 2000b; Tillé 2006). Algorithms to obtain pk

from given inclusion probabilities pk are given by Aires (2000b) and Tillé (2006, 83).

Following Aires (2000b), an iterative algorithm can be applied. Let p
CPðn;tÞ
k be the achieved

inclusion probabilities derived by (3) with the parameters pt
k, where t denotes the current

iteration of the algorithm, and let p0
k ¼ pk: Then, practically, only a few iterations of

pt
k ¼ pt21

k þ ðpk 2 p
CPðn;t21Þ
k Þ; ð4Þ

are enough to find parameters pt
k that yield inclusion probabilities pk.

CP sampling has an important property: it maximizes the entropy in the class of fixed-

size pps designs with the same first-order inclusion probabilities. We recall that the

entropy of a sampling design ~p is defined as

Ið~pÞ ¼ 2
s[S

X
~pðsÞ log ð~pðsÞÞ;

where S ¼ {s , U ~pðsÞj . 0}: There are at least three reasons for choosing a high-entropy

sampling design (for a general discussion about the entropy of sampling designs, see also

Grafström 2010):

1. The entropy is a measure of sample randomness: a higher entropy of the sampling

design implies more randomness in sample selection.

2. High entropy is important for variance estimation. Tillé and Haziza (2010, 229) noted

that: “The concept of entropy is useful in the context of variance estimation. When a

sampling design has a high entropy, it is possible to obtain approximation of the

second-order inclusion probabilities in terms of the first-order inclusion probabilities,

which simplifies considerably the problem of variance estimation in the context of

unequal probability sampling.”

3. A higher entropy of a design results in a faster convergence to normal distribution of

the Horvitz-Thompson estimator (Berger 1998).

All of these features make CP sampling a very attractive sampling design. Moreover, there

are benefits to be gained from developing methods to coordinate CP samples.

3.2. List-Sequential Implementation of CP Sampling

A CP sample can also be drawn using a list-sequential implementation. This method is

recalled here since it is used afterwards in sample coordination.
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List-sequential implementations of CP sampling can be found in for example, Chen and

Liu (1997); Traat et al. (2004) and Tillé (2006). The units are sampled list sequentially

starting from unit 1. Unit k should be selected in the sample with an updated probability,

here denoted by p
ðk21Þ
k . Thus, we select the unit k in the sample if rk # p

ðk21Þ
k ;where rk is a

random number from Uð0; 1Þ: The random number rk may be a permanent random number

for unit k (and it will be used in all coordination process). We assume that

r1; : : : ; rk; : : : ; rN are independent.

Let Ik , Binð1; pkÞ, k ¼ 1; 2; : : : ;N be independent random variables, where pks are

the Poisson parameters and
P

k[U pk ¼ n: The updated probabilities can be calculated as

follows

p
ðk21Þ
k ¼ PðIk ¼ 1jSk ¼ n 2 nk21Þ;

where Sk ¼
PN

l¼kIl; nk ¼
Pk

l¼1Il, and n0 ¼ 0: Note that nk is the realization of the

random variable
Pk

l¼1Il. The updated probabilities can be rewritten as

p
k21ð Þ

k ¼ pk�
PðSkþ1 ¼ n 2 nk21 2 1Þ

PðSk ¼ n 2 nk21Þ
;

where SNþ1 ¼ 0: The probabilities PðSk ¼ aÞ for given k and a can easily be calculated

recursively. The start is given by PðSN ¼ 0Þ ¼ 1 2 pN and PðSN ¼ 1Þ ¼ pN . Then, for

k ¼ N 2 1;N 2 2; : : : ; 1 and a ¼ 0; 1; : : : ;N 2 k þ 1; we have

PðSk ¼ aÞ ¼ pkPðSkþ1 ¼ a 2 1Þ þ ð1 2 pkÞPðSkþ1 ¼ aÞ; if a . 0;

and

PðSk ¼ aÞ ¼ ð1 2 pkÞPðSkþ1 ¼ aÞ; if a ¼ 0:

If the population is very large, the recursions may take some time. Using this method,

we can calculate the updated probabilities pðk21Þ
k , for k ¼ 1; 2; : : : ;N, and directly get a

sample.

4. Coordination of CP Samples Using the List-Sequential Implementation

A first method coordinating CP samples is based on the list-sequential implementation

presented in Subsection 3.2. To coordinate two CP samples with inclusion probabilities

p1k and p2k, k ¼ 1; 2; : : : ;N, we use the algorithm given by Expression (4) to find the

corresponding Poisson parameters p1k and p2k, respectively. We then apply the list-

sequential method with the permanent random numbers rk in each selection. Even though

it is logical to try to coordinate CP samples in this manner, the approach seems to be new.

In fact, any design with a list-sequential implementation can easily be coordinated by the

use of PRN.

Remark 1 Negative coordination can be achieved using the list-sequential method. For

negative coordination of two samples, antithetic random numbers r*
k ¼ 1 2 rk can be used

in the second selection. For b . 2 samples, new random numbers can be constructed by

shifting the PRN by an amount a to the right before the selection of each sample different

from the first one: rk þ a:A possible choice of a is the inverse of the number of samples to
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coordinate (see Ohlsson 2000). Ohlsson (2000, 257) comments for Poisson sampling with

PRN “if b samples are to be negatively coordinated, the choice a ¼ 1=b should give a

small sample overlap. In particular, if the target inclusion probabilities : : : are less than

1=b for all units i in all b designs, the expected overlap is 0.” The same idea can be used to

negatively coordinate b . 2 CP samples using the list-sequential method. If rk þ a is

larger than 1, we can replace it by ðrk þ aÞ mod 1; where mod is the modulo operator.

Remark 2 Consider the case of positive coordination of two samples, and denote the

selection probabilities in the list-sequential method by p
k21ð Þ

1k and p
k21ð Þ

2k ; respectively. It is

interesting to quantify the size of the expected overlap of two samples drawn using the list-

sequential method, and compare it to the AUB. The expected overlap of two samples

drawn using the list-sequential method with PRN depends on the random variables p k21ð Þ
1k

and p
k21ð Þ

2k : It is given by

k[U

X
p

1;2
k ¼

k[U

X
P rk , p

ðk21Þ
1k ; rk , p

ðk21Þ
2k

� �
¼

k[U

X
P rk , min p

ðk21Þ
1k ;pðk21Þ

2k

� �� �
: ð5Þ

However, it is difficult to quantify it exactly because the same permanent random

numbers are used in the selection of the two samples. Consequently, pðk21Þ
1k and p

ðk21Þ
2k are

dependent random variables. Thus, the method performance is studied only empirically in

Section 6.

5. An Approximate Method to Coordinate CP Samples

5.1. Description of the Method

We suggest a new method coordinating two samples that does not use permanent random

numbers, but instead uses updated parameters for the second selection. In the second

selection the proposed method provides a new sampling design which is approximately a

CP sampling. Recall that U ¼ U1

S
U2; p1k ¼ 0 if k [ UnU1 and p2k ¼ 0 if k [ UnU2;

for all k ¼ 1; : : : ;N:

In the first selection, we select a CP sample s1 of size n1 with inclusion probabilities p1k,

k ¼ 1; 2; : : : ;N, using any suitable method to obtain a CP sample. Given s1;we obtain the

following conditional probabilities

Pðk [ s2jk � s1Þ ¼ p2k 2 p
1;2
k

� �
=ð1 2 p1kÞ ;Pðk [ s2jk [ s1Þ ¼ p

1;2
k =p1k; ð6Þ

assuming that 0 , p1k , 1: By letting p
1;2
k ¼ min ðp1k;p2kÞ in (6), we compute the

following updated parameters p2kjs1
, k ¼ 1; 2; : : : ;N:

. if p1k # p2k, then

p2kjs1
¼

1 if k [ s1

ðp2k 2 p1kÞ=ð1 2 p1kÞ if k � s1

(

;
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. if p1k . p2k, then

p2kjs1
¼

p2k=p1k if k [ s1

0 if k � s1
:

(

In the second selection we select a CP sample s2 of size n2 with the parameters p2kjs1
: The

updated parameters are only used for units k [ U1; for new units k [ UnU1, we let

p2kjs1
¼ p2k. If we achieve conditional inclusion probabilities equal to these parameters,

we obtain the prescribed inclusion probabilities p2k:Moreover, p
1;2
k ¼ min ðp1k;p2kÞ and

the expected overlap is maximized (the AUB is achieved).

The parameters p2kjs1
cannot be used as inclusion probabilities for a fixed-size design

because they do not in general sum to n2 for a given s1: Only the sum of the expected value

of the p2kjs1
equals n2 because

Eð p2kjs1
Þ ¼ min 1;

p2k

p1k

� �

EðI1kÞ þ max 0;
p2k 2 p1k

1 2 p1k

� �

ð1 2 EðI1kÞÞ

¼ min 1;
p2k

p1k

� �

p1k þ max 0;
p2k 2 p1k

1 2 p1k

� �

ð1 2 p1kÞ

¼ p2k;

where Eð:Þ is the expectation operator, and I1k is the indicator variable of unit k for sample

s1 (I1k ¼ 1 if k [ s1 and 0 otherwise). Thus it is impossible to achieve inclusion

probabilities equal to these parameters for a given s1 if only samples of size n2 are

accepted.

If p2kjs1
are used as parameters in the rejective implementation of CP sampling, we can

maximize the probability of obtaining a sample of size n2 by using transformed parameters

with sum n2 (see Subsection 3.1). However, Expression (2) can provide unchanged

parameters if their values are 0 or 1.

Some situations may arise where it is impossible to draw a sample s2 using the

parameters p2kjs1
: Consider, for example, the case where N ¼ 6; n1 ¼ n2 ¼ 3; p 1 ¼

ð0:3; 0:3; 0:3; 0:7; 0:7; 0:7Þ 0;p 2 ¼ ð0:4; 0:4; 0:4; 0:4; 0:4; 1Þ
0 and the sample s1 is {1; 2; 3}:

The parameters p2kjs1
are ð1; 1; 1; 0; 0; 1Þ 0; and they do not allow the selection of a sample

s2 of size 3.

In these unlikely situations, it will be impossible to achieve a sample of size n2 using the

parameters p2kjs1
because either more than n2 of the parameters equal 1 or more than

N 2 n2 equal 0. In such cases, we suggest the following modification to the parameters.

If there are more than n2 of the p2kjs1
that equal 1, we use

p*
2kjs1
¼

0 if p2kjs1
, 1

1 if p2k ¼ 1

n2 2 j{j : p2j ¼ 1}j

j{j : p2jjs1
¼ 1; p2j , 1}j

otherwise

:

8
>>>><

>>>>:
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If there are more than N 2 n2 of the p2kjs1
that equal 0, we use

p*
2kjs1
¼

1 if p2kjs1
. 0

0 if p2k ¼ 0

n2 2 j{j : p2jjs1
. 0}j

j{j : p2jjs1
¼ 0; p2j . 0}j

otherwise

;

8
>>>><

>>>>:

where {�}j j is the size of {�}. The new parameters p*
2kjs1

sum to n2.

Example: To exemplify the proposed method, we consider the same example as before

ðN ¼ 6; n1 ¼ n2 ¼ 3Þ. Consider that s1 is {4; 5; 6}: The parameters p2kjs1
are 0.1428571,

0.1428571, 0.1428571, 0.5714286, 0.5714286, 1. Their sum is 2:571429 – 3: The

parameters p2kjs1
are transformed because they do not sum to n2 ¼ 3: The transformation

is given by Expression (2). The transformed parameters are 0.2117249, 0.2117249,

0.2117249, 0.6824127, 0.6824127, 1, which sum to 3. These parameters are finally used to

draw s2: Here it is not necessary to adjust the parameters to obtain p*
2kjs1

because there are

no more than n2 parameters that equal 1 and no more than N 2 n2 that equal 0.

If s1 is 1; 2; 3f g; one obtains the parameters p2js1
¼ ð1; 1; 1; 0; 0; 1Þ 0: The transformation

given by Expression (2) provides the same parameters. They are modified to obtain

p*
2js1
¼ ð0:6666667; 0:6666667; 0:6666667; 0; 0; 1Þ 0; with

P
k[U p*

2kjs1
¼ 3: These par-

ameters are finally used to draw s2 using the rejective method.

Remark 3 The use of the parameters p2kjs1
corresponds to the following rejective

algorithm for the second sample (positive coordination). Perform Poisson sampling until

the sample size is n2 as follows: if unit k [ s1, draw a uniform random number uk ,
Uð0;p1kÞ; otherwise, draw a uniform random number uk , Uðp1k; 1Þ: In both cases, select

the unit k in s2 if uk , p2k: Similarly, for the negative coordination of two samples,

perform Poisson sampling until the sample size is n2 as follows: if unit k [ s1, draw a

uniform random number uk , Uð1 2 p1k; 1Þ; otherwise, draw a uniform random number

uk , Uð0; 1 2 p1kÞ: In both cases, select the unit k in s2 if uk , p2k: The algorithm for the

negative coordination results from using p
1;2
k ¼ max ð0;p1k þ p2k 2 1Þ in the conditional

probabilities in (6).

Remark 4 Any design that achieves the prescribed inclusion probabilities for second

selection and reaches the AUB must respect the following conditional inclusion

probabilities for all k [ U

Pðk [ s2jk � s1Þ ¼
ðp2k 2 p1kÞ=ð1 2 p1kÞ if p1k # p2k

0 if p1k . p2k

(

and

Pðk [ s2jk [ s1Þ ¼
1 if p1k # p2k

p2k=p1k if p1k . p2k
:

(

In our approximate method we apply the rejective algorithm with these probabilities as

parameters. We have several situations where we get the exact marginal CP design at
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second selection. The most trivial example is when p2k ¼ p1k for all k. Then s2 is always

equal to s1, and since s1 is a CP sample, so is s2. Another example is when p1k is 0 or 1 for

all k. Then the marginal design for the second sample is CP with parameters p2k. Finally,

we get the marginal CP design for the second selection if p2k is equal to p1k, 0 or 1, for all

k. These results indicate that if p2 is close to p 1, the marginal design for the second

selection must be very close to CP. Also if p2 is very far from p1 (i.e., the elements of p2

are close to 0 or 1), then we also get close to CP design.

5.2. Examples

The examples below are used to compare the first- and second-order inclusion

probabilities of the proposed design (used to draw s2) to those of the CP design. The first

and second-order inclusion probabilities of the proposed design are denoted by ~p2k and

~p2kl; respectively. However, they cannot be directly computed. In what follows, the

probabilities ~p2k and ~p2kl have been estimated using 106 simulated samples (see

Thompson and Wu 2008 for a discussion about the number of simulated samples used to

obtain estimated inclusion probabilities) and are rounded to four decimal places. The

estimated inclusion probabilities are denoted by ^~p2k and ^~p2kl, respectively, while the

prescribed first- and second-order inclusion probabilities are denoted by p2k and p2kl;

respectively. The R software (version 3.0.1) was used to compute ^~p2k and ^~p2kl: The same

number of 106 simulated samples has been used to compute ^~p2k and ^~p2kl regardless of the

population size or characteristics. Another method is to use an adaptive algorithm for

estimating the inclusion probabilities, where the number of replications is determined on

the basis of the stability of the Horvitz-Thompson estimates and their precision (see

Fattorini 2009).

Example 1: A population of size N ¼ 5 is used to show that the proposed design gives

inclusion probabilities close to those of the CP design even for small populations.

Let p1 ¼ ð0:1; 0:2; 0:3; 0:5; 0:9Þ
0; p2 ¼ ð0:7; 0:2; 0:2; 0:4; 0:5Þ

0; n1 ¼ n2 ¼ 2: The

corresponding Poisson parameters that give these inclusion probabilities (rounded to

four decimal places) are

p1 ¼ ð0:1328; 0:2387; 0:3253; 0:4595; 0:8438Þ 0

p2 ¼ ð0:6430; 0:2354; 0:2354; 0:4066; 0:4797Þ 0:

The prescribed and the estimated inclusion probabilities are given in Tables 1, 2 and 3.

The highest absolute difference between ^~p2k and p2k is about 0.02, while for the second-

order inclusion probabilities ^~p2kl and p2kl it is about 0.07.

Table 1. Prescribed p2k and estimated ^~p2k in Example 1; ^~p2k are computed using 106 simulated samples

k p2k
^~p2k

1 0.7 0.6971
2 0.2 0.1992
3 0.2 0.2114
4 0.4 0.4165
5 0.5 0.4759
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Example 2: MU284 static population We consider the so-called ‘MU284 population’ of

284 Swedish municipalities presented in Appendix B of Särndal et al. (1992). The regional

REG variable, giving eight strata of sizes between 15 and 56, is used. We consider samples

of sizes n1 ¼ 10; n2 ¼ 6 drawn from the stratum number 2 (REG ¼ 2), with N ¼ 48: No

births or deaths are assumed. The inclusion probabilities p1k are computed using the

variable P75 (population in 1975 in thousands), and p2k using the variable P85 (population

in 1985 in thousands). Due to lack of space, the probabilities ^~p2k; p2k and the matrices of
^~p2kl and p2kl are not shown here. For this example, the estimated ^~p2ks are very close

to those of the CP design (the largest absolute difference between them is about 0.006).

The highest absolute difference between ^~p2kl and p2kl is about 0.006.

Example 3: MU284 dynamic population We consider the same stratum 2 from the

MU284 population as before, but 50% of the units are new on the second occasion (births),

and 50% of the units change stratum (deaths). We have considered that the births were

initially in the third stratum. Thus, 24 units have been randomly drawn from the third

stratum using simple random sampling without replacement; these units represent the

births for the second stratum. Similarly, 24 units have been randomly drawn from the

second stratum using simple random sampling without replacement; these units represent

the deaths for the second stratum. The number of persistent units in the two occasions is 24.

The overall population (called ‘MU284 dynamic population’) is formed by the persistents,

births and deaths; its size is 72. Samples of sizes n1 ¼ 10; n2 ¼ 6 respectively are drawn

from this population. The inclusion probabilities p1k and p2k are computed using the same

variables as in Example 2. The highest absolute difference between ^~p2k and p2k is about

0.02; the same value is obtained as the highest absolute difference between ^~p2kl and p2kl.

For the same example, but where n1 ¼ 15 and n2 ¼ 20; the highest absolute difference

between ^~p2k and p2k is about 0.011; the highest absolute difference between ^~p2kl and p2kl

is about 0.015. Finally, for n1 ¼ 30 and n2 ¼ 25 we obtained the highest absolute

difference between ^~p2k and p2k equal to 0.008, while for ^~p2kl and p2kl it equals to 0.010.

Table 2. Matrix of prescribed p2kl in Example 1

k\l 1 2 3 4 5

1 0.7000 0.0969 0.0969 0.2158 0.2903
2 0.0969 0.2000 0.0166 0.0369 0.0496
3 0.0969 0.0166 0.2000 0.0369 0.0496
4 0.2158 0.0369 0.0369 0.4000 0.1104
5 0.2903 0.0496 0.0496 0.1104 0.5000

Table 3. Matrix of estimated ^~p2kl in Example 1 computed on 106 simulated samples

k\l 1 2 3 4 5

1 0.6971 0.1159 0.1220 0.2475 0.2116
2 0.1159 0.1992 0.0069 0.0164 0.0600
3 0.1220 0.0069 0.2114 0.0154 0.0671
4 0.2475 0.0164 0.0154 0.4165 0.1372
5 0.2116 0.0600 0.0671 0.1372 0.4759
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Example 4: We use an artificial population (called ‘artificial population I’) of size

N ¼ 1; 000: No births and no deaths are assumed. Samples of sizes n1 ¼ 100 and n2 ¼

250; respectively, are drawn. The inclusion probabilities p1k and p2k are randomly

generated using the U 0; 1
� �

distribution and are normalized to sum to 100 and 250,

respectively. The highest absolute difference between ^~p2k and p2k is about 0.0015; the

highest absolute difference between ^~p2kl and p2kl is about 0.0016. For a similar example,

but where N ¼ 2000; n1 ¼ 200 and n2 ¼ 500; the highest absolute difference between the

estimated and the prescribed first-order inclusion probabilities is about 0.0017; the same

value is obtained as the highest absolute difference between ^~p2kl and p2kl.

Extensive simulations (not shown here) performed on large-size populations and

different vectors p1 and p2 suggest that the differences between the inclusion probabilities

of the two designs vanish when population and sample sizes are growing.

5.3. Estimation Using the Proposed Sampling Design

As noted in Subsection 5.1, the proposed sampling design applied in the second occasion

is only approximately a CP sampling. This section contains different simulation studies

used to compare the performance of the proposed design and CP sampling design in

estimations.

Let y be the variable of interest and Y ¼
P

k[U2
yk; where yk is the value of the variable

of interest taken on unit k: To check the impact of the proposed sampling design on

estimations, we focus on the Horvitz-Thompson (HT) estimator of Y

ŶHT ¼
k[s2

X
yk= ~p2k: ð7Þ

Since the inclusion probabilities ~p2k cannot be directly computed, this estimator cannot

be used. Following Fattorini (2006, 270), a “natural modification” of (7) is

Ŷm ¼
k[s2

X
yk=

^~p2k ð8Þ

where ^~p2k; the estimated value of ~p2k; was computed using Monte Carlo simulation and

m ¼ 106 runs. The estimator
^~Ym converges almost surely to ŶHT as m increases. A first

option is to use Estimator (8), drawing s2 using the proposed design. A second option is to

draw s2 using the proposed design but to compute the HT estimator using p2k instead of

~p2k: The second option is determined by the closenesses between ~p2k and p2k; as shown in

Subsection 5.2, for large N and n2:

To assess the performance of the previous estimators under the proposed sampling

design, one artificial population and one real population were used. For both populations,

we selected m ¼ 105 samples according to the CP sampling and the proposed sampling,

respectively.

In the artificial population of size N ¼ 200; no births or deaths are assumed. Let x1 and

x2 be the size variables in the first and second design, respectively. To underline a potential

change of the size variables over time, we used x1k ¼ k and x2k ¼ x1k þ uk; where x1k; x2k

are the values of x1; x2 taken on unit k; respectively, and uk , U 0; 1
� �

are independent

random variables, k ¼ 1; : : : ;N: The model used to generate the variable of interest

was yk ¼ 5x2kð1þ 1kÞ; where 1k , Nð0;s2 ¼ 0:42Þ are independent random variables.
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The correlation between y and x2 was about 0.8. The first-order inclusion probabilities p1k

and p2k were proportional to x1k and x2k; respectively.

Two different sample size settings were used. In the first setting, n1 ¼ 15 and n2 ¼ 20;

while in the second one n1 ¼ 50 and n2 ¼ 60: For each setting and in each simulation run,

CP samples of sizes n1 and n2 were drawn using the rejective method. Additionally,

samples of size n2 were also drawn using the proposed design. On the samples drawn using

the proposed design, two estimators were computed: the HT estimator using p2k instead of

~p2k and Estimator (8). On the CP samples of size n2; the HT estimator (using p2k) was

computed. In all tables of this section, the column ‘Prob.’ denotes the inclusion

probabilities used in estimations, while the column ‘Design’ gives the design.

The performance of the HT-type estimators were compared using the percent absolute

relative bias (ARB)

ARBŶ ¼ 100 £
jEsimðŶÞ2 Yj

Y
;

and the empirical root mean square error (RMSE)

RMSEŶ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEsimðŶÞ2 YÞ2 þ varsimðŶÞ

q

;

where Ŷ is a generic estimator, Ŷ ~m is the estimator computed on the ~mth simulated sample,

EsimðŶ) ¼ 1
m

Pm
~m¼1Ŷ ~m and varsim(ŶÞ is the variance of Ŷ ~m computed as

Pm
~m¼1 Ŷ ~m 2 EsimðŶÞ
� �2

=ðm 2 1Þ:

The results for the artificial population are provided in Table 4. They show small values

of the ARB (less than or equal to 0.01%) for the estimators using p2k and ^~p2k and

computed on the samples drawn using the proposed design. In both settings, the RMSE

values reported in Table 4 are similar for all estimators. It is worth noting that the proposed

design using p2k and p2kl provides similar ARB and RMSE values as compared to those

obtained by CP sampling.

Table 4. Percent absolute relative bias and root mean square error of the HT type estimators computed using

CP sampling and the proposed design, m ¼ 105 simulation runs; artificial population, N ¼ 200

Setting n1 ¼ 15; n2 ¼ 20

Design Prob. ARBŶ
(%)

RMSEŶ

CP sampling p2k 0.01 7875.13
Proposed design p2k ,0.01 7912.50
Proposed design ^~p2k ,0.01 7906.24

Setting n1 ¼ 50; n2 ¼ 60
(%)

CP sampling p2k ,0.01 2932.30
Proposed design p2k ,0.01 2932.52
Proposed design ^~p2k ,0.01 2931.15
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The real population is the ‘MU284 dynamic population’ described in Example 3. Births

and deaths are assumed. The overall population size is N ¼ 72: Two different sample size

settings were used. In the first setting, n1 ¼ 10 and n2 ¼ 6; while in the second one

n1 ¼ 30 and n2 ¼ 25: The same estimators as described for the artificial population were

used. The results for the real population are provided in Table 5. In Table 5, the largest

value of the ARB (about 0.17%) is shown by the HT-type estimator using p2k and the

proposed design. This value can be explained by a larger difference between ~p2k and p2k

for small samples (here n2 ¼ 6). The other values of the ARB are similar (about 0.01%) for

all estimators in both settings. The values of the RMSE are very close for all estimators.

An exception is Estimator (2) in the first setting, which turned out to be more efficient than

the HT estimator computed using the CP sampling in terms of RMSE.

A second simulation study focuses on variance estimation. A variance estimator of the

Horvitz-Thompson estimator is the Sen-Yates-Grundy (SYG) estimator

v̂arðŶHT ÞSYG ¼
k[s2

X

l[s2;l–k

X ~p2k ~p2l 2 ~p2kl

~p2kl

yk

~p2k

2
yl

~p2l

� �2

: ð9Þ

This estimator is unbiased when the sample size is fixed, provided that all the second-

order inclusion probabilities are strictly positive. A disadvantage of the SYG variance

estimator is the use of the second-order inclusion probabilities. It can also be very unstable

because of the term ~p21
2kl in (9) (see Haziza et al. 2008, 93). Another variance estimator

using only the first-order inclusion probabilities proposed by Rosén (1991) and found to

perform well under a high-entropy sampling design was used in our simulations

v̂arðŶHT ÞRos ¼
n2

n2 2 1 k[s2

X
ð1 2 ~p2kÞ

yk

~p2k

2 a

� �2

; ð10Þ

Table 5. Percent absolute relative bias and root mean square error of the HT type estimators computed using

CP sampling and the proposed design, m ¼ 105 simulation runs; MU284 dynamic population, N ¼ 72

Setting n1 ¼ 10; n2 ¼ 6

Design Prob. ARBŶ
(%)

RMSEŶ

CP sampling p2k 0.01 340.53
Proposed design p2k 0.17 334.33
Proposed design ^~p2k 0.01 285.98

Setting n1 ¼ 30; n2 ¼ 25

Design Prob. ARBŶ
(%)

RMSEŶ

CP sampling p2k ,0.01 69.80
Proposed design p2k ,0.01 69.14
Proposed design ^~p2k ,0.01 69.00
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where

a ¼

X
l[s2

yl
1 2 ~p2l

~p2
2l

log ð1 2 ~p2lÞ

X
l[s2

1 2 ~p2l

~p2l
log ð1 2 ~p2lÞ

:

As in the case of Estimator (7), we modify Estimators (9) and (10) using ^~p2k and ^~p2kl

instead of ~p2k and ~p2kl; respectively.

The variance estimators were computed on the same simulated samples as the HT-type

estimators. On the CP samples of size n2, they were computed using p2k and p2kl: The

variance estimators are compared using the percent absolute ratio of bias and the empirical

root mean square. The ARB is now defined as

ARBv̂ar ¼ 100 £
Esim v̂arð Þ2 Vj j

V
;

where v̂ar is a generic variance estimator, v̂ar ~m is the estimator computed on the ~mth

simulated sample, Esim v̂arð Þ ¼ 1
m

Pm
~m¼1v̂ar ~m and V is the true variance of the HT-type

estimator. The values of V were computed through simulation using another set of 105

simulated samples. Similarly, the RMSE is now defined as

RMSEv̂ar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEsim v̂arð Þ2 VÞ2 þ varsim v̂arð Þ

q

;

where varsim v̂arð Þ ¼
Pm

~m¼1 v̂ar ~m 2 Esim v̂arð Þð Þ2=ðm 2 1Þ:

Table 6 shows the values of the ARB and RMSE of the SYG and Rosén variance

estimators for the artificial population. In terms of absolute relative bias, all three SYG

variance estimators perform equally in both settings. The largest bias is displayed by the

SYG estimators using the proposed design. The three Rosén estimators show larger but

similar values of the ARB. The magnitude of the values of the ARB for Rosén estimators

Table 6. Percent absolute relative bias and root mean square error of the variance estimators using

CP sampling and the proposed design, m ¼ 105 simulation runs; artificial population, N ¼ 200

Setting n1 ¼ 15; n2 ¼ 20

Design Prob. ARBSYG

(%)
RMSESYG ARBRos

(%)
RMSERos

CP sampling p2k;p2kl 0.08 20731799 9.72 19541730
Proposed design p2k;p2kl 0.10 20624478 9.88 19483339
Proposed design ^~p2k;

^~p2kl 0.12 20701686 10.03 19554825

Setting n1 ¼ 50; n2 ¼ 60

Design Prob. ARBSYG

(%)
RMSESYG ARBRos

(%)
RMSERos

CP sampling p2k;p2kl ,0.01 1438744 2.28 1353542
Proposed design p2k;p2kl 0.07 1433427 3.30 1364083
Proposed design ^~p2k;

^~p2kl 0.06 1448275 3.33 1366047
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are also similar to those reported by Matei and Tillé (2005a) and Haziza et al. (2008). The

values of the RMSE for SYG estimators are comparable for the three sampling designs in

both settings. As noted by Haziza et al. (2008), the Rosén estimators tend to underestimate

the true variance in most of the scenarios, but their RMSE values are comparable for the

three sampling designs.

The ARB and RMSE values of the SYG and Rosén variance estimators for the ‘MU284

dynamic population’ are given in Table 7 for both settings. The ARB values of the SYG

estimators are larger than in the case of the artificial population. These results can be

explained by the underlying model linking the variable of interest y and the size variable x2

in the real population. This model is different from a ratio model used to generate y in the

artificial population. The ARB values for the three Rosén estimators are similar in the

second setting, but show slight differences in the first setting. In both settings, the RMSE

values of the SYG and Rosén estimators agree closely for the CP sampling and the

proposed design using the prescribed inclusion probabilities.

As shown by our simulation studies, the estimator based on the proposed design and

computed using p2k and p2kl does not suffer from much larger variances than the Horvitz-

Thompson estimator under CP sampling. A slight bias is shown for small sample sizes.

With respect to the ARB and RMSE measures, the proposed design agrees approximately

with the CP sampling design when p2k and p2kl are used in estimations. In our simulation

studies, the proposed design using p2k and p2kl performs relatively well in estimations for

large population and sample sizes.

6. Numerical Comparisons

To check the coordination performance of the two proposed methods, we also consider

Poisson sampling with PRN (Brewer et al. 1972) and Pareto sampling with PRN (Rosén

1997a,b). Some details about their implementation are given below.

Table 7. Percent absolute relative bias and root mean square error of the variance estimators using CP

sampling and the proposed design, m ¼ 105 simulation runs; MU284 dynamic population, N ¼ 72

Setting n1 ¼ 10; n2 ¼ 6

Design Prob. ARBSYG

(%)
RMSESYG ARBRos

(%)
RMSERos

CP sampling p2k;p2kl 0.57 77902.13 32.58 61920.10
Proposed design p2k;p2kl 0.33 76168.41 29.90 59398.93
Proposed design ^~p2k;

^~p2kl 0.23 84302.57 23.06 58673.89

Setting n1 ¼ 30; n2 ¼ 25

Design Prob. ARBSYG

(%)
RMSESYG ARBRos

(%)
RMSERos

CP sampling p2k;p2kl 0.38 2154.52 13.74 1872.53
Proposed design p2k;p2kl 0.53 2146.17 12.38 1849.40
Proposed design ^~p2k;

^~p2kl 0.29 2087.59 12.03 1849.61
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Poisson sampling with PRN is very easy to implement: independent random numbers

(rk) from the Uð0; 1Þ distribution are permanently assigned to all units in the population.

On the first occasion, one selects a unit k in s1 if rk , p1k; on the second occasion, k is

selected in s2 if rk , p2k: It follows that p
1;2
k ¼ min p1

k ;p
2
k

� �
; and the AUB is reached.

As already pointed out in Subsection 3.1, Poisson sampling, whether employing PRN or

not, provides random sample size. To overcome this problem, in the class of unequal

sampling designs, several PRN schemes have been proposed in the literature. One of them

is order pps sampling (Rosén 1997a,b). Order pps sampling with PRN and a fixed

distribution shape H is based on the following idea: independent random numbers (rk)

from the Uð0; 1Þ distribution are permanently assigned to all units in the population.

On the first occasion, the n1 units having the smallest values of HðrkÞ=Hðp1kÞ are

selected as a sample of size n1. Similarly, on the second occasion, the n2 units having the

smallest values of HðrkÞ=Hðp2kÞ are selected as a sample of size n2. The sample

coordination is assured by the use of the same rk in both occasions. Different

distribution shapes result in various types of order pps sampling. In particular we have:

uniform-order sampling or sequential Poisson sampling (Ohlsson 1995, 1998),

exponential-order sampling or successive sampling (Hájek 1964), and Pareto-order

sampling (Rosén 1997a,b; Saavedra 1995).

Simulations showed that the three order pps sampling designs perform equally in

sample coordination. However, Pareto sampling is generally preferred because it is the

most efficient design in the class of order pps sampling designs with the same prescribed

inclusion probabilities (see Rosén 1997a, b, 2000). Pareto sampling uses the shape H xð Þ ¼

x= 1 2 xð Þ: While Pareto sampling with PRN performs well in sample coordination, it is,

however, an approximate pps sampling design (the inclusion probabilities only agree with

the prescribed inclusion probabilities approximately), and does not possess the maximum-

entropy property.

All coordination methods are compared using the expected sample overlap computed

using Monte Carlo simulation. The expected sample overlap given by the independent

selection of samples is also reported in simulations. As a benchmark, we use the AUB

given in (1).

Three simulation studies are shown below using the following five different sampling

schemes:

a) two CP samples are drawn independently (IND) (using the rejective method for both),

b) two Poisson samples are drawn using Poisson sampling (POI) with PRN,

c) two Pareto samples are drawn using Pareto sampling (PAR) with PRN,

d) two CP samples are drawn using the list-sequential method (SEQ) with PRN,

e) the first sample is a CP one drawn using the rejective method; the second one is

selected using the rejective method with updated parameters as described in

Section 5.1. We call this method the mixed one (MIX).

For the methods a), d), and e) (only for the first sample) the parameters p1 and p2 were

computed from p1k and p2k respectively (see Equation 4) and used in sample selection.

A number of 105 simulation runs was used to compute the expected overlap of two

samples drawn using the five methods. N random numbers from U 0; 1
� �

distribution were

generated in each simulation and used as PRN in each method. The expected overlap for
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each method was computed using the formula

EsimðcÞ ¼
1

m

Xm

~m¼1

c
1;2
~m ;

where m ¼ 105 is the number of runs, c
1;2
~m ¼ js1 ~m > s2 ~mj; and s1 ~m, s2 ~m, are the samples

drawn in the ~mth simulation run. The Monte Carlo variance of the overlap between

samples was also reported in the tables below

VsimðcÞ ¼
1

m 2 1

Xm

~m¼1

c
1;2
~m 2 EsimðcÞ

� �2

:

1. First study – MU284 population

The first study is based on the MU284 population used in Example 2. As before, the

inclusion probabilities p1k are computed using the variable P75 (population in 1975 in

thousands), and p2k using the variable P85 (population in 1985 in thousands). In each

simulation, samples of expected sizes 10 and 6, respectively, are drawn as described in the

methods a)-e).

Case A)

We use the ‘MU284 static population’ described in Example 2 ðN ¼ 48Þ: Table 8 shows the

expected overlap EsimðcÞ and variance VsimðcÞ for each of the five methods. Like Poisson

sampling with PRN, the mixed method shows a very good expected overlap, which equals

the theoretical AUB. The sequential method also provides a very good expected overlap, but

smaller than the AUB and the Pareto sampling with PRN performance. For this example, the

mixed method performs very well, providing in each run a realized overlap equal to the

AUB. As expected, Poisson sampling with PRN shows the larger overlap variance, while

PAR, SEQ and MIX methods perform equally, giving similar values for the VsimðcÞ:

Case B)

We use the ‘MU284 dynamic population’ described in Example 3. Samples of expected

sizes n1 ¼ 10; n2 ¼ 6 respectively are drawn from this population of size N ¼ 72:

Table 9 shows the expected overlap and variance for each method. As in Case A, the

mixed method shows an expected overlap equal to the theoretical AUB, and provides

better performance than Pareto sampling with PRN. The sequential method performs

worse than Pareto sampling concerning the expected overlap. The discrepancies for

VsimðcÞ in Table 9 (except IND and POI) are too small to show a real difference between

the methods; they may be due to the process of random simulation.

Table 8. Expected overlap and variance in the first Monte Carlo study based on 105 simulation runs - MU284

static population

Method EsimðcÞ VsimðcÞ

IND 3.05 1.51
POI 6.00 4.13
PAR 5.98 0.01
SEQ 5.83 0.15
MIX 6.00 0.00

AUB 6.00
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2. Second study – artificial population I

The second study is based on an artificial population of size N ¼ 1; 000: No births and no

deaths are assumed. In each simulation, samples of expected sizes 100 and 250,

respectively, are drawn using the same methods as before (a-e). The inclusion probabilities

p1k and p2k are randomly generated using the Uð0; 1Þ distribution and are normalized to

sum to 100 and 250, respectively. Table 10 shows the expected overlap and the variance

for each method.

The results given in Table 10 show very good performances of the proposed methods.

The first proposed method shows a good coordination level of samples, but performs

worse than the mixed method. The mixed method yields results approximately equal to the

AUB. The difference between 87.01 (EsimðcÞ for MIX) and 86.99 (the AUB) in Table 10 is

due to the difference between p2k and ~p2k: Indeed, EsimðcÞ for MIX is an unbiased

estimator of
P

k[U min ðp1k; ~p2kÞ and not of the
P

k[U min ðp1k;p2kÞ; the AUB.

3. Third study – artificial population II

Finally, we consider an extreme situation for the mixed method (the same example is given

in Section 5.1). It is a case where it is not always possible to directly draw a sample s2 using

the parameters p2kjs1
: Instead, a sample s2 is selected using the parameters p*

2kjs1
: We have

N ¼ 6; n1 ¼ n2 ¼ 3; p1 ¼ ð0:3; 0:3; 0:3; 0:7; 0:7; 0:7Þ
0; p2 ¼ ð0:4; 0:4; 0:4; 0:4; 0:4; 1Þ

0:

Table 11 gives the expected overlap and variance for each method. The mixed method

shows an expected overlap larger than the AUB because the first-order inclusion

probabilities are not respected exactly for the second design. The estimated first-order

Table 9. Expected overlap and variance in the first Monte Carlo study based on 105 simulation runs - MU284

dynamic population

Method EsimðcÞ VsimðcÞ

IND 1.55 0.78
POI 2.79 1.94
PAR 2.76 1.04
SEQ 2.55 1.00
MIX 2.79 0.99

AUB 2.79

Table 10. Expected overlap and variance in the second Monte Carlo study based on 105 simulation runs -

artificial population I

Method EsimðcÞ VsimðcÞ

IND 24.75 16.83
POI 86.99 76.15
PAR 86.90 10.26
SEQ 86.44 10.51
MIX 87.01 9.74

AUB 86.99
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inclusion probabilities ^~p2k

� �
for the second design are the following: 0.3722, 0.3729,

0.3727, 0.4417, 0.4405, 1.0000. By computing
X

k[U

min p1k;
^~p2k

� �

we obtain the expected overlap of the mixed method of 2.4822, matching the value of

EsimðcÞ for the mixed method given in Table 11.

7. Discussion and Conclusions

Two methods of coordinating CP samples or approximate CP samples have been

proposed. The two samples can be drawn sequentially or in different time occasions. We

have focused on positive coordination, but the negative case can be also implemented

using the two proposed methods.

The first method is based on the list-sequential implementation of CP sampling. It is a

PRN method and has the advantage of preserving the second sampling design exactly

(both samples are CP). It provides a good level of expected overlap as shown in Section 6,

but smaller than the AUB. This is mainly due to the differences between the selection and

the inclusion probabilities.

The second method is an approximate one, because the second sampling design is not

exactly respected. For small populations and samples, there are differences between the

inclusion probabilities provided by the proposed sampling design on the second occasion

and those of the corresponding CP sampling. In our examples, these differences seem to

vanish as the population and sample size increase.

The parameters p2kjs1
cannot be used as inclusion probabilities for a fixed size design

because they do not in general sum up to the desired sample size. By instead using them as

parameters, they can be rescaled to sum up to n2:As for Conditional Poisson sampling, the

inclusion probabilities will differ from the parameters, but the difference vanishes as the

population and sample sizes increase (for CP sampling see Aires 2000a). For very small

examples, such as Example 1 in Subsection 5.2, there can be larger differences. This is

why this procedure only gives an approximate CP sample. On average, the rescaling

cancels out, so we achieve approximately correct inclusion probabilities. However, the

mixed method should not be used on overly small populations/samples. For small

populations, we can use the exact list-sequential method shown in Section 4.

Table 11. Expected overlap and variance in the third Monte Carlo study based on 105 simulation runs -

artificial population II

Method EsimðcÞ VsimðcÞ

IND 1.62 0.44
POI 2.40 1.33
PAR 2.33 0.32
SEQ 2.32 0.35
MIX 2.48 0.30

AUB 2.40
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Since the true inclusion probabilities for the second design cannot be directly computed,

but in our examples they are close to p2k and p2kl, the latter can be used in estimations. As

our simulation studies in Subsection 5.3 show, there are small differences in terms of ARB

and RMSE in estimations especially for large populations/samples between the proposed

design when p2k and p2kl are used and the CP sampling.

The mixed method provides the optimal degree of coordination since by construction it

tries to achieve the AUB. The expected overlap provided by this method can be larger or

smaller than the AUB. In order to achieve the AUB, we need to have p
1;2
k ¼ min ðp1k;p2kÞ

for all k. This means, for example, that all units k [ s1 for which p1k # p2k must be

included in s2 with conditional probability 1. As the third study in Section 6 shows, this

may lead to more than n2 units with conditional inclusion probabilities equal to 1. Such

probabilities can never be respected by a design of fixed-size n2. Thus, in general the AUB

cannot be achieved by any fixed-size design.

The mixed method shows a high performance comparable to Poisson sampling with

PRN. It has the advantage of allowing fixed sample sizes compared to Poisson sampling

with PRN. Due to this fact, the mixed method provides a smaller overlap variance than

Poisson sampling with PRN, as also shown in our simulations. Compared to Pareto

sampling with PRN, the mixed method performs better in simulations, but it has the

disadvantage of providing only an approximate CP sample in the second selection. On the

other hand, Pareto sampling does not possess the maximum-entropy property for given

first-order inclusion probabilities.

Based on the criterion to achieve the AUB, the second sampling in the mixed method

is an optimal sampling design for the first one. In our paper, the first sample is a CP

sample. It is possible to apply the mixed method for any type of fixed-size sampling

design used in the first selection. Hence, the method allows to use of, for example, a

balanced sample in the first selection. The second sampling is always optimal for the

first one if the conditional inclusion probabilities given in the first part of Remark 4

are respected.
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