DE GRUYTER OPEN

G

DE

MOLECULAR IDENTIFICATION OF *TRICHODERMA* STRAINS COLLECTED TO DEVELOP PLANT GROWTH-PROMOTING AND BIOCONTROL AGENTS

Michał OSKIERA^{*1}, Magdalena SZCZECH¹, Grzegorz BARTOSZEWSKI² ¹Department of Microbiology, Research Institute of Horticulture, 96-100 Skierniewice, Poland ²Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland

Received: May, 2015; Accepted: June, 2015

ABSTRACT

Trichoderma strains that are beneficial to both the growth and health of plants can be used as plant growth-promoting fungi (PGPF) or biological control agents (BCA) in agricultural and horticultural practices. In order to select PGPF or BCA strains, their biological properties and taxonomy must be carefully studied. In this study, 104 strains of Trichoderma collected at geographically different locations in Poland for selection as PGPF or BCA were identified by DNA barcoding, based on the sequences of internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and on the sequences of translation elongation factor 1 alpha (tef1), chitinase 18-5 (chi18-5), and RNA polymerase II subunit (rpb2) gene fragments. Most of the strains were classified as: T. atroviride (38%), T. harzianum (21%), T. lentiforme (9%), T. virens (9%), and T. simmonsii (6%). Single strains belonging to T. atrobrunneum, T. citrinoviride, T. crassum, T. gamsii, T. hamatum, T. spirale, T. tomentosum, and T. viridescens were identified. Three strains that are potentially pathogenic to cultivated mushrooms belonging to T. pleuroticola and T. aggressivum f. europaeum were also identified. Four strains: TRS4, TRS29, TRS33, and TRS73 were classified to Trichoderma spp. and molecular identification was inconclusive at the species level. Phylogeny analysis showed that three of these strains TRS4, TRS29, and TRS33 belong to *Trichoderma* species that is not yet taxonomically established and strain TRS73 belongs to the T. harzianum complex, however, the species could not be identified with certainty.

Key words: fungal barcoding, multilocus sequence analysis, phylogeny, species identification

INTRODUCTION

Trichoderma fungi occur worldwide and are present in different geographic regions and climatic zones (Hoyos-Carvajal et al. 2009). *Trichoderma* can be isolated from the air, water reservoirs, soils, plants, animals, and other fungi. Several species reveal high association with plants and are often isolated from different soils as the predominant species in the plant root ecosystem (Kredics et al. 2014). *Trichoderma* plays a significant role as a decaying wood decomposer and sometimes occurs as a plant endophyte (Gazis & Chaverri 2010; Chaverri et al. 2011). First interest in *Trichoderma* was related to its cellulolytic properties. Then, it was found that the fungi of this genus may produce multiple enzymes that can be of great importance in several industries and can be used in agricultural practice as plant growth-promoting fungi (PGPF) or biocontrol agents (BCA) to control fungal diseases or nematodes (Hermosa et al. 2013; Stewart & Hill 2014; Monfil & Casas-Flores 2014). Plant pathogens can be limited due to the facility of mycoparasitism, antibiosis, and competition of nutrients and space with *Trichoderma*. There are also other ways in which *Trichoderma* may benefit plant cultivation, such as enhancing root system and plant development, inducing resistance, and increasing the availability of nutrients (Benítez et al. 2004; Harman et al. 2004; Harman 2006).

Commercial products based on Trichoderma are available on the market and are used to protect plants or to stimulate plant growth. These products are based on strains belonging to the following species: T. asperellum (T-203), T. atroviride (SC1, P1, or IMI206040), T. harzianum (NF-9, T1, T22, or 2413), and T. virens (G-6, G-6-5, or G-11) (Hermosa et al. 2000; Kullnig et al. 2001; Dodd et al. 2003; Longa et al. 2009; Chaverri et al. 2015). However, since the application of beneficial microbes has become an integrated component of plant management in agricultural or horticultural practice, interest in developing new products based on Trichoderma is growing. Studies conducted at the Research Institute of Horticulture in Skierniewice are aimed at developing Trichoderma preparations with the use of agricultural wastes to be applied in the production of vegetables and other crops for plant growth promotion, protection, and enhanced yield quality (Kancelista et al. 2013; Smolińska et al. 2014a, b). The first step in such studies should be species identification of promising Trichoderma strains. Correct species identification is necessary due to Trichoderma similarity in morphology and complex taxonomy (Hermosa et al. 2000). Especially Trichoderma strains that are potentially dangerous to cultivated mushrooms (T. aggressivum f. europaeum, T. aggressivum f. aggressivum, T. pleurotum, and T. pleuroticola) should be excluded from PGPF or BCA strain selection (Komoń-Żelazowska et al. 2007). Morphology alone is insufficient in accurate Trichoderma species identification, particularly when such a group of species as the T. harzianum complex or T. viridescens complex are investigated, as they are genetically diverse and characterized by variable morphology (Chaverri et al. 2003; Druzhinina et al. 2010; Jaklitsch et al. 2013). Recently, Chaverri et al. (2015) re-evaluated the taxonomy of T. harzianum; they distinguished 14 species within the T. harzianum complex and reported that none of the T. harzianum BCA strains belong to T. harzianum sensu stricto.

DNA-based methods used to build the modern taxonomy of the *Trichoderma* genus and DNA barcoding are now routinely used in species identification. Accurate *Trichoderma* species discrimination can be done based on DNA sequence analysis of internal transcribed spacers (ITS) 1 and 2 of the rDNA gene cluster and fragments of the *tef*1, *rpb*2, *chi*18-5, and actin (act) or calmodulin (cal1) genes (Kindermann et al. 1998; Dodd et al. 2003; Druzhinina et al. 2005, 2010; Jaklitsch et al. 2006; Samuels et al. 2006; Gal-Hemed et al. 2011; Błaszczyk et al. 2011; Atanasova et al. 2013; Jaklitsch & Voglmayr 2015). The taxonomy of Trichoderma is continuously adjusted and updated (Jaklitsch 2011; Atanasova et al. 2013; Jaklitsch & Voglmayr 2015; Chaverri et al. 2015). More and more strains are isolated from different geographic regions (Mulaw et al. 2010; Gal-Hemed et al. 2011) and novel DNA sequences are available, hence still more Trichoderma species and clades are being established. Recently, 228 species of Trichoderma and several not yet taxonomically characterized species were distinguished (Jaklitsch & Voglmayr 2015).

The aim of this study was to conduct the molecular identification of *Trichoderma* strains collected in order to select PGPF or BCA strains suitable for application in agricultural and horticultural production.

MATERIALS AND METHODS

Trichoderma strains

A total of 104 Trichoderma strains (Table 1) collected for the selection of PGPF or BCA strains were subjected to species identification. Based on colony morphology and microscopic observations, the strains were preliminarily recognized as T. atroviride, T. harzianum, and T. virens (Szczech et al., unpublished). T. atroviride strains were previously initially identified based on ITS1 and 2, and tef1 sequences (Skoneczny et al. 2015). The reference strains were as follows: T. atroviride IMI 206040 (CABI Europe, UK), T. afroharzianum T22 (ATCC 20847, LGC Standards, Poland), T. virens Gv29-8 (FGSC 10586, Fungal Genetics Stock Center, School of Biological Sciences, University of Missouri, Kansas City, USA), and T. aggressivum f. europaeum (CBS100526T, Centraalbureau voor Schimmelcultures, the Netherlands). All strains were preserved in -80 °C on PDA discs submerged in glycerol.

DNA isolation

Fungal liquid cultures were initiated in Potato Dextrose Broth (Fluka, Buchs, Switzerland) and maintained on a rotary shaker at 25 °C for one week. Fungal cells were collected by centrifugation and homogenized in liquid nitrogen with quartz sand (Sigma-Aldrich, St. Louis, MO, USA). DNA was isolated using the 2× CTAB method (Aldrich & Cullis 1993) and further purified using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions, with minor modifications. Polyvinylpyrrolidone (PVP) and polyvinylpolypyrrolidone (PVPP) were used according to Vandroemme et al. (2008), and proteinase K and RNase A were added to the lysis buffer. Both the purity and quantity of DNA were checked by agarose gel electrophoresis, determined with the NanoDrop 8000 spectrophotometer (Thermo Scientific, Waltham, MA, USA), and the DNA concentration was adjusted to 10 ng $\cdot \mu$ l⁻¹.

PCR and sequencing

PCR was used to amplify the internal transcribed spacer regions 1 and 2 (ITS1 and 2) of the rRNA gene cluster and the translation elongation factor 1-alpha (tef1), chitinase 18-5 (chi18-5), and RNA polymerase II subunit (rpb2) gene fragments. The PCR mixture (20 μ l) contained 1× PCR buffer, 1.5 mM MgCl₂, 0.25 mM dNTPs, 0.5 µM of each primer, 4 µg bovine serum albumin (BSA), 1 U of DreamTaq Polymerase (Fermentas, Vilnius, Lithuania), and 20 ng of DNA template. The primers used in this study are listed in Table 2. The ITS region and chi18-5 gene fragment were amplified using the following cycling parameters: 3 min at 94 °C followed by 35 cycles each of 30 s at 94 °C, 30 s at 55 °C, 1 min at 72 °C and, finally, 10 min at 72 °C. For amplification of the tefl gene fragment, the following program was used: 1 min at 94 °C, followed by 35 cycles each of 1 min at 94 °C, 1 min at 59 °C, 50 s at 74 °C and, finally, 7 min at 74 °C (www.isth.info). For the rpb2 gene fragment the following protocol was used: 3 min at 94 °C, 5 cycles each of 45 s at 94 °C, 45 s at 60 °C, and 2 min at 72 °C, followed by 5 cycles with the temperature decreasing by 1.0 °C per cycle from 58 °C to 54 °C, followed by 30 cycles at 54 °C, and, finally, 10 min

at 72 °C (www.isth.info). To confirm DNA amplification, 1 µl of each PCR reaction was electrophoresed with 1.5% agarose $-0.5 \times$ Tris-borate-EDTA (TBE) gels containing ethidium bromide and visualized under UV light using the GelDoc-It System with VisionWorks LS 6.7.4 (UVP, Upland, CA, USA). Prior to sequencing, enzymatic ExoSAP clean-up was performed according to the manufacturer's instructions (Affymetrix, Santa Clara, CA, USA). PCR products were diluted with H₂O and mixed with 5 pmol of primer up to 6 μ l, and sequenced by Genomed S.A. (Warsaw, Poland) or the DNA Sequencing and Oligonucleotide Synthesis Lab (IBB PAS, Warsaw, Poland). All amplicons were sequenced from both directions with primers used for amplification (Table 2). Additional sequencing primer tef790 was used for sequencing tef1 of the T. harzianum strains (Table 2). Amplification and sequencing of chi18-5 for three strains (TRS4, TRS29, and TRS33) was done with ech1f and ech1r primers (Table 2). Sequences of the collected strains are available at the National Center for Biotechnology Information (NCBI) GenBank (accession numbers are provided in Table 1).

Bioinformatic analysis and *Trichoderma* species identification

The raw sequence reads of ITS1 and ITS2, tef1, rpb2, and chi18-5 were checked for quality, trimmed, manually edited and assembled using CLC Genomics Workbench 7.5 (CLCBio, Aarhus, Denmark). Taxonomic identification based on ITS 1 and 2 was performed with TrichOKEY2 (isth.info/tools/molkey/index.php, Druzhinina et al. 2005). Sequences of ITS 1 and 2, tef1, and rpb2 were also analysed using TrichoBLAST (isth.info/tools/blast/blast.php; Kopchinskiy et al. 2005). To conduct taxonomic identification, intron 4 of the tefl gene was selected with Tricho-MARK (isth.info/tools/blast/preblast.php) and compared with the International Subcommission on Trichoderma and Hypocrea Taxonomy (ISTH) database (www.isth.info) using TrichoBLAST, and also with publicly available sequences deposited at NCBI (www.ncbi.nlm.nih.gov) by using a basic local alignment search tool (BLAST) (Altschul et al. 1997).

G . 1	9		NCBI GenBank accession number				
Strain no.	Source	Origin in Poland	ITS1 and 2	tef1	chi18-5	rpb2	
<i>T. atroviride</i> Bissett ^a							
TRS1	mushroom compost	Maków	KJ786739	KJ786820	KP009492	KP009036	
TRS2	dust, mushroom farm	composting factory, Łódź	KJ786749	KJ786830	KP009508	KP009052	
TRS3	mushroom farm, floor	Maków	KJ786743	KJ786824	KP009507	KP009051	
TRS5	mushroom compost	composting factory, Łódź	KJ786741	KJ786822	KP009502	KP009046	
TRS6	mushroom compost	Sława	KJ786750	KJ786831	KP009509	KP009053	
TRS7	mushroom farm	Bieruń	KJ786747	KJ786828	KP009472	KP009015	
TRS9	mushroom farm, air	Maków	KJ786738	KJ786819	KP009506	KP009050	
TRS10	not known	Turek	KJ786754	KJ786835	KP009515	KP009057	
TRS11	not known	WU ^b	KJ786735	KJ786816	KP009483	KP009027	
TRS12	not known	WU ^b	KJ786737	KJ786818	KP009485	KP009029	
TRS13	not known	WU ^B	KJ786736	KJ786817	KP009484	KP009028	
TRS14	mushroom compost	LMC ^e	KJ786725	KJ786806	KP009486	KP009030	
TRS15	forest wood	Głuchów	KJ786724	KJ786805	KP009499	KP009043	
TRS16	not known	not known	KJ786753	KJ786834	KP009512	KP009056	
TRS1/	mushroom compost	Skierniewice	KJ / 86 / 34	KJ/86815	KP009482	KP009026	
TRS18	mushroom compost	Makow	KJ/80/5/	KJ / 80839	KP009519	KP009061	
TRS19	SOII	not known Siamskowieg Lewe	KJ / 86 / 32	KJ/86813	KP009480	KP009024	
TRS20	mushroom farm, floor	Sterakowice Lewe	KJ/80/30	KJ/80811	KP009489	KP009033	
TRS21	soll	Topolowo near Socnaczew	KJ/80/2/	KJ / 80808	KP009487	KP009031	
TRS22	SOII	WISKIIKI	KJ/80/20	KJ/8080/	KP009491	KP009035	
TRS24	mushroom farm, wall	Ignanie Nowe	KJ/80/22	KJ/80803	KP009498	KP009042	
TDS25	niusinooni farin, wan	Lippick peer Kock	KJ786751	KJ786832	KP009490	KP009034	
TDS20	son	Kolonia Rolimowska	KJ786721	KJ786802	KP009310	KP009034	
TRS20	soil	Skierniewice	KJ786720	KJ786801	KP009494	KP009038	
TRS30	soil	Balcerów	KJ786740	K1786821	KP009501	KP009037	
TRS31	mushroom farm air	Maków	K1786744	KJ786825	KP009504	KP009045	
TRS34	not known	not known	K1786719	K1786800	KP009497	KP009041	
TRS36	soil	Katne	K1786729	K1786810	KP009488	KP009032	
TRS38	soil	Myślibórz	KJ786733	KJ786814	KP009481	KP009025	
TRS39	soil	Myślibórz	KJ786728	KJ786809	KP009479	KP009023	
TRS40	organic manure	ecological farm. Rzeczyce	KJ786755	KJ786836	KP009516	KP009058	
TRS42	soil	Radzanów	KJ786752	KJ786833	KP009511	KP009055	
TRS43	forest soil	Wielkopolski National Park ^d	KJ786748	KJ786829	KP009473	KP009016	
TRS44	not known	not known	KJ786756	KJ786837	KP009517	KP009059	
TRS45	mushroom compost	Maków	KJ786718	KJ786799	KP009496	KP009040	
TRS46	not known	not known	KJ786723	KJ786804	KP009495	KP009039	
TRS47	not known	not known	KJ786746	KJ786827	KP009503	KP009047	
TRS68	mushroom compost	Skierniewice	KJ786745	KJ786826	KP009505	KP009049	
T. gamsii Sa	muels & Druzhinina						
TRS123	soil	Strobów	KP009330	KP008922	KP009528	KP009065	
TRS125	soil	Wola Skromowska near Kock	KP009326	KP008919	KP009524	KP009062	
T. viridescen	ıs (A.S. Horne & H.S. Wi	illiamson) Jaklitsch & Samuels					
TRS35	soil	Lekosz near Brodnica	KP009338	KP008930	KP009522	KP009074	
T, sp. = T , sp. 435 (Hovos-Carvajal et al. 2009) and T , sp. C.P.K. 3606 (Lónez-Ouintero et al. 2013)							
TRS4	mushroom farm	Kolonia Bolimowska	KP009339	KP008948	KP009542	KP009082	
TRS29	mushroom farm, wall	Maków	KP009340	KP008949	KP009543	KP009083	
TRS33	mushroom farm, floor	Skierniewice	KP009341	KP008950	KP009544	KP009084	
<i>T hamatum</i> (Bonorden) Bainier							
TRS121	forest wood	Głuchów	KP009342	KP008953	KP009537	KP009085	
TRS127	not known	not known	KP009343	KP008954	KP009538	KP009086	
T virans (I H Miller Ciddens & A A Foster) Ary							
TRS106	mushroom compost		KP009291	KP008854	KP009462	K.b000003	
TRS100	mushroom compost	I MC ^c	KP009291	KP008861	KP009402	KbUU0U00	
TRS108	mushroom compost	LMC ^c	KP009297	KP008857	KP009409	KP009099	
TRS109	mushroom compost	Skierniewice	KP009299	KP008864	KP009463	KP009101	
TRS110	mushroom compost	Skierniewice	KP009298	KP008863	KP009461	KP009100	
TRS112	mushroom compost	Skierniewice	KP009296	KP008860	KP009468	KP009098	
TRS114	soil	Wola Skromowska near Kock	KP009293	KP008862	KP009467	KP009095	
TRS116	soil	Radzanów	KP009289	KP008856	KP009470	KP009091	
TRS117	not known	not known	KP009294	KP008858	KP009466	KP009096	

 Table 1. Origin of the *Trichoderma* strains used in this study and sequences from NCBI GenBank accession numbers (species order according to general *Trichoderma* taxonomy)

T. crassum Bissett							
TRS113	soil	Wola Skromowska near Kock	KP009300	KP008865	KP009380	KP009102	
<i>T harzianum</i> Rifai (<i>T harzianum</i> sensu stricto)							
TRS53	mushroom compost	Maków	KP009240	KP008808	KP009389	KP009110	
TRS54	soil	not known	KP009217	KP008833	KP009408	KP009129	
TRS55	mushroom farm	Maków	KP009211	KP008803	KP009400	KP009121	
TRS56	mushroom compost	Czestochowa	KP009242	KP008810	KP009391	KP009112	
TRS57	soil	Skierniewice	KP009241	KP008809	KP009390	KP009111	
TRS58	soil	Wadowice	KP009214	KP008818	KP009403	KP009124	
TRS59	soil	Balcerów	KP009237	KP008790	KP009386	KP009107	
TRS61	mushroom compost	LMC ^c	KP009212	KP008804	KP009401	KP009122	
TRS62	mushroom compost	Maków	KP009213	KP008817	KP009402	KP009123	
TRS65	not known	Sokołów Podlaski	KP009247	KP008799	KP009396	KP009117	
TRS69	mushroom farm	Maków	KP009216	KP008821	KP009406	KP009127	
TRS71	soil	Janówek	KP009238	KP008806	KP009387	KP009108	
TRS72	mushroom farm	Skierniewice	KP009236	KP008789	KP009385	KP009106	
TRS83	soil	Nowy Białynin	KP009253	KP008820	KP009405	KP009126	
TRS87	organic manure	ecological farm, Rzeczyce	KP009235	KP008812	KP009384	KP009105	
TRS88	organic manure	ecological farm, Rzeczyce	KP009244	KP008796	KP009393	KP009114	
TRS89	organic manure	ecological farm, Rzeczyce	KP009234	KP008813	KP009383	KP009104	
TRS92	soil	Radzanów	KP009243	KP008811	KP009392	KP009113	
TRS93	soil	Radzanów	KP009246	KP008798	KP009395	KP009116	
TRS94	soil	Lipniak near Kock	KP009250	KP008802	KP009399	KP009120	
TRS95	soil	Janowo	KP009249	KP008801	KP009398	KP009119	
TRS122	mushroom compost	Skierniewice	KP009239	KP008807	KP009388	KP009109	
T. atrobrun	neum F.B. Rocha, P. Cha	verri & W. Jaklitsch, sp. nov.					
TRS60	mushroom compost	Balcerów	KP009260	KP008874	KP009432	KP009143	
TRS86	soil	Rzeczyce	KP009254	KP008876	KP009431	KP009142	
TRS91	soil	Wysoka	KP009261	KP008875	KP009438	KP009144	
T. lentiform	e (Rehm) P. Chaverri, Sa	muels & F.B. Rocha, comb. nov					
TRS35x	soil	Lekosz near Brodnica	KP009231	KP008899	KP009436	KP009154	
TRS58x	soil	Wadowice	KP009256	KP008901	KP009427	KP009157	
TRS63x	soil	production field, Skierniewice	KP009230	KP008898	KP009435	KP009153	
TRS64	not known	Pszczyna	KP009229	KP008897	KP009434	KP009152	
TRS65x	not known	Sokołow Podlaski	KP009228	KP008896	KP009433	KP009151	
TRS74	soil	Katne	KP009258	KP008904	KP009429	KP009159	
TRS76	soil	not known	KP009257	KP008903	KP009428	KP009158	
TRS78	mushroom compost	Skórzec	KP009259	KP008905	KP009430	KP009160	
TRS79	mushroom farm	Ignanie Nowe	KP009232	KP008902	KP009437	KP009155	
T. simmons	ii P. Chaverri, F.B. Rocha	a, Samuels, Degenkolb & W. Jak	litsch, sp. no ^v	v.			
TRS66	unknown	Parczew	KP009222	KP008867	KP009447	KP009135	
TRS67	unknown	Radzvń Podlaski	KP009221	KP008866	KP009443	KP009134	
TRS75	mushroom farm	Sierakowice Lewe	KP009223	KP008871	KP009448	KP009136	
TRS77	mushroom farm. floor	Maków	KP009226	KP008869	KP009444	KP009139	
TRS80	mushroom compost	Skierniewice	KP009225	KP008868	KP009445	KP009138	
TRS85MO	mushroom farm, air	Sierakowice Lewe	KP009224	KP008872	KP009446	KP009137	
T. cf. harzia	inum						
TRS73	mushroom farm	Kolonia Bolimowska	KP009263	KP008873	KP009442	KP009141	
T. aggressiv	um f. europaeum Samuel	s & W. Gams					
TRS27	mushroom farm, air	Sierakowice Lewe	KP009302	KP008994	KP009440	KP009163	
T. nleurotic	ola S.H. Yu & M.S. Park						
TRS70	forest wood	Głuchów	KP009264	KP008951	KP009450	KP009172	
TRS120	forest wood	Głuchów	KP009265	KP008952	KP009451	KP009173	
T. tomentosum Bissett							
TRS82 soil Nowy Dwór KP009287 KP008914 KP009455 KP009177							
T snirala Rissett							
TRS111	soil	Rudzieniec	KP000301	KD008023	KP000471	KP000182	
T aitmin arti-	ida Diccott	Nucliciite	M 007301	M 000703	IXI 0074/1	M 007102	
TDS110	not known	W/I Ip	KD000257	KD00002	KD000545	VD000192	
113117		wo	AT 009337	AT 000093	AF 009343	IXE 009103	

^a *T. atroviride* strains identification is in agreement with the identification presented by Skoneczny et al. (2015), which included ITS and *tef*1 sequences listed above

^b provided by Wrocław University of Environmental and Life Sciences, Poland ^c provided by the Laboratory of Mushroom Cultivars, Research Institute of Horticulture, Skierniewice, Poland ^d provided by the Poznań University of Life Sciences, Poland

Locus	Primer name	Sequence (5'-3')	Amplicon length (bp)	Reference	
ITS1 and 2	ITS4	TCCTCCGCTTATTGATATGC	650	White et al. (1990)	
	ITS6	GAAGGTGAAGTCGTAACAAGG	630	Cooke and Duncan (1997)	
tef1	EF1-728F	CATCGAGAAGTTCGAGAAGG		Carbone and Kohn (1999)	
	TEF-LLErev	AACTTGCAGGCAATGTGG	1200	Jaklitsch et al. (2006)	
	tef790 ^a	GGGAGCGTCTGTGAATTG		This study	
chi18-5	chit42-1af	AGCWAGCACSGATGCCAAC	800	Kullnig-Gradinger et al.	
	chit42-2ar	AGGTTCTGAGTYGWGTCCA	800	(2002)	
	ech1f	CACTTCACCATGTTGGGCTTCCTC	1200	Fekete et al. (1996)	
	ech1r	GATCTCTAGTTGAGACCGCTTCGG	1200		
rpb2	RPB2-210up	TGGGGWGAYCARAARAAGG	1150	· 4 · 6	
	RPB2-1450low	CATRATGACSGAATCTTCCTGGT	1150	www.istn.inro	

Table 2. Primer names and sequences us	ed for PCR amplification	and sequencing	of the ITS region	n and <i>tef</i> 1, <i>chi</i> 18-5,
and <i>rpb2</i> gene fragments				

^a additional primer used for sequencing reactions of T. harzianum species complex strains

Phylogenetic analysis

For phylogenetic reconstruction, sequences of the tef1 gene fragment (fourth and fifth intron, and a part of the sixth exon), generated in this study, published before by Hoyos-Carvajal et al. (2009), López-Quintero et al. (2013), Jaklitsch and Voglmayr (2015) and with NCBI GenBank taxonomic affiliation of T. rogersonii, T. austrokoningii, T. pararogersonii, T. subeffusum and as outgroups T. strigosellum, T. strigosum were used. Based on strain names or sequence accession numbers, sequences were retrieved from NCBI (www.ncbi.nlm.nih.gov/genbank) and compared using BLASTclust (toolkit.tuebingen.mpg.de/blastclust) with clustering of 100% identity sequence. A single GenBank sequence was selected for each sequence type (NCBI GenBank accessions are provided at Figure 1). Sequence alignments were prepared with ClustalX (Thompson et al. 1997) and manually edited using CLC Genomic Workbench 7.5 (CLCBio). Sequence sets of equal length were again processed with BLASTclust.

The obtained alignments were cleaned with a less stringent selection option using GBlocksServer (molevol.cmima.csic.es/castresana/Gblocks_ser ver.html). The substitution model, nucleotide frequencies and substitution values were estimated with jModelTest (Darriba et al. 2012), with the AICc selection criterion (model HKY+G, -lnL = 1730.6888, K = 75, freqA = 0.2004, freqC = 0.2771, freqG = 0.2086, freqT = 0.3139, ti/tv = 1.5292, gamma = 0.387). Metropolis-coupled Markov chain Monte Carlo (MCMCMC) analysis was performed with 2 runs for 3 million generations with 4 chains with heating coefficient $\lambda = 0.2$ with MrBayes 3.2.2 x64 (Ronquist et al. 2012).

RESULTS

Among the 104 *Trichoderma* strains collected for PGPF or BCA selection for application in agricultural and horticultural production, 100 strains were clearly identified at the species level. PCR amplification, sequencing, and sequence analysis of ITS 1 and 2 regions and the *tef*1, *chi*18-5, and *rpb*2 gene fragments allowed for reliable identification of strains that belong to 15 *Trichoderma* species. The highest number of strains was identified as *T. atroviride* (39 strains), *T. harzianum* sensu stricto (22 strains), *T. lentiforme* (9 strains), *T. virens* (9 strains), and *T. simmonsii* (6 strains) (Table 1). Single strains were identified as: *T. atrobrunneum*

(3 strains), *T. gamsii* (2 strains), *T. hamatum* (2 strains), *T. pleuroticola* (2 strains), *T. aggressivum* f. *europaeum* (1 strain), *T. citrinoviride* (1 strain), *T. crassum* (1 strain), *T. spirale* (1 strain), *T. tomentosum* (1 strain), and *T. viridescens* (1 strain) (Table 1). Four loci-based identification of *T. atroviride* strains was in agreement with identification presented by Skoneczny et al. (2015).

Fig. 1. Bayesian *tef*1 50% majority rule tree of the Rogersonii clade of *Trichoderma* with *T. strigosum* and *T. strigosellum* as outgroups. Node numbers indicate Bayesian posterior probability values. The names presented here indicate NCBI Gen-Bank accession numbers and strain names. Species are grouped and names are listed on the right. TRS4, TRS29, and TRS33 *tef*1 sequences are identical (NCBI GenBank Accession Numbers are: KP008948, KP008949, and KP008950)

Species identification performed with TrichOKEY and TrichoBLAST based only on ITS1 and 2, tef1, and rpb2 sequences was not sufficient to identify T. gamsii and T. viridescens. Also all strains from T. harzianum species complex were identified as T. harzianum. ITS1 and 2, and tef1 sequences only were not sufficient to identify T. tomentosum and T. crassum. Based on tef1 and rpb2 only, identification of T. pleuroticola was not possible. The tefl sequences were insufficient to identify T. citrinoviride and T. spirale, and T. atroviride strains were not identified based on rpb2. NCBI GenBank BLAST analysis of all investigated loci fulfilled identifications, however, chi18-5 sequences from T. gamsii, T. crassum, T. spirale, and T. pleuroticola in GenBank were not present. The most conclusive identification was obtained after TrichoMARK selection of 4th intron from tef1 sequences and NCBI GenBank BLAST search.

Molecular species identification was inconclusive for four strains (TRS4, TRS29, TRS33, and TRS73). It was found that strain TRS73 belongs to the *T. harzianum* species complex (*T.* cf. *harzianum*), however, the species could not be identified. Based on *tef*1 phylogeny, strains TRS4, TRS29, and TRS33, isolated from mushroom farms, clustered together with the previously described strains DAOM231245 and TUCIM3606 which represents separate species from *T. rogersonii*, *T. austrokoningii*, *T. pararogersonii* and *T. subeffusum* in the Rogersonii clade (Fig. 1, Table 1).

DISCUSSION

In this study we identified *Trichoderma* strains collected in order to select the most suitable ones for application as PGPF or BCA with organic wastes in vegetable production. The preliminary classification of these strains to *T. atroviride*, *T. harzianum*, and *T. virens*, which was based on colony morphology and microscopic observations, was insufficient to reliably determine species. Within the analysed strains, several of them appeared to have been misidentified.

We used the comparative sequence analyses of ITS1 and ITS2, tef1, chi18-5, and rpb2 loci to prepare a detailed molecular identification of strains. The main group of isolates was identified as members of three species, that is, T. atroviride (39 strains), T. harzianum sensu stricto (22 strains), and T. virens (9 strains). In recent decades, these species have often been recognised as the most commonly proposed candidates for biocontrol. Surprisingly, the latest studies on strains present in commercially available BCA preparations, which were previously defined as T. harzianum, showed that these strains were recognised as: T. afroharzianum in Canna AkTRIvator® and Trianum®, T. guizhouense in Promot® WP, and T. simmonsii in WP Trichosan® and Vitalin®. All of these species belong to the T. harzianum species complex, however, they are not T. harzianum sensu stricto (Chaverri et al. 2015). This suggests that during PGPF/BCA strain selection, more attention should be paid to the T. harzianum species complex than to T. harzianum sensu stricto, which is highly clonal and represents low genetic diversity (Druzhinina et al. 2010). In the strain collection analysed in this study, the T. harzianum species complex was represented by T. atrobrunneum (3 strains), T. lentiforme (9 strains), T. simmonsii (6 strains) and one strain TRS73, which possibly represents an unknown lineage (Table 1).

Within the strains used in this study, three strains belonging to T. aggressivum (TRS27) and T. pleuroticola (TRS70 and TRS120) were detected. These are morphologically similar to T. harzianum, however, they are pathogenic to cultivated mushrooms. Therefore, these strains will be excluded from further studies aimed at PGPF/BCA strain selection for vegetable cultivation. On the other hand, Komoń-Żelazowska et al. (2007) mentioned that two strains of T. pleuroticola were selected as biofungicides against soilborne plant diseases. Such fungal agents can be potentially risky for use in vegetable cultivation because they represent a potential source of mushroom pathogens. Our study confirms the necessity of careful molecular species identification of microorganisms used for agricultural and horticultural applications.

Recently, Jaklitsch and Voglmayr (2015) recognised a new species, *T. pararogersonii*, in the Rogersonii clade that includes *T. rogersonii*, *T. austrokoningii* and *T. subeffusum*. Our study suggests that the Rogersonii clade comprises one more undescribed species represented by three *Trichoderma* strains, that is, TRS4, TRS29, and TRS33, (this study) and strains isolated from Central America DAOM 231245 and C.P.K. 3606. It has been proposed that DAOM 231245 and C.P.K. 3606 represent a putative new *Trichoderma* species described as *T.* sp. 435 (Hoyos-Carvajal et al. 2009) and *T.* sp. C.P.K. 3606 (López-Quintero et al. 2013). The phylogeny reconstruction that was performed in this study supports this observation (Fig. 1).

Our study confirmed the usefulness of multilocus-based molecular identification of Trichoderma species. Such an identification, based on 4 loci (ITS1 and 2, tef1, chi18-5, and rpb2), was successful for 100 out of the 104 (96%) Trichoderma strains that were analyzed in this study. Based on such species identification, a selection of strains that could be potentially useful as PGPF or BCA in vegetable production could be improved and better focused. Strains belonging to Trichoderma species pathogenic to cultivated mushrooms can be eliminated from such programs. Also, strains belonging to taxonomic groups characterised by biocontrol properties can be distinguished, for example, in strains belonging to the T. harzianum species complex. The study also showed gaps in Trichoderma taxonomy and the existence of new, unestablished species. For even more successful Trichoderma species identification, further adjustment of Trichoderma taxonomy is necessary.

Acknowledgements

We are grateful to Dr. Irina Druzhinina (TUV, Vienna, Austria) for help in the better understanding of *Tricho-derma* identification and phylogeny.

This work was conducted as a part of the project "Polish *Trichoderma* strains in plant protection and organic

waste management" Priority 1.3.1, subject area "Bio", co-financed by The European Union through the European Regional Development Fund within the Innovative Economy Operational Program, 2007-2013, under project No [UDA-POIG.01.03.01-00-129/09-08].

REFERENCES

- Aldrich J., Cullis C.A. 1993. RAPD analysis in flax: optimization of yield and reproducibility using KlenTaq 1 DNA polymerase, Chelex 100, and gel purification of genomic DNA. Plant Molecular Biology Reporter 11: 128-141. DOI: 10.1007/BF02670471.
- Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389-3402. DOI: 10.1093/nar/25.17.3389.
- Atanasova L., Druzhinina I.S., Jaklitsch W.M. 2013. Two hundred *Trichoderma* species recognized on the basis of molecular phylogeny. In: Mukherjee P.K., Horwitz B.A., Singh U.S., Mukherjee M., Schmoll M. (Eds.), *Trichoderma*: biology and applications. CABI, Wallingford, UK, pp. 10-42. DOI: 10.1079/9781780642475.0010.
- Benítez T., Rincón A.M., Limón M.C., Codón A.C. 2004. Biocontrol mechanisms of *Trichoderma* strains. International Microbiology 7: 249-260.
- Błaszczyk L., Popiel D., Chełkowski J., Koczyk G., Samuels G.J., Sobieralski K., Siwulski M. 2011. Species diversity of *Trichoderma* in Poland. Journal of Applied Genetics 52: 233-243. DOI: 10.1007/s13353-011-0039-z.
- Carbone I., Kohn L.M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. DOI: 10.2307/3761358.
- Chaverri P., Branco-Rocha F., Jaklitsch W.M., Gazis R.O., Degenkolb T., Samuels G.J. 2015. Systematics of the *Trichoderma harzianum* species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558-590. DOI: 10.3852/14-147.
- Chaverri P., Castlebury L.A., Samuels G.J., Geiser D.M.
 2003. Multilocus phylogenetic structure within the *Trichoderma harzianum/Hypocrea lixii* complex.
 Molecular Phylogenetics and Evolution 27: 302-313. DOI: 10.1016/S1055-7903(02)00400-1.

- Chaverri P., Gazis R.O., Samuels G.J. 2011. Trichoderma amazonicum, a new endophytic species on Heveabrasiliensis and H. guianensis from the Amazon basin. Mycologia 103: 139-151. DOI: 10.3852/10-078.
- Cooke D.E.L., Duncan J.M. 1997. Phylogenetic analysis of *Phytophthora* species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycological Research 101: 667-677. DOI: 10.1017/S0953756296003218.
- Darriba D., Taboada G.L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. DOI: 10.1038/nmeth.2109.
- Dodd S.L., Lieckfeldt E., Samuels G.J. 2003. *Hypocrea atroviridis* sp. *nov.*, the teleomorph of *Trichoderma atroviride*. Mycologia 95: 27-40. DOI: 10.2307/3761959.
- Druzhinina I.S., Kopchinskiy A.G., Komoń M., Bissett J., Szakacs G., Kubicek C.P. 2005. An oligonucleotide barcode for species identification in *Trichoderma* and *Hypocrea*. Fungal Genetics and Biology 42: 813-828. DOI: 10.1016/j.fgb.2005.06.007.
- Druzhinina I.S., Kubicek C.P., Komoń-Żelazowska M., Mulaw T.B., Bissett J. 2010. The *Trichoderma harzianum* demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolutionary Biology 10: 94. DOI: 10.1186/1471-2148-10-94.
- Fekete C., Weszely T., Hornok L. 1996. Assignment of a PCR-amplified chitinase sequence cloned from *Trichodermahamatum* to resolved chromosomes of potential biocontrol species of *Trichoderma*. FEMS Microbiology Letters 145: 385-391. DOI: 10.1111/j.1574-6968.1996.tb08605.x.
- Gal-Hemed I., Atanasova L., Komoń-Żelazowska M., Druzhinina I.S., Viterbo A., Yarden O. 2011. Marine isolates of *Trichoderma* spp. as potential halotolerant agents of biological control for arid-zone agriculture. Applied and Environmental Microbiology 77: 5100-5109. DOI: 10.1128/AEM.00541-11.
- Gazis R., Chaverri P. 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (*He-veabrasiliensis*) in Peru. Fungal Ecology 3: 240-254. DOI: 10.1016/j.funeco.2009.12.001.

- Harman G.E. 2006. Overview of mechanisms and uses of *Trichoderma* spp. Phytopathology 96: 190-194. DOI: 10.1094/PHYTO-96-0190.
- Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. 2004. *Trichoderma* species – opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2: 43-56. DOI: 10.1038/nrmicro797.
- Hermosa M.R., Grondona I., Iturriaga E.A., Diaz-Minguez J.M., Castro C., Monte E., Garcia-Acha I. 2000. Molecular characterization and identification of biocontrol isolates of *Trichoderma* spp. Applied and Environmental Microbiology 66: 1890-1898. DOI: 10.1128/AEM.66.5.1890-1898.2000.
- Hermosa R., Rubio M.B., Cardoza R.E., Nicolás C., Monte E., Gutiérrez S. 2013. The contribution of *Trichoderma* to balancing the costs of plant growth and defense. International Microbiology 16: 69-80. DOI: 10.2436/20.1501.01.181.
- Hoyos-Carvajal L., Orduz S., Bissett J. 2009. Genetic and metabolic biodiversity of *Trichoderma* from Colombia and adjacent neotropic regions. Fungal Genetics and Biology 46: 615-631. DOI: 10.1016/j.fgb.2009.04.006.
- Jaklitsch W.M. 2011. European species of *Hypocrea* part II: species with hyaline ascospores. Fungal Diversity 48: 1-250. DOI: 10.1007/s13225-011-0088-y.
- Jaklitsch W.M., Samuels G.J., Dodd S.L., Lu B.S., Druzhinina I.S. 2006. *Hypocrea rufa/Trichoderma viride*: a reassessment, and description of five closely related species with and without warted conidia. Studies in Mycology 56: 135-177. DOI: 10.3114/sim.2006.56.04.
- Jaklitsch W.M., Samuels G.J., Ismaiel A., Voglmayr H. 2013. Disentangling the *Trichoderma viridescens* complex. Persoonia 31: 112-146. DOI: 10.3767/003158513X672234.
- Jaklitsch W.M., Voglmayr H. 2015. Biodiversity of *Trichoderma (Hypocreaceae)* in Southern Europe and Macaronesia. Studies in Mycology 80: 1-87. DOI: 10.1016/j.simyco.2014.11.001.
- Kancelista A., Tril U., Stempniewicz R., Piegza M., Szczech M., Witkowska D. 2013. Application of lignocellulosic waste materials for the production and stabilization of *Trichoderma* biomass. Polish Journal of Environmental Studies 22: 1083-1090.
- Kindermann J., El-Ayouti Y., Samuels G.J., Kubicek C.P. 1998. Phylogeny of the genus *Trichoderma* based on

sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genetics and Biology 24: 298-309. DOI: 10.1006/fgbi.1998.1049.

- Komoń-Żelazowska M., Bissett J., Zafari D., Hatvani L., Manczinger L., Woo S., Lorito M., Kredics L., Kubicek C.P., Druzhinina I.S. 2007. Genetically closely related but phenotypically divergent *Trichoderma* species cause green mold disease in oyster mushroom farms worldwide. Applied and Environmental Microbiology 73: 7415-7426. DOI: 10.1128/AEM.01059-07.
- Kopchinskiy A., Komoń M., Kubicek C.P., Druzhinina I.S. 2005. *TrichoBLAST*: A multilocus database for *Trichoderma* and *Hypocrea* identifications. Mycological Research 109: 658-660. DOI: 10.1017/S0953756205233397.
- Kredics L., Hatvani L., Naeimi S., Körmöczi P., Manczinger L., Vágvölgyi C., Druzhinina I. 2014.
 Biodiversity of the genus *Hypocrea/Trichoderma* in different habitats. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (Eds.), Biotechnology and biology of *Trichoderma*. Elsevier, Amsterdam, pp. 3-24. DOI: 10.1016/B978-0-444-59576-8.00001-1.
- Kullnig C.M., Krupica T., Woo S.L., Mach R.L., Rey M., Benítez T., Lorito M., Kubicek C.P. 2001. Confusion abounds over identities of *Trichoderma* biocontrol isolates. Mycological Research 105: 769-772. DOI: 10.1017/S0953756201229967.
- Kullnig-Gradinger C.M., Szakacs G., Kubicek C.P. 2002. Phylogeny and evolution of the genus *Trichoderma*: a multigene approach. Mycological Research 106: 757-767. DOI: 10.1017/S0953756202006172.
- Longa C.M.O., Savazzini F., Tosi S., Elad Y., Pertot I. 2009. Evaluating the survival and environmental fate of the biocontrol agent *Trichoderma atroviride* SC1 in vineyards in northern Italy. Journal of Applied Microbiology 106: 1549-1557. DOI: 10.1111/j.1365-2672.2008.04117.x.
- López-Quintero C.A., Atanasova L., Franco-Molano A.E., Gams W., Komoń-Żelazowska M., Theelen B., Müller W.H., Boekhout T., Druzhinina I. 2013. DNA barcoding survey of *Trichoderma* diversity in soil and litter of the Colombian lowland

Amazonian rainforest reveals *Trichoderma strigosellum* sp. nov. and other species. Antonie van Leeuwenhoek, Journal of Microbiology 104: 657-674. DOI: 10.1007/s10482-013-9975-4.

- Monfil V.O., Casas-Flores S. 2014. Molecular mechanisms of biocontrol in *Trichoderma* spp. and their applications in agriculture. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (Eds.), Biotechnology and biology of *Trichoderma*. Elsevier, Amsterdam, pp. 429- 453. DOI: 10.1016/B978-0-444-59576-8.00032-1.
- Mulaw T.B., Kubicek C.P., Druzhinina I.S. 2010. The rhizosphere of *Coffea arabica* in its native highland forests of Ethiopia provides a niche for a distinguished diversity of *Trichoderma*. Diversity 2: 527-549. DOI: 10.3390/d2040527.
- Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. DOI: 10.1093/sysbio/sys029.
- Samuels G.J., Dodd S.L., Lu B.S., Petrini O., Schroers H.J., Druzhinina I.S. 2006. The *Trichoderma koningii* aggregate species. Studies in Mycology 56: 67-133. DOI: 10.3114/sim.2006.56.03.
- Skoneczny D., Oskiera M., Szczech M., Bartoszewski G. 2015. Genetic diversity of *Trichoderma atroviride* strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiologica 60: 297-307. DOI: 10.1007/s12223-015-0385-z.
- Smolińska U., Gołębiewska E., Kowalska B., Kowalczyk W., Szczech M. 2014a. Materiały odpadowe jako nośniki antagonistycznych grzybów *Trichoderma*. Inżynieria i Ochrona Środowiska 17: 5-20.
- Smolińska U., Kowalska B., Kowalczyk W., Szczech M. 2014b. The use of agro-industrial wastes as carriers of *Trichoderma* fungi in the parsley cultivation. Scientia Horticulturae 179: 1-8. DOI: 10.1016/j.scienta.2014.08.023.
- Stewart A., Hill R. 2014. Applications of *Trichoderma* in plant growth promotion. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (Eds.), Biotechnology and biology of *Trichoderma*. Elsevier, Amsterdam, pp. 415-428. DOI: 10.1016/b978-0-444-59576-8.00031-x.

- Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882. DOI: 10.1093/nar/25.24.4876.
- Vandroemme J., Baeyen S., Van Vaerenbergh J., De Vos P., Maes M. 2008. Sensitive real-time PCR detection of *Xanthomonas fragariae* in strawberry

plants. Plant Pathology 57: 438-444. DOI: 10.1111/j.1365-3059.2007.01813.x.

White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (Eds.), PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA, pp. 315-322. DOI: 10.1016/b978-0-12-372180-8.50042-1.