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Remote access can be a powerful tool for providing data access for external researchers. Since
the microdata never leave the secure environment of the data-providing agency, alterations of
the microdata can be kept to a minimum. Nevertheless, remote access is not free from risk.
Many statistical analyses that do not seem to provide disclosive information at first sight can
be used by sophisticated intruders to reveal sensitive information. For this reason the list of
allowed queries is usually restricted in a remote setting. However, it is not always easy to
identify problematic queries. We therefore strongly support the argument that has been made
by other authors: that all queries should be monitored carefully and that any microlevel
information should always be withheld. As an illustrative example, we use factor score
analysis, for which the output of interest – the factor loading of the variables – seems to be
unproblematic. However, as we show in the article, the individual factor scores that are
usually returned as part of the output can be used to reveal sensitive information. Our
empirical evaluations based on a German establishment survey emphasize that this risk is far
from a purely theoretical problem.
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1. Introduction

The scientific community relies heavily on high quality data for the empirical validation of

proposed theoretical models. However, data collection is an expensive and laborious task

and thus it is prudent to use data which have already been collected by others, albeit for

different reasons. Public administrations, governmental agencies and other state

institutions gather valuable information on all aspects of society and there are huge

benefits to be gained from broad access to these data. The crucial point is how to grant this

access without violating the confidentiality guarantees given to survey respondents. Most

microdata sets are collected under a pledge of confidentiality and therefore cannot be

released unrestrictedly. Statistical analyses via remote access seem to offer both

preservation of confidentiality and unlimited use of data. In a remote access system as we

define it, the analyst uses his or her desktop computer to connect to a server on which the

confidential microdata are stored. He or she can submit any query to the server, which runs

the requested analysis of the microdata and returns the results to the user if the requested
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output does not violate any confidentiality restrictions. The microdata never leave the

secure environment of the server. However, to guarantee that the provided output does not

reveal any confidential information, the list of allowed queries is generally limited in

practice. The remote access solutions that have been implemented so far either define a list

of queries that are not allowed (any command that is not on the list can be requested) or

explicitly state which queries can be submitted.

An example of the first approach is the system implemented at the Cross-National Data

Center in Luxembourg, known as LISSY (Cross-National Data Center in Luxembourg

2012a), which accepts code written for the software packages SAS, STATA or SPSS. Jobs

can be submitted either per e-mail or via a job submission interface. The system does not

restrict the list of allowed queries in advance. Instead, “certain syntax and comments will

trigger system security alerts” (Cross-National Data Center in Luxembourg 2012b), which

may terminate the job. The system will only return ASCII output, that is, no graphical

output of any form will be provided. A more advanced version of the approach is also

planned in the U.S. (Lucero et al. 2011).

An example of the second approach is implemented at the National Center for Health

Statistics (NCHS) (Research Data Center of the National Center for Health Statistics

2012a). The NCHS system, which is called ANDRE, only accepts code written for the

software packages SAS or SUDAAN. Other software packages, such as SPSS or R, can

only be used on-site. Furthermore, the list of possible procedures and options is limited in

advance and some procedures will automatically be adapted to avoid disclosure (Research

Data Center of the National Center for Health Statistics 2012b). Finally, the website states

that “[o]utput results that pose a disclosure risk will be suppressed” without any further

information as to how such an output is identified. This kind of approach has also been

implemented in Australia (O’Keefe and Good 2008). The Australian Bureau of Statistics

provides an online tool called TableBuilder “which enables users to create tables, graphs

and maps of Census data” (http://www.abs.gov.au/websitedbs/censushome.nsf/home/

tablebuilder). Another online tool called DataAnalyser which additionally allows running

a number of standard regression models will also be implemented soon (http://www.abs.

gov.au/websitedbs/D3310114.nsf/home/AboutþDataAnalyser).

However, even though the list of allowed queries is generally limited in a remote access

setting to avoid disclosure from simple attacks like maximum queries, some attacks are

harder to detect, especially if these attacks are based on multivariate analysis. One of the

more prominent examples is the disclosure risk from linear regression. Gomatam et al.

(2005) describe two possible strategies that an intruder with background knowledge about

some of the survey respondents can apply to obtain any sensitive information contained in

the data set regarding these survey respondents. Bleninger et al. (2011) further formalize

these strategies and apply them to a German establishment survey. They find that very

limited background information is sufficient to obtain exact information on sensitive

attributes in the data set. Since the risks from linear regression are well known in the SDC

community, the current implementations of remote access already take measures to ensure

that these strategies cannot be applied. However, this highlights the essential dilemma of

the remote access environment: Possible intruder strategies need to be known in advance

to enable the implementation of counterstrategies. Restricted remote access following the

second approach described above is an attempt to circumvent this dilemma by only
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allowing computations that are considered safe under all circumstances. However, as a

consequence, the set of allowed queries will be very limited and many users will find this

set too restricted to answer their respective research question. Thus, for most researchers

full remote access is the only viable solution. In this context, full remote access would

mean that only those queries that are known to be disclosive would be prohibited.

However, implementing such a fully automated approach would mean that all potentially

risky queries are known in advance so that the number of suppressed queries can be kept

to a minimum. This is an ambitious goal and it is not clear whether this goal can ever

be achieved.

While the risks from releasing microlevel information of the original data are

obvious, it is less obvious that microlevel information is a byproduct of several data

analysis tools and that this byproduct might pose a risk although the final output of

interest might not be problematic. Regression procedures provide microlevel output

such as fitted values or residuals, and model-fitting checks, such as Q-Q plots or Cook’s

distance, provide information on the individual level at least for the outliers (arguably

the most interesting individuals for an intruder). Although at first sight it seems

impossible to learn anything about the reported microdata values from these diagnostic

plots, Sparks et al. (2008) illustrate the risks that might result if these analytics tools are

provided in a remote access system without further restrictions. For this reason, the

remote access system that is planned for the U.S. will, for example, provide Q-Q plots

that are based on synthetic data. Sparks et al. (2008) also suggest a number of additional

protective measures that can be taken to avoid these kinds of disclosures and argue that

no information on the individual level should be released in general. To our knowledge,

all agencies that have implemented a remote access environment so far have followed

this advice.

In this article we provide another example of why monitoring the output of any analysis

and suppressing all microlevel information is generally a good strategy. Factor analysis is

very popular in the social sciences since it can be applied in a wide range of explorative

and confirmatory tasks and it would be a severe drawback of remote access if this kind of

analysis was not possible. On the other hand, as we will illustrate in this article, there is a

risk of disclosure if unrestricted factor analysis is allowed. However, this risk can easily be

avoided if the individual factor scores are not revealed to the analyst. Since researchers

will usually only be interested in the factor loadings for the different variables included in

the model, we do not see any disadvantages in not providing the individual factor scores. If

information on the individual factors is considered necessary, graphical displays of the

winsorised data could be provided akin to the disclosure prevention measures described in

Sparks et al. (2008).

The remainder of the article is organized as follows: Following a brief description of

factor analysis methods, we provide a short overview of different estimation procedures

for factor scores. Section 4 demonstrates that there is a risk of disclosure for all these

approaches if a set of variables could be identified in the data set that is uncorrelated with

the variable to be disclosed, henceforth called the variable of interest. The empirical

example in Section 5 shows that such a correlation structure is not uncommon in practice

and once the “appropriate” set of variables is selected, it is possible to estimate the true

values for every record in the data set very precisely for the variable of interest. The data
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for this empirical illustration are taken from the IAB Establishment Panel, a survey

conducted by the Institute for Employment Research (IAB) in Germany. The article

concludes with some final remarks.

2. Some Basic Facts on Factor Analysis

Factor analysis and the closely related method of principal components are widely used in

all fields of social science, in particular in psychology and sociology where “latent”

variables, such as ability and satisfaction, are modelled frequently. More recently, the

method has also been employed in modern time series analysis when factor-augmented

vector autoregression models (FAVAR) are considered (see, for example, Stock and

Watson 2002). The aim of the approach is to reduce the empirical information from a large

set of continuous variables to a small set of (latent) factors. In the following we describe

the basic concept briefly. A detailed description can be found in any standard textbook on

the topic (see, for example, Press 2005).

Consider a set of m random variables h ¼ ðh1;h2 : : : ;hmÞ
0 with

E½h� ¼ mh; cov½h� ¼ Shh

for which n observations are available leading to the ðn £ mÞ data matrix

Y ¼ ð y1; y2; : : : ; ymÞ. The factor model seeks to explain the m variables by a set of

p , m “common factors” f ¼ ð f 1; f 2; : : : ; f pÞ
0 through the linear model

h 2 mh ¼ Lf þ u; ð1Þ

where L is the ðm £ pÞ factor-loading matrix and u is an m-dimensional vector of “specific

factors” with

E½u� ¼ 0; cov½u� ¼ C ¼

c1

. .
.

cm

0
BBB@

1
CCCA:

Since the factors are assumed to be orthogonal with cov½f� ¼ Ip, where Ip is the identity

matrix of dimension ð p £ pÞ, as well as independent of u, we obtain what is called the

“fundamental equation”

Shh ¼ LL 0 þC:

Let F be the ðn £ pÞ-matrix of realized factor scores which is related to the data matrix

Y by the equation (McDonald and Burr 1967, p. 384)

Y 2 M ¼ FL 0 þ U; ð2Þ

which implicitly defines the ðn £ mÞ matrix M by

M ¼ in^m 0h:

Here in is an n-vector of ones and ^ denotes the Kronecker product, that is, the

corresponding mean from the vector mh is subtracted from each observation in Y in (2).
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We will call (2) the “empirical factor model”, whereas (1) will be called the “theoretical

factor model”.

If the estimated matrix L has a block-diagonal structure, particular factors can be

related to a subset of the vector h, which helps to interpret these factors. However, it is

well known that this estimated matrix is not unique: Take any ðm £ mÞ orthogonal

matrix W and it will by definition satisfy WW 0 ¼ Im. Keeping this in mind, we can

rewrite (1) as

h 2 mh ¼ ðLWÞðW 0fÞ þ u;

where L* ¼ LW would represent the factor-loading matrix and f* ¼ W 0f the vector

of factors. The multiplication of the factor-loading matrix by any orthogonal matrix

is called rotation of this matrix. Usually, the matrix W is chosen such that for each

factor the loading on a subset of variables is as large as possible and the loading

on the remaining variables is as small as possible, so that a “simple structure” is

obtained which facilitates the interpretation of factors. One way to achieve this is to

find the orthogonal matrix that maximizes the variance of the squared factor loadings.

This is the well-known varimax criterion (see, for example, Press 2005 Ch. 10.6

for details).

3. Estimation of Factor Scores

This section provides a short review of the four different approaches that are discussed

in the literature for obtaining factor scores (see Ronning and Bleninger 2011 for a more

detailed review that also presents the derivations for all estimators). In the following we

assume that the factor-loading matrix L is known or rather has been estimated in an

earlier step indicated by the symbol , placed above the relevant quantities. Hence, the

resulting estimates of f depend on the method by which the factor-loading matrix was

determined. In all cases ~L may represent either the original or the rotated factor-

loadings. We will only present the results for the empirical model (2) as this will be the

relevant model for our disclosure risk evaluations in the following sections. Derivation

of the results for the theoretical model (1) is straightforward.

3.1. Least Squares Solution

The empirical factor model (2) can be seen as a regression model with unknown matrix F

which can be estimated by least squares. The resulting estimator is

F̂LS ¼ ðY 2 MÞ ~Lð ~L 0 ~LÞ21: ð3Þ

Note that the transpose of F̂LS is just the standard OLS estimate from linear regression.

Horst (1965) seems to have been one of the first to use this approach (McDonald and Burr

1967, p. 386).
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3.2. Bartlett’s Method

Considering the nonscalar structure of the covariance matrix C, a generalized least squares

formula seems more appropriate:

F̂BA ¼ ðY 2 MÞ ~C21 ~Lð ~L 0 ~C21 ~LÞ21: ð4Þ

Note that in this case the matrix C also has to be determined in advance. This method

has been proposed by Bartlett (1937). Fahrmeir et al. (1996, pp. 648, 690) remark that

(4) can be regarded as a maximum likelihood estimator when normality for h is

assumed. Non-normally distributed variables in h lead to quasi-maximum likelihood

estimation of loadings and scores, still being asymptotically normally distributed and

consistent.

3.3. Thomson’s Method

The method is attributed to both Thomson (1939) and Thurstone (1935). Thurstone

(1935) derived the factor scores by requiring that the estimated factor score f̂j be as

close to the “true” factor score f j as possible for j ¼ 1; : : : ; p. He considers the linear

estimator

f̂j ¼ a 0jðh 2 mÞ

for which the mean-squared error should be minimized with respect to the vector aj

(see Ronning and Bleninger 2011 for details). With this approach, the factor scores in

the empirical model are given by:

F̂TH ¼ ðY 2 MÞ L̂L̂ 0 þ Ĉ
� �21

L̂: ð5Þ

3.4. Principal Component Analysis

Of course, the principal component approach can also be used to estimate the factor scores:

If we consider the spectral decomposition of the covariance matrix

Shh ¼ QQ Q 0;

the principal components pj; j ¼ 1; : : : ;m, are given by the matrix

�
p1; p2; : : : ; pm21; pm

�
¼ P ¼ YQ ¼

�
Yq1; Yq2; : : : ; Yqm21;Yqm

�
;

where the columns qj are the characteristic vectors of the covariance matrix, whereas

the diagonal matrix Q contains the characteristic values. Usually, only the principal

components corresponding to the largest characteristic values are used since they

represent maximum variation. The matrix P can be seen as the matrix of estimated

factors, that is,

F̂PC ¼ P: ð6Þ

For more details see any textbook on multivariate analysis, such as, Press (2005).
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4. Disclosure Risk from Factor Analysis

In this section we will illustrate scenarios in which the factor scores disclose sensitive

information. We show analytically that a severe risk of disclosure exists if at least one

variable can be identified in the data set that is (almost) uncorrelated with the variable of

interest. As we show later in the empirical example (Subsection 5.3), potential variables

can be selected by inspecting the correlation matrix.

For concreteness, let us assume that h1 is the variable of interest so that the covariance

matrix has the following block diagonal structure:

Shh ¼
s11 00

0 S22

 !
ð7Þ

where S22 is the ðm 2 1Þ £ ðm 2 1Þ covariance matrix of the remaining m 2 1 variables.

Clearly, this leads to a factor-loading matrix with one factor “loading” only on the first

variable and the remaining p 2 1 factors having zero loading weight on this variable. Note

that this implies

ðL 0LÞ21 ¼
1 0 0

0 ðL 02L2Þ
21

 !
ð8Þ

where L2 is the m £ ð p 2 1Þ loading matrix of the remaining p 2 1 variables.

Substituting (8) into (3) for the least squares solution and into (4) for Bartlett’s method,

we obtain identical results regarding the uncorrelated variable (the derivations are

presented in the Appendix)

FLS ¼ FBA ¼ 1�

y11 2 m1

..

.

yn1 2 m1

0
BBB@

1
CCCA

��������
f 2; f 3; : : : ; f p21; f p

0
BBB@

1
CCCA:

Therefore, for both the least squares solution and Bartlett’s method, the first factor f 1 is

identical (up to an additive constant) to the data vector y1 and it will be easy for the

intruder to derive the values for y1 at least approximately, since computing the mean of a

variable will usually be allowed in a remote access environment. Note that only the first

factor f 1 is identical for the least squares solution and for Bartlett’s method. The estimated

factors for j ¼ 2; : : : ; p will generally differ for the two methods. For the solution of

Thomson/Thurstone we obtain a slightly different result (again, derivations are presented

in the Appendix):

FTH ¼
1

1þ c1

�

y11 2 m1

..

.

yn1 2 m1

0
BBB@

1
CCCA

��������
f 2; f 3; : : : ; f p21; f p

0
BBB@

1
CCCA:
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The results show that in this case the estimated factor f 1 not only differs by an

additive constant, but the multiplicative factor 1=ð1þ c1Þ also has to be taken into

account. If c is small or the estimate of c used in the computation is available, disclosure

risk is high.

Finally, for the principal component approach one of the characteristic values, say uj,

equals s11. The corresponding characteristic vector must then satisfy qj ¼ ð1 0: : :0Þ0.

Therefore, the corresponding principal component is given by

pj ¼ Yqj ¼ y1;

so that in this case the data vector y1 is exactly reproduced by the principal

component. It should be noted, however, that uj is not necessarily the largest characteristic

value (see Ronning and Bleninger 2011 for a formal proof). Since usually only the

principal components corresponding to the largest characteristic values are used in

practice, extracting the vector for components corresponding to small characteristic

values might be suspicious and agencies might prevent some attacks based on this

approach if only the components corresponding to the largest characteristic values can

be retrieved.

As a final remark, we try to shed some light on the question of what influence the

m 2 1 “remaining” variables in the factor model have on the accuracy of the results.

Most importantly, whenever at least one variable highly correlated with the variable of

interest is included in the factor model, there will be no eigenvector loading on the

variable of interest alone and no disclosure will be possible. Clearly, if the correlation

with the variable of interest is exactly zero for all variables included in the set of

variables in m, the theoretical results above imply exact reproduction of the vector y1

no matter how many additional variables are included in the set of variables in m. In

this case, one variable would be sufficient and adding variables that are (even slightly)

correlated with the variable of interest will decrease the level of accuracy. In practice,

the correlation is never exactly zero, as illustrated in Table 1 from our empirical

example in Section 5. However, it would still make sense in terms of prediction

accuracy to only pick the variable with the lowest correlation with the variable of

interest. Nevertheless, it might generally be advantageous from the perspective of an

intruder to include some additional variables in the model to avoid submitting queries

that look overly suspicious. In this case it would be the best strategy to pick a

predefined set of variables, say eight to ten, consisting of those variables with the

lowest empirical correlation with the variable of interest. This is the strategy we follow

in our empirical evaluations in the next section.

5. Empirical Evidence

5.1. The Data

The IAB Establishment Panel is a nationwide annual survey of establishments in

Germany conducted by the Institute for Employment Research (IAB). It includes

establishments with at least one employee covered by social security and contains

business-related facts (e.g., management, business policy, innovations), a large number
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of employment policy-related subjects (e.g., personnel structure, recruitment, wages and

salaries) and a range of background information (e.g., regional information, industrial

sector). For further information see Fischer et al. (2009) and Kölling (2000). The IAB

collects the data under the pledge of confidentiality. Additionally, German law restricts

the release of data from public administrations to avoid the disclosure of sensitive

information. Therefore, direct access to the survey is only granted to external researchers at

the IAB’s research data center (RDC). The RDC, which was established in 2004, provides

researchers with access to microdata for noncommercial empirical research in the fields of

social security and employment. Most of the surveys conducted at the IAB and samples

from the administrative data of the Federal Employment Agency are available for on-site

analysis (see Heining 2009 or http://fdz.iab.de for further details).

Researchers can also submit queries to the RDC that are run on the original data by

the staff of the RDC (remote execution). In this case the results are reported back to the

researchers only after the output has been carefully checked for confidentiality violations

(if the researcher analyzes the data onsite, only the results that are intended to be used

outside of the rooms of the RDC will be checked). Finally, some surveys are also

available as scientific use files (unlike public use files, scientific use files are only

available to the scientific community). Currently, all confidentiality checks are performed

manually, so the attack described in this article would be detected. Nevertheless, as

remote access is seen to be the future for data providers, we use the data set to illustrate

that unrestricted factor analysis in a remote access setting would be problematic in terms

of disclosure risk.

For our empirical evaluations we use the cross-section from the year 2007 of the survey.

All missing values in this data set are replaced by single imputation and treated as

observed values. See Drechsler (2011) for a description of the imputation of the missing

values in the survey. The sensitive variable to be disclosed is the turnover from an

establishment’s sales after taxes, that is, the revenue. Thus, we exclude all establish-

ments that do not report turnover, such as nonindustrial organizations, regional and

local authorities and administrations, financial institutions and insurance companies.

The remaining data set includes 12,814 fully observed establishments.

5.2. Estimation of Factor Loadings

Since the very skewed distribution of the turnover variable generates some outliers among

the factor scores, we transform the variable according to

lgturni ¼ logðturnoveri þ 1Þ; ð9Þ

where turnoveri is the turnover in euros for establishment i. The 1 is added to ensure that

all values are strictly positive before the log transformation, because some establishments

report a turnover of zero. The transformed variable is approximately normally distributed,

leading to approximately unbiased and consistent maximum likelihood estimation of the

corresponding loadings and scores for Bartlett’s method.

In order to successfully apply the disclosure attack outlined above, we need to identify

variables that are (almost) uncorrelated with this variable. It should not be difficult for an

intruder to obtain this information because correlation matrices are not usually considered
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to provide a high risk of disclosure. Table 1 lists the eight variables that we use in the

factor scores model together with their empirical correlation with the log turnover

(rðlgturnÞ).

Of course the assumption of zero correlation underlying the results in Section 4 is

unrealistic for real data settings, but the correlations in Table 1 are small and we will see that

the originally reported turnover can still be estimated almost exactly with this scenario.

Usually, factor analysis starts by inspecting the eigenvalues of the covariance matrix

or correlation matrix to determine the number of factors p to be used in the model. Only

the largest eigenvalues are selected with the understanding that the variability of Y is

sufficiently explained by this subset. Based on the correlation matrix both the Kaiser

criterion (Kaiser 1958) and the scree test (Fahrmeir et al. 1996) would suggest selecting

p ¼ 4 for our set of variables. However, inspecting the eigenvalues is not helpful in our

setting since we need to make sure that the factor that loads on the variable of interest

alone is also included in the model. As noted earlier, it can be shown that the relevant

eigenvalue need not be one of the largest eigenvalues (see Ronning and Bleninger 2011 for

more details). Therefore, the intruder should choose a large p # m and examine all

estimated factors. Alternatively, he or she could simply try alternative values of p. We

found the ideal number of factors by evaluating the full range of possible factors. The

loading matrix for p ¼ 4 (after rotation based on the varimax criterion) is presented in

Table 2 and it is obvious that in this case the third factor loads primarily on turnover and

thus this factor model is ideally suited for a disclosure attack.

Table 2. Rotated Matrix ~L of estimated loadings

Factor 1 Factor 2 Factor 3 Factor 4

lgturn. 0.0202 0.0360 0.9867 0.1406
inv. 20.0046 0.0019 0.0326 0.1888
asp. 0.0002 0.0051 0.0105 20.0167
vac.w.1 0.9879 0.0134 0.0267 0.0487
vac.w.2 0.9325 0.0090 0.0089 0.0673
vac.em. 0.0796 0.0742 0.0853 0.2194
sub. 0.0166 0.7933 0.0719 20.0100
sub.50 0.0041 0.9958 0.0088 0.0471

Table 1. Variables used in the factor scores model

Variable r ðlgturn; yjÞ

Turnover from sales after taxes on the log scale (lgturn.) 1.0000
Investments in IT (inv.) 0.0587
Total number of civil servant aspirants (asp.) 0.0082
Total number of vacant positions for workers (vac.w.1) 0.0536
Number of vacancies for workers reported to employment

agency (vac.w.2)
0.0374

Number of vacancies for qualified employees reported to employment
agency (vac.em.)

0.1193

Employees with wage subsidies (sub.) 0.0984
Employees over 50 with wage subsidies (sub.50) 0.0513
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5.3. Estimation of Factor Scores

In the next step, we estimate the matrix of factor scores ^F based on the rotated loadings

from Table 2. For purpose of brevity, we limit our evaluation to Bartlett’s (4) and

Thomson’s (5) solution. We note that the least squares solution and principal component

analysis will provide similar results. Once we have estimated the score values, we obtain

the estimated values for the transformed turnover variable by adding its mean to all the

factor scores based on the assumption that the mean of the (transformed) variable is

available in remote access. To approximate turnover on the original scale, we transform

the obtained values according to

^turni ¼ exp dlgturnlgturni

n o
2 1:

We note that the transformation will lead to a small bias in the estimated turnover since

in general Eðlogð yiÞÞ – logðEð yiÞÞ. To evaluate how close the resulting estimate is to the

reported turnover, we use the difference between reported and estimated turnover relative

to the reported turnover

di ¼
^turni 2 turnoveri

turnoveri

; i ¼ 1; : : : ; n:

The two leftmost panels in Figure 1 show scatter plots of these differences for Bartlett’s

(left panel) and Thomson’s method (middle panel) respectively. In the scatter plots, the

establishments are sorted in ascending order based on the number of employees.

Looking at the scatter plots, we find that using Bartlett’s method the estimated turnover

is very close to the true turnover for almost all establishments. The relative difference d is

less than 0.5% for 99.3% of the establishments.

For Thomson’s method, we notice that the relative differences are generally larger than

for Bartlett’s method (note that the scale of d differs between the scatter plot for

Thomson’s method (middle panel) and the scatter plots for Barlett’s method (left panel)

and Thomson’s method after correction (right panel)). More than 40% of the estimated
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Fig. 1. Relative differences di between the true turnover and the turnover estimated from the factor scores

obtained through Bartlett’s method and Thomson’s method with/without correction. Establishments are sorted in

ascending order based on the number of employees.
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turnovers differ by more than 1% from the true value and the difference can be up to 80%.

We also find a trend in the relative differences. The turnover derived from the factor scores

overestimates the true turnover for the smallest establishments. This effect is decreases

continuously and the turnover is underestimated for large establishments. This is not

surprising if we note that we obtained our estimate for turnover by adding the sample mean

to the factor scores without correcting for the multiplicative factor 1=ð1þ c1Þ. Thus,

assuming that y1 is the transformed turnover according to (9) and ŷ1 is its estimate based

on Thomson’s method without correction, the difference between the two quantities is

given by

ŷ1 2 y1 ¼
c1

1þ c1

m1 2 y11

..

.

m1 2 y1n

0
BBB@

1
CCCA; ð10Þ

which will be positive for all establishments with a turnover that is smaller than the

average turnover and negative for the rest. Since turnover is highly correlated with

establishment size, we observe a negative trend for the relative difference when going

from the smallest establishments to the largest. If an estimate for the specific factor ~c1 is

available, we can correct the estimator for the reported turnover. The right panel in Figure 1

presents the results based on the corrected estimate. The relative difference d again is close

to zero for almost all establishments, with 99.0% of the establishments, having a relative

difference of less than ^0.5%. In fact, the estimated turnover never differs by more than

^8.9% from the true turnover. Thus the risk of disclosure is comparable to the risk when

Bartlett’s method is applied.

6. Conclusions

There is an increasing demand among researchers for access to microdata that have

been collected under the pledge of confidentiality. One promising approach to granting

access without violating confidentiality guarantees is remote access. However, even

though the researcher never has direct access to the underlying microdata, the approach

is not free from the risk of disclosure. In our article we have illustrated this risk for a

specific analysis that is commonly used in the social sciences: factor analysis. Even

though factor analysis is used for information reduction and the potential risk of

disclosure is anything but obvious, we showed analytically that individual microlevel

values could be obtained exactly for any variable for which a set of covariables can be

identified that are uncorrelated with the target variable. This result holds irrespective of

the method used to estimate the factor scores. Of course, zero correlation is unrealistic

in practice but our empirical example illustrates that a very close approximation of the

microlevel values could be obtained even if a small correlation exists between the

target variable and the other variables used in the factor model.

It is important to note at this point that by applying the procedure outlined in this article,

the intruder will only obtain a full vector of estimated microlevel values. Even if these

estimates are very close to the true values, this will not necessarily lead to disclosure if

the intruder is not able to link this information to individual units in other databases.
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Still, most legislation requires that no individual information be released to the public,

no matter whether a direct link is possible or not. Furthermore, it is often easy to attribute

some of the obtained values to specific units, such as the largest turnover in the data set,

for example.

Finally, we wish to stress that it is not the aim of this article to call for more

restrictive data access. Factor analysis is a useful and widely used method that should be

available to researchers in a remote access system. We only wish to raise awareness of

the fact that this kind of attack is possible if no countermeasures are taken. Once

identified, these attacks can be prevented easily by not reporting individual factor scores,

since applied analysts are not usually interested in these scores. Following Brandt et al.

(2010), who provided general guidelines for output checking when data are

disseminated, the factor loadings of the different variables can be considered “safe”

outputs that can be released without restrictions. The individual factor scores, on the

other hand, should be classified as “unsafe”, and extra measures are necessary if these

scores are to be provided. Simply checking the correlation between the factor scores and

the variables in the data set, for example, could be a useful tool for avoiding disclosure.

The factor scores can be suppressed if the bivariate correlation with any variable in the

data set is higher than an agency-defined threshold, say 0.995. Alternatively, preventive

measures, such as providing only graphical displays of the winsorised factor scores

or other measures akin to the measures suggested by Sparks et al. (2008), could be

implemented. Finally, as suggested by one of the referees, output perturbation could

also be applied. As the name indicates, this approach guarantees confidentiality by only

perturbing the output of the queries; the underlying microdata are not altered. This

approach has been discussed for other query types such as survival analysis (see, for

example O’Keefe et al. 2012) and the original setup for 1-differential privacy (Dwork

2006) was also developed around this idea. Identifying the best perturbation approach

when providing individual factor scores would be an area for future research. The aim

of this article was more generally to illustrate that data providers granting access to

sensitive data should be aware that there are many ways to obtain sensitive information

without direct access to the microdata using standard analyses, and not all of them

are obvious.

Appendix. Derivations of the Factor Scores if One Variable is Uncorrelated With the

Other Variables in the Model

The Least Squares Solution
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Bartlett’s Method
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The Solution of Thomson/Thurstone
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