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Heterogeneity in capture probabilities is known to produce bias in the dual system estimates
that have been used to estimate census coverage in U.S. Censuses since 1980. Triple system
estimation using an administrative records list as a third source along with the census and
coverage measurement survey has the potential to produce estimates with less bias. This is
particularly important for hard-to-reach populations.

The article presents potential statistical methods for the estimation of net census
undercount using three systems for obtaining population information: (1) a decennial census;
(2) an independent enumeration of the population in a sample of block clusters; and
(3) administrative records. The 2010 Census Match Study will create census-like files for
the entire nation using federal and commercial sources of administrative records. The 2010
Census Coverage Measurement Survey is an enumeration in a sample of block clusters that
is independent of the 2010 decennial Census.
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1. Introduction

Heterogeneity in capture probabilities is known to produce bias in the dual system

estimates (DSE) which have been used to estimate census coverage in U.S. Censuses since

1980. Triple system estimation using an administrative records list as a third source along

with the census and postenumeration survey (PES) has the potential to produce estimates

with less bias. This is particularly important for hard-to-reach populations. Based on

theory in Bell (1993), the bias in DSE due to causal dependence or heterogeneity in

capture probabilities may be greater for hard-to-reach populations. Some of the many

references for the theory and practice of Dual System Estimation are Chandrasekar and

Deming (1949), Wolter (1986), Alho (1990), and Mulry and Spencer (1991).

For the 2020 Census postenumeration survey, we are carrying out a preliminary

investigation on using Triple System Estimation (TSE). The three systems for obtaining

population information for TSE are: (1) a decennial census; (2) an independent enume-

ration of the population in a sample of block clusters; and (3) administrative records.
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For this article, all data are simulated and there is no sampling. When administrative

records are mentioned the reader should bear in mind that any real application would

use census-like files for the entire nation, using federal and commercial sources of

administrative records similar to those created for the 2010 Census Match Study

(Rastogi and O’Hara 2012). Similarly, in practice a PES would be an enumeration in

a sample of block clusters independent of the census, like the 2010 Census Coverage

Measurement Survey.

For this simulation study, it is assumed that all N individuals in the population are

exposed to possible inclusion in all three sources. In practice, sampling is necessary for

the postenumeration survey and possibly the administrative list (due to the necessity of

follow-up for unresolved match status). Table 1 illustrates the eight cells indicating the

possible combinations of captured or not captured by each of the three attempts at

enumeration. The count of the population total in each cell is defined as Njkl where the

subscripts j, k, and l are 1 or 0 to indicate captured or not captured in the Census list, the

postenumeration survey, and the administrative list respectively. For example, N110

is the count of persons captured by the Census and PES but not captured by the

administrative list. All cells are conceptually observable except N000.

Creation of the simulated populations assumes autonomous independence, which means

that the Census list, the postenumeration survey list and the administrative list are created

as a result of N mutually independent trials from one person to the next (all persons

are captured independently of all other persons, even persons in the same household).

The counts in Table 1 and all the estimators studied in this article could be constructed

even if autonomous independence did not hold. Autonomous dependence could create

additional bias in estimates.

The Census Bureau has used dual system estimation for census net error estimation

starting with the 1980 Census. The incomplete 23 table of counts for triple system

estimation can be divided into one complete 2 £ 2 subtable and one incomplete 2 £ 2

subtable. The additional source from administrative records provides data with which to

evaluate the previously untestable assumption of independence between the census and

the postenumeration survey. Evidence is available in the triple-system tables for odds

ratios in 2 £ 2 subtables formed by restricting consideration to cases observed in the

administrative records source. In this case, complete information is available for all

four cells defined by capture or noncapture in the census and postenumeration survey.

This additional information is used to formulate the triple system estimates using any of an

assortment of model assumptions.

For populations of size 1,000, this article presents simulations for ten estimators of

persons missed on all lists, each of which can be combined with observed counts to

Table 1. Population counts by capture status

In AL Out of AL

In PES 1 Out of PES 0 In PES 1 Out of PES 0

In Census 1 N111 N101 N110 N100

Out of Census 0 N011 N001 N010 N000
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produce estimates of the total population. Each estimate is compared with the

corresponding true population value. The ability to estimate the dependence between the

census and postenumeration survey for persons not on the administrative list (using

persons on the administrative list) may reduce bias in the estimation of census coverage

error. With dual system estimation, we cannot achieve this reduction in correlation bias in

the presence of dependence and heterogeneity because we have no data available to

estimate the dependence. Log-linear model theory can be useful in formulating and

understanding some triple system estimators. These models are supported by empirical

evidence that capture in the census or coverage measurement list is only weakly associated

with capture on the administrative list. This is plausible since the administrative list is

created in a radically different way than the census list and postenumeration survey list,

which are independent surveys using similar fieldwork. The ten estimators are described

in Section 2.

Seven of these estimators are motivated by hierarchical log-linear models based

on Fienberg (1972). Additional references for log-linear models are Bishop et al. (1975),

Fienberg (2000), and Agresti (2002). Two of the estimators are based on suggestions

from Zaslavsky and Wolfgang (1990 and 1993). For comparison, the traditional dual

system estimate (DSE) using only the decennial census and postenumeration survey will

be computed.

Other triple system estimators using alternative models, not simulated for this article,

are suggested by Darroch et al. (1993). They built an equivalence for the generalized

Rasch model and the quasi-symmetric log-linear model. They compared estimates from a

partial quasi-symmetry model and a full quasi-symmetry model with the no second order

interaction estimator (see Subsection 2.3) as well as with the Zaslavsky and Wolfgang

estimators (see Subsections 2.4 and 2.5). Chao and Tsay (1998) developed an estimator

that is a function of an expected sample coverage (based on an average over the three lists

of the proportions of persons observed as missed on the other two lists) and measures of

dependence between lists. They compared their estimator with those of Darroch et al.

Fienberg and Manrique-Vallier (2009) looked at a methodology for integrating these

multiple system estimation methods with record linkage and missing data issues.

Madigan and York (1997) developed a Bayesian methodology that allows for a variety

of dependence structures between lists, uses covariates, and explicitly accounts for

model uncertainty.

The following assumptions apply to all estimators: (1) Erroneous inclusions have been

removed from all lists and (2) Processing and matching procedures have been developed

so that there is no matching error as well as no error in the determination that a person

is enumerated at the correct address. Section 3 describes the creation of a simulated

population of 1,000 persons and Section 4 discusses the replication of this process and the

creation of evaluation statistics. Section 5 presents the results and Section 6 provides

a discussion.

2. Estimators to Be Simulated

All these estimates are motivated based on an assumption of homogeneity in capture

probabilities across individual persons. If the particular log-linear model assumptions hold
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and capture probabilities are homogeneous, then these estimators are nearly unbiased.

Since individual capture probabilities are heterogeneous in the real world, the simulated

populations are created using heterogeneous capture probabilities. Estimates using these

models are biased given this heterogeneity and we can compare these estimates with the

known population total.

2.1. Conditionally Independent Models

In order to use common log-linear model notation, let C denote Census, P denote the

postenumeration survey, and A denote the administrative list. For example, consider the

log linear model {CP, PA}. This log-linear model notation puts sources together if

there is an assumed relationship (dependence) between them. This is a conditional

independence model where at each level of P, C and A are independent, a unconditional

relationship between C and P and between P and A is allowed but not between C and A.

Since there is some empirical evidence (Zaslavsky and Wolfgang 1990, 1993, and Darroch

et al. 1993) that the C and P lists are dependent conditional on capture on the A list, this

model may be reasonable. The same is true for the model {CP, CA}. The third model with

exactly two two-factor terms, {CA, PA}, may not be accurate since it assumes at each

level of A that C and P are independent and this is not supported by the empirical evidence.

Note that the empirical evidence from Zaslavsky, Wolfgang and Darroch is from the 1988

Census Dress Rehearsal and is based on administrative data limited to a few specific

geographic areas and based on sources likely to be very different from any sources that

might be used for the 2020 Census postenumeration study.

For model {CP, PA} the estimate is N̂
1

000 ¼
N001N100

N101
. This is the usual dual system

estimate for the unobserved cell in the 2 £ 2 table conditional on P ¼ 0, using the A list

and the C list as sources after removing all individuals captured on the P list and assuming

A and C are independent.

Models {CP, CA} leading to the estimate N̂
2

000 ¼
N001N010

N011
and {CA, PA} leading to

the estimate N̂
3

000 ¼
N010N100

N110
follow from the appropriate permutations of the capture

status indices.

2.2. Jointly Independent Models

For example, consider the log-linear model {A, CP} where there is a relationship between

C and P, but neither C nor P has a relationship with A. This is a jointly independent

model where A is jointly independent of C and P. This is ordinary two-way independence

between A and a categorical variable composed of all four combinations of C and P.

Given the empirical evidence cited above, this model might be reasonable. The other two

jointly independent models, {P, CA} and {C, PA}, assume C and P are independent,

but this is not supported by the empirical evidence.

For model {A, CP} the estimate is N̂
4

000 ¼
N001ðN110þN100þN010Þ

N111þN101þN011
. This is equivalent to a DSE

where one list is the administrative list and the other is a list formed by combining

the census and PES list (un-duplication required). The combined list is assumed to be

independent from the administrative list.
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Model {P, CA} leading to the estimate is N̂
5

000 ¼
N010ðN101þN001þN100Þ

N111þN011þN110
and model {C, AP}

leading to the estimate is N̂
6

000 ¼
N100ðN011þN001þN010Þ

N111þN101þN110
; both follow from the appropriate

permutations of the capture status indices.

2.3. No-Second-Order-Interaction Log-Linear Model

There is only one no-second-order-interaction log-linear model. Model {CP, CA, PA}

assumes that the Census and postenumeration survey have dependence but there is no CPA

term (three-way interaction). This is the least restrictive log-linear model for which data

is available for estimation. All log-linear models from Subsections 2.1 and 2.2 are special

cases of the no-second-order-interaction model (i.e., they all assume no second-order

interaction along with additional restrictions).

The incomplete 23 table of counts in Table 1 is divided into one complete 2 £ 2

subtable and one incomplete subtable. Assume the cross-product ratio is the same in both

subtables. Then the estimate of the missing cell in the incomplete 2 £ 2 table can be

estimated using the known cross-product ratio from the complete 2 £ 2 table. The

assumption is that the dependence in the 2 £ 2 table for C £ P using only those

individuals in A is the same as the dependence in the 2 £ 2 table for C £ P using only

those individuals not in A. This model is in some sense analogous to the assumption of

independence for the 2 £ 2 table used for DSE but is one layer deeper. All pairs of sources

can exhibit dependence, but the amount of dependence in each pair is assumed to be

unaffected by conditioning on the third source. The estimator for this model is

N̂
7

000 ¼
ðN111ÞðN001ÞðN100ÞðN010Þ

ðN011ÞðN101ÞðN110Þ
:

Note that in order to estimate N000, it is necessary to make an assumption about second-

order interaction. This assumption does not have to be that the interaction term in the

log-linear model is zero; any other fixed value for the interaction coefficient could be used,

although some assumptions might be more plausible than others.

2.4. Zaslavsky and Wolfgang 1

This is a DSE, suggested in Zaslavsky and Wolfgang (1990 and 1993), where one source

is the administrative list and the other is the combined census and census coverage

measurement list. However, persons captured in both the census and postenumeration

survey are removed from the administrative list and the combined list.

N̂
8

000 ¼ N001

N100 þ N010

N101 þ N011

The assumption underlying the use of this estimator is that the probability of capture in the

administrative list of persons omitted from the census and postenumeration survey is the

same as the average probability of capture for those included in either the census or

postenumeration survey, but not both. In other words, persons captured by neither C nor P

are more like those captured by only the C or P than those captured by both. This estimator

was included by Zaslavsky and Wolfgang based on evidence for four poststrata studied

taken from the 1988 Census Dress Rehearsal.
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2.5. Zaslavsky and Wolfgang 2

For this estimator, also suggested by Zaslavsky and Wolfgang (1990 and 1993), the odds

ratio in the 2 £ 2 table fixing on capture in the administrative list is calculated. Then,

assuming this odds ratio holds, the DSE for the 00þ cell of the marginal C £ P table is

multiplied by this odds ratio.

N̂
9

000 ¼

 
N001N111

N011N101

! 
N01þN10þ

N11þ

!
2 N001

The count in the 001 cell is subtracted to obtain an estimate of the 000 cell. The

assumption is that the degree of dependence between the C and P sources is similar in the

overall population to that in the subpopulation captured by the administrative list.

Zaslavsky and Wolfgang note that this assumption may be conservative for the population

as a whole, because the administrative list captures are likely to be more homogeneous

than the general population and the odds ratio would be closer to 1 (independence would

more nearly hold).

2.6. Traditional DSE

For comparison, this is the DSE estimate using only the Census list and postenumeration

survey list. The assumption is that C and P are unconditionally independent {C, P}.

N̂
10

000 ¼
N10þN01þ

N11þ

2 N001

2.7. Population Total Estimates

For each of the t ¼ 1 to 10 N̂
t

000 estimates calculated, the total population estimate is

N̂ t ¼ N̂
t

000 þ N1þþ þ N011 þ N010 þ N001:

3. Creating the Simulated Populations

Populations of N ¼ 1,000 persons will be simulated, allowing for heterogeneous capture

probabilities and homogeneous conditional odds ratios. One conditional odds ratio is the

odds ratio for the 2 £ 2 table of C £ P conditional on capture on A and the other is

the odds ratio for the 2 £ 2 table of C £ P conditional on not captured (missed) on A.

3.1. Creating a Specified Conditional Odds Ratio

Omitting any subscript for an individual member of the population, the 2 £ 2 table of

conditional capture probabilities for census capture and postenumeration survey capture

given capture on the administrative list is given in Table 2.

In order to create a simulated population with a given set of conditional odds ratios, the

odds ratio formula for a 2 £ 2 subtable is written as a function of an unknown proportion

in the 11 cell and the known marginal proportions the 1þ and þ1 margins.
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Accordingly, given P1þ;Pþ1, and odds ratio

u ¼
P11P00

P10P01

¼
P11ð1 2 P1þ 2 Pþ1 þ P11Þ

ðP1þ 2 P11ÞðPþ1 2 P11Þ
;

the equation can be rewritten as

ð1 2 uÞP2
11 þ ½1 2 P1þ 2 Pþ1 þ uðP1þ þ Pþ1Þ�P11 2 uP1þPþ1 ¼ 0: ð1Þ

This equation can be solved for P11 using the quadratic formula producing two roots,

one of which is between 0 and 1 and is the one we want.

This value of P11 and given P1þ and Pþ1 provides the desired odds ratio u.

The process described starting with Table 2 is repeated for Capture Probabilities for

census and PES given not captured (missed) on the administrative list, allowing in some

simulations for a different conditional odds ratio u.

3.2. Generating a 1,000 Person Population Allowing for Heterogeneity in

Capture Probabilities

We want to generate several populations of size N¼1,000 persons to have particular

capture properties. This is accomplished by specifying two conditional odds ratios.

Let u1 be the odds ratio for census and PES given capture on the administrative list and

u2 the odds ratio for census and PES given not captured on the administrative list.

Given u1 and u2 (assumed constant over persons) and five beta parameters in the

following conditional capture probabilities

Pk Ah i ¼
exp ðb10 þ b11XkÞ

1þ exp ðb10 þ b11XkÞ
; Pk CjAh i ¼

exp ðb20 þ b21XkÞ

1þ exp ðb20 þ b21XkÞ
;

Pk PjAh i ¼
exp ðb30 þ b31XkÞ

1þ exp ðb30 þ b31XkÞ
; Pk CjnotAh i ¼

exp ðb40 þ b41XkÞ

1þ exp ðb40 þ b41XkÞ
;

Pk PjAh i ¼
exp ðb50 þ b51XkÞ

1þ exp ðb50 þ b51XkÞ
;

for k¼1 to 1,000 independently generate Xk , N(0,1) and calculate

Pk Ah i;Pk CjAh i;Pk PjAh i;Pk CjnotAh i;Pk PjnotAh i:

Note that although the conditional odds ratios are assumed constant over persons,

the capture probabilities are heterogeneous since variation in the independent variables

is created.

Table 2. Capture probabilities for Census and PES given

capture on administrative list

In PES 1 Out of PES 0

In Census 1 P11 P10 P1þ

Out of Census 0 P01 P00

Pþ1
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Using u1 and Pk CjAh i;Pk PjAh i, we use the methodology from Subsection 3.1 and

Equation (1) to solve for the probability of capture in both the census and postenumeration

survey given capture on the administrative list. Then complete the 2 £ 2 table of capture

probabilities given capture on the administrative list. Multiplying each of these conditional

probabilities by Pk Ah i provides pk;111; pk;101; pk;011; pk;001.

Then, using u2 and Pk CjnotAh i;Pk PjnotAh i, use the methodology from Subsection 3.1

and Equation (1) to solve for the probability of capture in both the census and

postenumeration survey given not captured on the administrative list. Then complete

the 2 £ 2 table of capture probabilities given not captured on the administrative list.

Multiplying each of these conditional probabilities by ð1 2 Pk Ah iÞ provides

pk;110; pk;100; pk;010; pk;000.

Next, generate a number u from 0 to 1 from the U(0,1) distribution and use the

cumulative distribution of the eight cell probabilities to determine which of the eight cells

of Table 1 person k falls into.

After completing the above for each of the 1,000 population persons, tabulate the seven

observed counts from Table 1 and using these compute R̂ t ¼ N̂ t

1000
for t ¼ 1 to 10. This is

the ratio of the estimated population count to the true population count and provides a

measure of the accuracy of the estimate.

4. Replication

This article presents results for 1,000 independent replications of the population

generation as specified in 3.2 for a given u1 and u2 (assumed constant over persons) and

one set of beta parameters (shown in Table 3). This set of beta parameters was selected as

they produce average capture probabilities, described in Section 5, that are small (.227),

and thus represent what may be considered a hard-to-reach population.

Table 3. Accuracy of alternative estimates of missing count

“Average Capture Probability” 5 0.227

Average R ¼ Estimated Count/True Count (se)

b10 ¼ 20.700 b11 ¼ 0.800 b20 ¼ 21.200 b21 ¼ .500
b30 ¼ 21.000 b31 ¼ 0.600 b40 ¼ 22.000 b41 ¼ -.300
b50 ¼ 21.500 b51 ¼ 20.400

Estimator u1 ¼ 1.5
u2 ¼ 1.2

u1 ¼ .75
u2 ¼ .85

u1 ¼ .75
u2 ¼ .75

u1 ¼ 1.5
u2 ¼ 1.5

1 .965 (.002) .958 (.002) .972 (.002) .946 (.002)
2 1.535 (.007) 1.455 (.007) 1.428 (.006) 1.488 (.007)
3 1.021 (.003) 1.178 (.004) 1.240 (.005) .947 (.003)
4 1.100 (.002) 1.093 (.002) 1.091 (.002) 1.086 (.002)
5 1.242 (.003) 1.369 (.004) 1.390 (.004) 1.174 (.003)
6 .968 (.002) 1.013 (.002) 1.032 (.002) .937 (.002)
7 1.177 (.008) 1.022 (.007) 1.056 (.007) 1.060 (.006)
8 1.087 (.002) 1.075 (.002) 1.077 (.002) 1.063 (.002)
9 1.197 (.008) 1.018 (.008) 1.053 (.008) 1.074 (.007)
10 .993 (.004) 1.295 (.004) 1.377 (.007) .915 (.003)
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For each of the ten estimates, use these 1,000 replicates to compute the empirical mean

ratio Rt denoted as �Rt, and its variance, Varð �RtÞ.

Note that none of the precise assumptions, particularly homogeneity in capture

probability, needed for validity of any of these ten estimators is satisfied by any of these

simulated populations. Darroch et al. (1993) provide some arguments that no three-way

interaction model may be a fair approximation except for heterogeneity. The kind of

person-to-person heterogeneity introduced by these simulations might be expected to be a

reasonable representation of the reality of list formation. This heterogeneity produces bias

in these estimates even if the model assumptions about the relationship between the

capture attempts hold.

5. Results

Table 3 shows results for each of the ten estimator alternatives for one set of b parameters

and four sets of odds ratios u1 and u2 (1.5 and 1.2; .75 and .85; .75 and .75; 1.5 and 1.5).

When u1 ¼ u2, the odds ratio for census capture or not by postenumeration survey capture

status is independent of capture status on the administrative list (no second order

interaction). When u1 – u2 the odds ratio for census capture or not by postenumeration

survey capture status is dependent on capture status on the administrative list. The

“Average Capture Probability” (ACP) is the average of the five probabilities defined in

Section 3 for Xk ¼ 0 (the mean of the random variable X). It is used as a measure of
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“hard to reach” since lower values indicate lower capture probabilities (i.e., harder

to reach).

ACP ¼

X5

i¼1

ebi0

1þ ebi0

5

There are ten rows of average ratios R defined in Section 3 with the standard error of the

average R in parenthesis, one row for each of the ten estimators of total population. There

are four columns, one for each u1 and u2 combination. For each u1 and u2 combination,

the average R-value that is closest to 1 is in bold. If the second-best average R is not

statistically different (single pair comparison) than the best, it is shown in bold italics. The

standard errors are small (all coefficients of variation less than 0.01). Thus the results are

similar for many of the estimators, except for Estimator 2 which produced a large

overestimate (close to 50%) for all four columns. To illustrate this, for each of the four sets

of odds ratios, a 95% confidence interval error bar chart for the bias estimate is also

provided (as Figures 1 through 4) excluding Estimator 2.

For Table 3, the average capture probability was .227. For u1 ¼ 1.5 and u2 ¼ 1.2,

Estimator 10 was the best with an average R of .993 (se ¼ .004). For u1 ¼ .75 and

u2 ¼ .85, Estimator 6 was the best with an average R of 1.013 (se ¼ .002). For u1 ¼ .75

and u2 ¼ .75, Estimator 1 was the best with an average R of .972 (se ¼ .002). For u1 ¼ 1.5

and u2 ¼ 1.5, Estimator 1 was the best with an average R of .947 (se ¼ .003).
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6. Discussion

Different conditional odds ratios and beta parameters, as well as a new generation of

the independent random X variables for each iteration, would produce different results;

thus the simulations shown here serve as an example and only as an indication of what

may be expected with varying parameters. Even with the same odds ratios and beta

parameters, generating a new 1,000 person population, as described in Section 3, produces

different results.

Although it is clear from these results that three sets of capture attempts can produce

more accurate estimates than two capture attempts, there are additional things worth

considering. First, the cost of three enumeration attempts is considerably greater than for

two enumeration attempts. Second, there is likely to be greatly increased matching error

going from two attempts to three attempts. For two attempts at capture, there are only four

cells in a 2 £ 2 table, and given the marginal counts of the total count for each of the

attempts, matching is only necessary to obtain the 11 cell (captured in both attempts).

For three attempts, there are eight cells. For Estimate 7, no second-order interaction,

counts are required for all the other seven cells in order to estimate the 000 cell. Estimate

7 makes a less restrictive assumption (no second-order interaction) than the estimators

from Subsection 1.1 (conditionally independent models) and Subsection 1.2 (jointly

independent models). In theory, Estimate 7 should be the better than the estimates in

Subsections 1.1 and 1.2 as well 1.6 (traditional DSE), if in reality there is a second-order

interaction and if there are no errors in obtaining the counts. Second-order interaction and

heterogeneity in capture probabilities are likely in the real world for most populations. For

example, both the 111 cell and the 110 cell are required so that both the count of captured

in the first two attempts and in the third attempt and captured in the first two attempts but

missed in the third are necessary. Obtaining all these counts from a complex matching

operation may be error prone. Further research using some reasonable matching-error

models is planned to investigate whether it may be more effective to use less optimal

estimators that require less matching but may be more robust to matching error.

For the simulations in Table 3, Table 4 shows the average ratios R for the total

population estimate for each of the four sets of u1 and u2 for the DSE and the best

(lowest ABS(R-1)) of all ten estimators of total population. Note that although the standard

errors of average R values are small, for some simulations the second-best estimator was

not significantly different than the best estimator. The absolute value (ABS) of R-1 is

shown for DSE and the best of the ten estimators. This is the absolute relative error.

Table 4. Accuracy of total population estimate: R ¼ average estimated total population/1,000

u1 u2

Average
R for
DSE

ABS(R-1)
for DSE

Estimator
with best
average R

Best
average
R

ABS(S-1)
for Best

Difference
in absolute
error DSE
– Best

1.5 1.2 0.993 0.007 10 (DSE) 0.993 0.007 0.000
.75 .85 1.295 0.295 6 {C,AP} 1.013 0.013 0.282
.75 .75 1.377 0.377 1{CP,PA} 0.972 0.028 0.349
1.5 1.5 0.915 0.085 1{CP,PA} 0.946 0.054 0.031
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For example, the maximum difference is found in Table 3 for u1 ¼ .75 and u2 ¼ .75 where

the absolute relative error for the best estimator, Estimator 1, is 2.8% and the absolute

relative error for DSE is 37.7%, a 34.9 percentage point difference.

When considering the accuracy of DSE, which requires only two sets of enumeration

attempts and is less subject to matching error, it is important to compare two enumeration

attempts with one enumeration attempt. For example for u1 ¼ .75 and u2 ¼ .75 the

difference in absolute error between the best triple system estimator and the DSE was 34.9

percentage points. The average capture probability is .227. If the capture probability was a

constant .227, one capture attempt for the population of 1,000 would have an expected

capture of 227 persons and absolute error of 77.3%. The DSE absolute error of 37.7% is

much less. Thus two capture attempts followed by DSE (with a 37.7% absolute error) may

produce a substantial gain over one capture attempt (with a 77.3% absolute error) even if

the absolute relative error of DSE is still rather high. In practice, while likely not sufficient

for a Decennial Census, the two independent capture attempts, (1) an attempted 100%

enumeration of a hard-to-reach population and (2) the creation of a list using

administrative records, followed by dual system estimation may produce a much more

accurate population estimate than relying on only one capture attempt.
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