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Abstract: Complete descriptions of the particle-size distribution (PSD) curve should provide more information about
various soil properties as opposed to only the textural composition (sand, silt and clay (SSC) fractions). We evaluated the
performance of 19 models describing PSD data of soils using a range of efficiency criteria. While different criteria pro-
duced different rankings of the models, six of the 19 models consistently performed the best. Mean errors of the six
models were found to depend on the particle diameter, with larger error percentages occurring in the smaller size range.
Neither SSC nor the geometric mean diameter and its standard deviation correlated significantly with the saturated
hydraulic conductivity (Kj); however, the parameters of several PSD models showed significant correlation with K. Po-
rosity, mean weight diameter of the aggregates, and bulk density also showed significant correlations with PSD model
parameters. Results of this study are promising for developing more accurate pedotransfer functions.
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INTRODUCTION

The particle-size distribution (PSD) is a fundamental physi-
cal property of soils. Knowing the soil PSD is critical for a
range of hydrological, geological, agricultural, and geotechnical
applications, including soil classification, as summarized well
by Bayat et al. (2015). For example, the soil PSD is widely
used to estimate such key soil attributes as infiltration (e.g.,
Ghorbani-Dashtaki et al., 2016; Parchami-Araghi et al., 2013),
the saturated hydraulic conductivity (Jabro, 1992; Saxton et al.,
1986), soil water retention (Arya and Paris, 1981; Ghorbani
Dashtaki et al., 2010; Khodaverdiloo et al., 2011) and move-
ment (Nemes et al., 2003), soil erosion (Beke et al., 1989; Xu et
al., 2013), the cation exchange capacity of soils (Ersahin et al.,
2006; Liao et al., 2015; Manrique et al., 1991) and various
chemical sorption parameters of soils (Khodaverdiloo and
Samadi, 2011).

Predictions of many soil properties and functions often need
more detailed soil textural data than only the sand, silt and clay
(SSC) fractions. Therefore, many studies were undertaken to
provide more detail regarding the soil PSD. For example, Shi-
razi and Boersma (1984) and Shirazi et al. (1988) transformed
the standard textural triangle into a new diagram based on mean
particle size and standard deviations of particle size to provide
greater resolution in detecting classified soils within a textural
class. Accordingly, parameters other than SSC are often used to
reflect the soil PSD in various predictive functions (e.g. Ghor-
bani Dashtaki et al., 2010). Examples are the geometric mean
diameter (d,) and its standard deviation (g,), the coefficient of
uniformity (C,), the coefficient of curvature (C.), and the diam-
eter of soil particles having a specific percentage of smaller
particles (e.g., Dig, D39, Dso, Dgo, €tc.), which then may serve as
measures of soil gradation or other properties. Mathematically
representing PSD data hence provides several benefits in soil
mechanics, physics, hydrodynamic and geotechnical applica-
tions (Fredlund et al., 2000), as well as helps to convert PSD
data of various particle-size classification systems to the desired
formulation (Nemes et al., 1999; Skaggs et al., 2001). These

applications require the definition of complete PSD curves
using some mathematical model that best fits experimental
data.

Consequently, various equations have been introduced over
the years to describe the soil PSD, each of which often has its
own specific advantages and limitations (Bayat et al., 2015;
Fredlund et al., 2000). A careful selection of the most appropri-
ate PSD model may have a significant impact on the estimated
soil particle distribution density at a given particle size (Nemes
et al., 1999) and hence is important to more precisely estimate
soil properties (e.g., Bittelli et al., 1999; Hwang and Powers,
2003). Several studies have attempted to compare different
PSD mathematical expressions for soils (e.g., Bayat et al.,
2015; Buchan et al., 1993; Hwang et al., 2002; Hwang, 2004;
Bah et al., 2009). However, these studies generally compared
only a limited number of PSD models (Bagarello et al., 2009;
Buchan et al., 1993; Hwang, 2004; Vipulanandan and Ozgurel,
2009), invoked only few statistical criteria for the comparisons
(Bagarello et al., 2009; Bayat et al., 2015; Buchan et al., 1993;
Hwang, 2004; Vipulanandan and Ozgurel, 2009) and/or applied
the analyses to a relatively narrow range of soil textural classes
(Buchan et al., 1993; Vipulanandan and Ozgurel, 2009; Zhao et
al., 2011). Since the performance of a PSD model depends on
the type and range of soil textures involved (e.g., Bagarello et
al., 2009; Buchan, 1989; Fredlund et al., 2000; Hwang, 2004;
Hwang et al., 2002; Zhao et al., 2011), conclusions obtained
with such studies may not necessarily be extended or general-
ized to soil textures other than those used in the comparisons.
Additionally, PSD models have often been evaluated in terms
of their general performance for describing the entire PSD
curve, but frequently not for predicting specific (and practical-
ly-important) PSD points or parameters. A given model may
well be accurate globally in terms of generating the entire PSD
curve, while failing locally to predict specific points or selected
parameters of the curve.

Soil PSD data are commonly used to derive pedotransfer
functions (PTFs) for estimating soil hydraulic and other proper-
ties that are more difficult to measure directly. Traditionally,

179



Fatemeh Afrasiabi, Habib Khodaverdiloo, Farrokh Asadzadeh, Martinus Th. van Genuchten

soil SSC percentages have been used as input data for the PTFs
(e.g., Carsel and Parrish, 1988; Chapuis, 2012; Jabro, 1992;
Patil and Singh, 2016; Saxton et al., 1986). While attempts have
been made to test parameters other than SSC to represent soil
particle size information in PTFs, it is not obvious which PSD
models are most suitable for this purpose. Also, there is often
no clear physical basis of the parameters in some of PSD mod-
els. Many PSD model parameters frequently are purely empiri-
cal without any physical significance. For these reasons, studies
are still needed to obtain optimal correlations of PSD parame-
ters with soil properties in terms of underlying physical con-
cepts.

The objectives of this study were to (1) evaluate the perfor-
mance of 19 models for describing PSD data of selected soils in
northwestern Iran using a broad database in terms of soil tex-
tures, (2) provide a functional evaluation of the models to pre-
dict selected practically-important PSD points or parameters
using different efficiency criteria, (3) compare results obtained
with the general and functional evaluations, and (4) correlate
physically based PSD model parameters with selected soil
physical properties to examine their suitability to serve as input
for pedotransfer functions.

MATERIALS AND METHODS
Soil datasets

Twenty four locations neighboring the western edge of
threatened hypersaline Lake Urmia in northwestern Iran were
sampled for this study. The locations were selected such that
soils with a wide range of soil textures were included in the
database. Figure 1 shows the textural distributions of the sam-
ples. The study area was located between geographical coordi-
nates of 45° 05’ and 45° 08' E, and 37° 32’ and 37° 38' N, at
1290 to 1350 m above mean seca level, and with mean annual
precipitation and temperature of approximately 300 mm and
11.8°C, respectively, with xeric soil moisture and mesic soil
temperature regimes (Banaei, 1998).

Three replicate surface (030 cm depth) soil samples were
collected at each site. After clay deflocculation using sodium-
hexametaphosphate and mechanical agitation, soil PSD curves
were determined using a combination of hydrometer (Gee and
Or, 2002) and mechanical sieving methods. Fine particle frac-
tions (<0.15 mm) were determined by sedimentation, whereas
the coarser fractions (> 0.15 mm) were obtained by sieving.
The sieve analysis involved nested columns of sieves (2, 1, 0.5,
0.25 and 0.15 mm), which were shaken with a mechanical
shaker. Twelve data points were obtained from the hydrometer
analysis by recording the soil suspension density at times of 30,
40 and 60 s, and at 3, 10, 15, 30, 60, 90, 120, 240 and 1440
min. A total of 16 hydrometer particle size limits hence were
obtained for each soil sample.

Once the cumulative PSD curves (i.e., F(d) as a function of
the particle diameter, d) were obtained, the geometric mean d,
and geometric standard deviation g, of the soil particle diame-
ters were determined using methods proposed by Shirazi and
Boersma (1984). We also determined the mean weight diameter
(MWD) of soil aggregates after dry sieving.

Soil particle data larger than 53 pum as measured with the
sieve method were used to obtain direct estimates of the “meas-
ured” sand content. These measured values were then used to
test the accuracy of the PSD models to predict the sand content
from the complete grain size distribution using complete F (d >
53 pum). We further compared the SSC contents obtained with
the hydrometer data at sedimentation times of 40 s and 7 hr,
further referred to as the “nominal” SSC contents, with PSD

model-predicted F(d) values corresponding to diameters (d) of
2-0.05, 0.05-0.002, and < 0.002 mm for sand, silt, and clay,
respectively.

We also estimated “measured” particle-size diameters corre-
sponding to 10, 30, and 60% of the cumulative PSD curve (i.e.
D, D3y, and Dy, respectively) by linear interpolation from the
nearest lower and higher measured data points (a common
procedure to determine D, D3y, and Dy, values). These meas-
ured values were compared with Dy, Do, and Dg, values “pre-
dicted” with the complete F(d) models.

Several other soil physical parameters were obtained at the
study site. The field-saturated soil hydraulic conductivity (Kj)
was measured using constant head single-ring methods (Raz-
zaghi et al., 2016; Reynolds, 2008), while the soil bulk density
(p») was determined using core sampling (Blake and Hartge,
1986). To determine total porosity (@), the soil cores were
slowly saturated by soaking them from below to a water level
just below the top of the core. This procedure was carried out
over a period of 2 days to obtain as complete saturation as
possible by minimizing entrapped and dissolved air in the
cores. Soil water contents as determined subsequently by oven-
drying the saturated samples at 105°C for 24 hr were regarded
to be equivalent to porosity, @ (Khodaverdiloo et al., 2011).

Particle-size distribution models

In this study we compared the performance of 19 different
mathematical models for F(d) in describing observed cumula-
tive PSD data of the sampled Urmia soils. The models are listed
in Table 1. The references cited in the second column of Table
1 provide details of the corresponding model shown in the third
column.

Fitting procedure

An iterative nonlinear optimization procedure was used to fit
the parametric functions F(d) in Table 1 to the observed cumu-
lative PSD data. The optimization procedure produced values
of the unknown parameters that provided the best fit with the
data (Bagarello et al., 2009; Bah et al., 2009; Hwang et al.,
2002). Optimized values of the model parameters were deter-
mined by minimizing the following objective function:

N _py2
SSE—;(Oi P) M

where SSE represents the sum of squared errors between the
measured (O;) and predicted (P;) cumulative PSD fractions, and
n the number of particle size data points.

The optimization procedure was implemented using the
least-square curve fitting toolbox in the MATLAB R2011a
environment (The MathWorks Inc., Natick, MA). The final
fitted parameter values in each case were tested by using at least
three different initial parameter estimates as done by Hwang et
al. (2002) and Bah et al. (2009), among others. The optimization
process in most or all cases converged to the same final values,
thus avoiding the problem of selecting local minima.

Criteria for model comparison

After optimization of the model parameters, values of the
cumulative PSD fractions as calculated with the F(d) models
were compared with their corresponding observed values to test
how well the calibrated models fitted the observed PSD data.
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Table 1. Particle-size distribution models, F(d), tested in this study.

Model Reference Equation” Parameters
d
AD Andersson (1990) F(d) = f, + barctan(c log d—) fos b,y e, d,
o
G (Gompertz) Nemes et al. (1999) F(d) = a + y exp{—exp[—B(d — u)]} a B,y
In ( n 0.001)
Fred-3p (Fredlund with 3 Fredlund et al. (2000) F(d) = - (1—1 - (3101 1 an m
parameters) {In[exp(1) + ("™ In (1 + o ) d,,=0.0001
m
In(1+% )
. n =
e Gy WIS predtund etal. 2000) | F(d) = — (1 &y mom s
{In[exp(1) + ("I In (1 + d_f) m= Y
m
ORL (Offset-Renormalized GX)=Q-eFX) +¢
Lognormal) Buchan et al. (1993) F(X) defined by SLN model o, €
ORN (Offset-
. : GX)=FX) +c
Ez?)renormahzed Lognor Buchan et al. (1993) F(X) defined by SLN model U, o, c
SH-C Shiozawa and Campbell | G(X) = eF;(X) + (1 — &)F,(X) o e
(1991) F(X) defined by SLN model > 0
MLG (Modified Logistic . _ 1
Growth function) Liu et al. (2004) F(d) = —[1 T+ @ exp(—bdo)] a, b, c
F(d) = c+ (1 -c){1—exp(—a D"}
Wei (Weibull) Assouline et al. (1998) D= (d = dpmin) c,a,b
(dmax - dmin)
FOO =~ f(X_“) X <
SLN (Simple Lognormal) Buchan (1989) ) e o2 =K o
X =1In(d)
FOO =@+ f(X_“) X >
== er
Norm (Normal) Buchan et al. (1993) 2 V2 H U, o
X = In(d)
- dy, n
Haverkamp and Par- B dg " e
ve lange (1986) F(d) = [1 + <(g)" (m=1-1/n)
BEST (Beerkan Estimation . Ay n1-m dy, N, M
of Soil Transfer) Lassabatere et al. (2006) | F(d) = [1 + (7) ] M= 1-2/N
Fr(B) (Fractal) Bird et al. (2000) F(d) = cd®-Pm ¢, Dm
Tyler and Wheatcraft d . sp
Fr (T-W) (Fractal) (1992) F(d) = (E)( m) Dm
L-P (Log-power) Kolev et al. (1996) F(d) = Aexp(B logd) A, B
Exp (Exponential) Gimenez et al. (2001) F(d) =cd™# ¢ pf
Log (Logarithmic) Zhuang et al. (2001) F(d)=alnd +b a, b
1 d 2 p>1
J Jaky (1944) F(d) = exp{; [ln (d_o)] } (dy=2 mm)

# d: particle diameter in mm; F(d): cumulative fraction with a diameter smaller than d; erf: error function

The accuracy of the models was evaluated using the Nash-
Sutcliffe Efficiency (NVSE), the root mean square error (RMSE),
the coefficient of determination (RQ), the index of agreement
(9), the relative error (Er), Akaike’s information criterion
(4IC), the standard deviation of error (STDEV), the maximum
error (MAX,), the mean absolute error percentage (MAEP), the
maximum absolute error percentage (MAX,,,), and the geomet-

ric mean of error ratio (GMER). Mathematical representations
of these criteria are given in Table 2.
We used the various statistical measures in Table 2 to evalu-
ate different aspects of the optimizations. This was done since
some of the criteria emphasize the optimizations more from a
perspective of variances, while other statistics capture the bias
better. For example, RMSE is an index of the absolute error.
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Table 2. Efficiency criteria used to evaluate the accuracy of the
PSD models.

Criteria | Model Equation”
" (0,—0)(P—P
o |m= LO-OC-P
J [E.(0: - 6>]ZJ [, (P =P’
RMSE | RMSE =
SSE 2(P+1D)(P+2
AIC | aic = NinEE) 4 op 4 1y 2EFDE D)
n n—pP-2
" (P — 0;)?
Er Er= |/ 1n 121
1:1(01‘)
n_(P;_0;)>
NSE NSE =1 — Zl—l( l_ 1)
(0; - 0)?
n_(0; — P;)?
6 6 — 1 _{ l—l( L l) }

n_(IP,— 0l +10; — 0)2

1 P,
GMER | GMER = exp(—z In(by)
n 0,:
STDEV | STDEV = STDEV(P; — 0;)
MAX, | MAX, = MAX|P; — 0]
n
P,—0;
MAEP | MAEP = (Z ‘Tb/" % 100
i=1 t
P, —0;
MAX oy | MAX ey = Max{lzl( 5 |/n x 100)
i

*n refers to the number of calculated (P;) and measured (O;) values
of the cumulative PSD curve; over-lined symbols represent mean
values; SSE is the sum of squared errors; P is the number of model
parameters.

However, models with more fitting parameters will almost
always result in a better overall fit. The A/C is for this reason
often used to compare models with different numbers of fitting
parameters. In this study we used the corrected AI/C as suggest-
ed by Bolster and Hornberger (2007).

NSE values were selected to indicate whether or not the ob-
served mean is as good a predictor as the model. On the other
hand, R? is an indicator of the extent to which the model ex-
plains the total variance of the observed data. To overcome
some of the limitations of R>, Willmott (1981) proposed the
index of agreement, J, to better reflect the degree at which
observations are estimated accurately by the predictions. How-
ever, relatively high values (more than 0.65) of 6 may be ob-
tained even for poor model fits, and d hence is not overly sensi-
tive to systematic over- or under-predictions. We used GMER
to test the possible under- or over-estimations in the model
predictions, while MAX, is used to show the outliers. Since
errors within the lower range of the model output may be
masked by relatively high errors in the higher range of the
output, MAEP and MAX,, have been used to compare the
errors and outliers, respectively, of the models as percentages
of the observed values. For a perfect prediction RMSE, SD,
MAX,, MAEP, MAX,,, and Er equal zero and NSE, 4, R* and
GMER equal 1. Models with lower AIC values are considered
to be the more likely to be accurate.

Since most or all statistical criteria evaluate only some as-
pect of the correspondence between measured and calculated
values, we suggest that a complete assessment of model per-
formance should include a combination of criteria. We evaluat-
ed for this reason initially all of the criteria in Table 2 for the
F(d) models. The criteria subsequently were classified into
groups using a hierarchical cluster analysis (HCA) based on the
levels of similarity among their standardized values. Finally, a
subset of the criteria was selected among the distinct groups to
evaluate and compare the performance of the models. The
selected criteria were then used to classify the models into
groups using HCA. The cluster analysis was conducted using
the Minitab 16 software.

Once the different F(d) models and their optimized parame-
ters were determined, measured Kj;, log K;, MWD, and &
values were correlated with either the conventional PSD pa-
rameters (i.e., sand/silt/clay percentages), geometric representa-
tions of the PSDs (d, and o,), selected PSD mechanical parame-
ters (notably Dsy and D), and the optimized parameters of the
most accurate F(d) models. This is to find the best representa-
tion(s) of the soil PSDs to predict relevant soil physical quality
indices, and to interpret correlations of soil PSD data with field
properties. For the functional evaluation of the models against
the field data we used selected practically-important PSD pa-
rameters such as sand, silt and clay percentages, d, and g, and
D5, D5y and Dg as calculated with the F(d) models.

The accuracy of the models in terms of predicting K,
log K, MWD, and @ values was assessed using a weighted
version of R (i.e., wR?) following Krause et al. (2005):

. |p|.R*  for b<1
W, =
B[ R? for b>1 @

where the weighting factor, b, and R are, respectively, the
gradient and the coefficient of determination of the regression
of predicted versus observed values of a given parameter. The
advantage of Eq. (2), as opposed to R, is that only a single but
more effective criterion is used for the comparisons. Models
which systematically over- or under-predict observed data all
the time will still result in R* values close to 1.0, even if all
predictions are incorrect. This problem can be avoided by using
additional information about the regression. Such information is
provided by the gradient b and the intercept a of the regression
on which R is based. For good agreement the intercept a
should be close to zero (which means that an observed value at
or near zero would also result in a prediction at or near zero),
while the gradient 5 should be close to 1.0. By using wR?, sys-
tematic under- or over-predictions are quantified, together with
the regression as such, thus leading to a more comprehensive
reflection of model results (Krause et al., 2005).

RESULTS AND DISCUSSION

Statistical descriptions of selected physical and chemical
properties of the soils used in this study are presented in Table
3. The data show that the soils differed widely in their PSD. For
example, CV values of clay and silt contents were 48 and 55%,
respectively, while the soil textural classes ranged from sandy
loam to clay as shown in Fig. 1. On the other hand, pH values
were within a relatively narrow range among the soils studied.
The calcium carbonate equivalent (CCE) of all soils was above
7.3% and the pH was equal to 7.5 or more, which indicates that
the soils were calcareous and alkaline. The organic matter
(OM) content varied widely among the soils (CV = 53%). Most
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Table 3. Maximum (Max), Minimum (Min), Mean and Standard Deviation (STDEV) of selected physico-chemical properties of the soil

samples.

Soil property Maximum Minimum Mean STDEV Range CV
Clay (%) 52 8 27 13 45 48
Silt (%) 60 30 44 8 30 18
Sand (%) 59 8 29 16 51 55
pH 8.5 7.5 8.2 0.5 1 5.5
CCE (%) 33.5 17.3 23.3 7.2 16 31
OM (%) 5.98 0.89 2.94 1.55 5 53
ppr(gem™) 1.46 0.94 1.22 0.11 0.52 9.31
EC (dSm ") 85.4 0.8 14.4 229 85 159
ESP (cmol kg ") 71.0 4.0 25.5 18.0 67 71
K (cm day ) 970.6 0.34 201.2 260.4 970 129.4

EC, Electrical conductivity; ESP, Exchangeable sodium percentage; CCE, Calcium carbonate equivalent; OM, Organic matter content; p,, Bulk density, K,

Saturated hydraulic conductivity.

of the soils were either saline/sodic (n = 14) or non-saline/non-
sodic (n = 8).

Comparison of the fitting ability of the PSD models

Box plots of the statistical criteria of the applied PSD mod-
els for the 24 soils are given in Fig. 2. Results indicate that the
values of RQ, 0, NSE, and GMER differed in a narrow range
among the models (CV < 6.2%). This shows that these criteria
are not very effective in representing differences in the accura-
cy of the models. By comparison, 4/C varied moderately (CV =
18.7%), whereas RMSE, MAX,, MAEP, STDEV, and MAX,
varied more widely (CV > 50%) among the models.

Mean values of R’ ranged from 0.820 to 0.994 (Fig. 2). The
Wie and Fred-4p models for F(d) showed the highest R* values,
ONL, Fred-3p and MLG models showed similar intermediate
performance, while the Fr(T-W), Fr(B), Exp, and L-E models
had the lowest R* values. The favorable fitting capability of
Wie and Fred-4p reflects their flexibility in terms of describing
a wide range of PSD shapes (Bayat et al., 2015). The Wei mod-
el also has a physical basis and no overlap in the effects of its
parameters on the shape and position of the PSD curve. The
Fred-4p model performed slightly better than the Fred-3p mod-
el. This indicates that Fred-3p is probably accurate enough for
most soils, with the advantage of having one parameter less
(Fredlund et al., 2000). These results are consistent with those
by Bayat et al. (2015) who found no difference between the
Fred-4p and Fred-3p models in terms of R* and RMSE when
applied to the UNSODA database with a broad range of soil
textural classes. However, they suggested using the Fred-3p
model according to the AIC criterion. The favorable perfor-
mance of Fred-4p in describing PSD data was reported also by
Hwang et al. (2002) for soils covering a wide range of textures.

Of the three models assuming lognormal curves containing
three parameters (i.e., ORL, ONL and SH-C), the R? values
were higher for ONL as compared to the ORL and SH-C mod-
els. These results agree with those by Hwang et al., (2002), but
differ from findings by Buchan et al. (1993) who, for a limited
number of soils, found higher average R* values for the SH-C
model than the two other models. However, we note that the
CV of the R* values in our study was only about 6.2% among
the studied models. This shows that the models are difficult to
rank conclusively in terms of their R? values. Similarly, the low
values of the coefficient of variation of J, NSE, and GMER
(<4.3%) makes it difficult to properly rank those models.

RMSE values of the models ranged from a low of 0.019 for
AD to a high of 0.106 for Fr(T-W). Fr (T-W) is a single power-
low exponent model which could not properly characterize the

ep

PSD across the whole range of measured data points. For this
reason Bitteli et al. (1999) proposed the use of three separate
power laws for the clay, silt and sand particle sizes.

The G, Norm, J, Exp, Log, L-E, Fr(B), and Fr(T-W) models
performed the poorest as reflected by their high mean AIC
values, whereas the other models performed well with very
similar low mean A/C values (4IC < —109), as can be seen in
Figure 2. In terms of their AI/C, the Fred-3p, MLG, Wei and
Fred-4p models ranked first to fourth. This result differs from
that of Shangguan et al. (2014), who found that AD and Wei
had the lowest mean AI/C values and hence were considered the
best PSD models among eleven models that they compared.
Considering the average A/C values of all of the soils they
studied, Botula et al. (2013) suggested that the number of fitting
parameters does not always explain the differences in the quali-
ty of the fittings. They found lower AIC values for Fred-4p
relative to the models having three, two and one parameters.
Bayat et al. (2015) similarly suggested that an increase in the
number of fitting parameters in the PSD models does not neces-
sarily lead to better performance. The Gompertz model with
four parameters showed the poorest performance in their study.
Even though the AIC has a penalty on the number of parame-
ters, the Wei, Fred-3p, MLG models with three parameters
were still among the best PSD models in our study.
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Fig. 1. Textural distribution of the 24 soil samples.
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Fig. 2. Box plots of the statistical criteria used to describe the accuracy of 19 models in fitting the cumulative particle-size distribution data
of 24 soil samples. The box plots show medians, interquartile ranges, and outliers. The full names and other information about the models
(horizontal axes) are given in Table 1. The statistical criteria (vertical axes) are listed in Table 2.
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Table 4. Rankings of the six most accurate PSD models in terms of various statistical criteria.

=

o

= R’ AIC RMSE Er d MAX,, NSE STDEV GMER MAX. MAEP
7

1 AD Wei AD Fred-4p Fred-4p Fred-4p VG Fred-4p ONL Fred-4p AD

2 Wei Fred-3p Fred-4p MLG Wei Wei Fred-4p AD ORL Fred-3p Wei

3 Fred-4p AD Wei Fred-3p Fred-3p MLG Wei Wei AD MLG Fred-4p

4 Fred-3p MLG Fred-3p AD MLG Fred-3p AD Fred-3p Wei AD ONL

5 MLG Fred-4p MLG ONL ONL AD Fred-3p MLG VG Wei Fred-3P

6 ONL ORL ONL ORL ORL ONL MLG ONL Log ORL MLG

Regarding the relative error (Er), Bagarello et al. (2009)
considered that Er values of less than 5% indicate a satisfactory
fitting performance of the PSD function. In our study Fred-4p,
MLG, Fred-3p, ONL, AD, ORL, vG, BEST, Wei, SH-C, and
SLN all had Er values less than 5%, which would suggest that
these models all performed well. Other models had Er values
larger than 5%. The Er values of Exp, L-E, Fr(B) and Fr(T-W)
in particular were very high (> 13%).

The mean value of MAX, among the models differed widely
from 0.042 to 0.207, indicating outlier error values of 4.2 to
20.7 percent in the cumulative fractions. The Fred-4p, Fred-3p,
MLG, and Wei models showed the lowest (and very similar)
outlier errors (MAX, = 0.042 to 0.046). On the other hand, the
Fr(T-W), Fr(B), L-E, and Exp models had the highest outliers
(MAX,> 0.136).

The highest MAEP values were obtained with the Exp, Log,
L-E, Fr(B), Fr(T-W), and Norm models (MAEP values between
12.5 and 21.5%). MAEP values of the G and J models were
moderate (about 10%) and those of the other models about 6%
or less. The lowest MAEP values were obtained for Fred-4p,
Fred-3p, Wei, MLG, and AD; MAEP values of these models
were very similar, varying between 3.91 and 4.41%.

The tendency of the models to predict cumulative fractions
with outlying errors is most effectively described using MA4X,,.
This efficiency criterion varied widely among the models from
6.7 to 47.6% (Fig. 2). The lowest values were obtained for the
Fred-4p, Fred-3p, and MLG models, which produced fairly
similar values between 6.7 and 8.2%. A relatively large group
of models (i.e. G, Wei, BEST, AD, and ONL) had moderate
MAX,,, values ranging from 12.9 to 16.5%. MAX,,, values of
the other models were higher than 23.6%.

The STDEV of the errors of the models ranged from 0.02 to
0.11 (Fig. 2). The models having the highest standard devia-
tions were VG, L-E, Fr(B), and Fr(T-W), whereas Fred-4p,
Fred-3p, MLG, and AD models had the lowest variations in the
error (i.e. the lowest STDEV values). These and several other
efficiency criteria are partly in agreement with published re-
sults. For example, in a study evaluating the accuracy of 11
PSD models for the conversion of Chinese data to the
FAO/USDA System, Shangguan et al. (2014) reported much
better performance of the AD, Fred-4p, MLG, and Wei models
compared to the other models. Botula et al. (2013), Zhao et al.,
(2011) and Hwang (2004) found the fractal models as well as
the Exp and L-E models to be less accurate in their study. Eval-
uating the performance of 14 PSD models for characterizing the
size distribution of sediments of dams in China, Zhao et al.
(2011) identified Fred-4p as the best performing model, while
of the 3-parameter formulations the Wei model performed the
best. The J model was found to perform the best among the
one-parameter models. Zhao et al. (2011) furthermore found the
fractal models, Exp, Log and L-E to be the least accurate.
Buchan et al. (1993) reported similar results. However, our
study indicated ORL, ONL and SLN to be superior to the J

model. Hwang et al. (2002) and Liu et al. (2003) identified
Fred-4p as the best PSD model for a wide range of soil types.

Table 4 shows the ranking of the six most accurate models
of our study in terms of the various efficiency criteria we used.
The data show that using different criteria will lead to different
rankings of the models. For example, if one uses NSE to rank
the models, VG would be the most accurate model followed by
Fred-4p, Wei, AD, Fred-3p, and MLG. On the other hand,
according to the MAX,,, criterion, the Fred-4p model was the
most accurate followed by Wei, MLG, Fred-3p, and AD, while
RMSE values ranked the models as Wei, Fred-4p, Fred-3p,
MLG, and ONL (Table 4). However, we note that the differ-
ences in the values of most of the criteria among the most accu-
rate models are generally not very substantial.

Mean absolute error percentages over all soils as obtained
with the six most accurate models are plotted against the parti-
cle diameter in Fig. 3. The plots indicate that the prediction
error of the models depends upon the diameter at which the
cumulative PSD fraction is calculated. Much higher error per-
centages occurred when predicting the cumulative fraction for
smaller particles. When evaluating the accuracy of a certain
PSD model, an important issue here is that one should consider
the range of soil particle sizes for which the model will be used.
A model may be accurate enough for predicting the particle
diameter at a certain point or within a certain range, or maybe
even on average over the entire PSD curve, but not within
another range of particular sizes. Applying the model to inap-
propriate ranges of particle sizes may lead to large errors.

20

mean absolute error percentage (%)

d (mm)

Fig. 3. Mean absolute error percentages of the six most accurate
models as a function of soil particle diameter.

Classifying the evaluation criteria and PSD models

Figure 4 shows results when classifying the evaluation crite-
ria in groups based on the level of similarity among their val-
ues. If, in this figure, the similarity of two criteria is high, their
correlation will also be high. In general, the efficiency criteria
were classified in two major groups, each having six subgroups.
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Fig. 4. Hierarchical cluster analysis of the criteria used to evaluate

the accuracy of the particle-size distribution models. Information
regarding the statistical criteria is given in Table 2.
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Fig. 5. Hierarchical cluster analysis of the 16 particle-size distribu-
tion models in groups based on the level of similarity among their
R% NSE, STDEV, AIC, and GMER values. The full names and
other information about the models are given in Table 1; infor-
mation regarding the statistical criteria is given in Table 2.

According to these results, six criteria (i.e., R%, NSE, STDEV,
AIC, GMER and MAX,,,) were selected. The selected criteria
were then used to classify the models into groups using a hier-
archical cluster analysis based on the level of similarity in their
performance (Fig. 5). According to Fig. 5, the PSD models
could be classified into eight distinct group/subgroups. The
similarity among the Fred-4p, Fred-3p, AD, MLG, ONL, vG,
and Wei models was more than 80%. This reflects the similar
performance of these seven models in terms of characterizing
the PSD of our soils.

Evaluating the soil texture-dependency of the PSD models

In order to evaluate model performance per textural class,
soil samples were divided into two groups based on their tex-
tural class (i.e., fine-textured and coarse-textured soils). The
fine-textured (FT) soils group (n = 9) included 3 silty clay
loams, 2 clay loams, one silty clay and one clay, whereas the
coarse-textured (CT) soils group (n = 14) included 3 silty
loams, 8 loams and 3 sandy loams. The minimum, maximum
and mean contents of sand were, respectively, 8, 29, and 16%
for the fine-textured and 30, 59, and 38% for the coarse-
textured soils. The values for clay content of the FT and CT soil
groups were 28, 52, and 41% and 8, 27, and 18%, respectively.

Several comparative studies have shown that performance of
the PSD models may depend upon soil texture (e.g. Bagarello et

al., 2009; Buchan, 1989; Fredlund et al., 2000; Hwang, 2004;
Hwang et al., 2002; Zhao et al., 2011). These studies revealed
that many or most PSD models performed better for fine-
textured soils, which would imply that their performance
should improve with an increase in the clay content in the soils
(e.g. Fredlund et al., 2000; Hwang, 2004; Hwang et al., 2002;
Zhao et al., 2011). We compared the efficacy of the best models
(Fred-4p, Fred-3p, AD, MLG, ONL, and Wei) in the two soil
textural groups using the t-test (P<0.05) in terms of their mean
RMSE, MAEP and STDEYV values over all of the soils involved
(Fig. 6). No matter which criterion was used for the compari-
son, all of the models performed significantly (P < 0.05) better
in the fine textured (FT) soils group as compared to the coarse
textured (CT) soils (Fig. 6).

The above results partially confirm literature findings. For
example, Buchan (1989) pointed out that a log-normal (L-N)
model could properly explain all regions of silty clay, silty clay
loam, and silt loam soils, whereas sandy clay loams, sandy
clays, and much of the clay soils should not be modeled with
the L-N model. Liu et al., (2003) similarly found that the Fred-
3p and MLG model produced comparable results for silty clay
loam and silt loam soils, but yielded worse results for sandy
loam soils. In another study, Botula et al., (2013) found that the
AD model performed better for relatively fine-textured soils.
The generally better performance of the PSD models for fine-
textured soils may be attributed to the fact that the values of the
cumulative fractions for finer particles are lower than those of
coarser particles, which may lead to higher prediction errors for
coarser particles. This then would produce higher values of the
prediction errors for soils containing coarser particles.

We note that the rankings of the models in terms of their
RMSE values were not the same for the fine-textured (FT) and
coarse-textured (CT) groups. The ranking was Wei> Fred-4p >
AD > MLG> Fred-3p > ONL for the CT group, and AD > ONL
> Fred-4p > Fred-3p > MLG > Wei for the FT group. However,
the ranking for all the soils combined (regardless of their tex-
ture) was AD > Fred-4p > Wei >Fred-3p > MLG > ONL.

Functional evaluation of the PSD models

The data in Table 5 indicate the different performance of the
PSD models when estimating different soil PSD indicators or
parameters. For example, while the AD and SH-C models pre-
dicted the nominal sand fraction (as calculated using hydrome-
ter records at 40 s) more accurately, the ONL, Wei and VG
models showed better predictions of the silt and clay fractions.
The measured sand fraction (particles larger than 53 pum as
estimated using sieving) was predicted more accurately with the
Fred-3p and VG models. Generally, the models were more
accurate in predicting the sand and clay fractions than the silt
content (Table 5).

While several models were relatively accurate in estimating
dy, 04, Dsy, and Dg values of the soils, no model was able to
predict Dj, values with acceptable accuracy (Table 5). We note
that a common procedure to measure SSC fractions is to use
hydrometer readings at specific times of particle settlement in
soil suspensions. Resulting size fractions may not necessarily
be the same as their actual values (i.e. particles of specific size
groups). Also, a common procedure to measure Dj, Dsp, and
Dy is to linearly interpolate between measured cumulative PSD
data that are immediately higher and lower than the required
point on the PSD curve. Since the PSD curve is generally non-
linear rather than linear, linear interpolation is not always ap-
propriate and hence values derived from the fitted PSD models
may be preferred.
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Fig. 6. Comparison of the efficacy of the six most promising particle-size distribution models for the fine-textured (FT) and coarse-textured
(CT) soils. The full names and other information about the models are given in Table 1. Information regarding the statistical criteria is
given in Table 2. For each criterion the non-similar letters show statistically significant differences (P < 0.05).

Table 5. Weighted R* (equation 2, wR?) values of the studied particle-size distribution models to predict selected parameters of soil PSD.

Sand Silt Clay Sand measured d, o, Dgy Dsy D3y
AD 0.991 0.786 0.881 0.928 0.981 0.669 0.946 0.853 0.005
BEST 0.209 0.003 0.151 0.231 0.984 0.823 0.953 0.90 0.010
Exp 0.807 0.004 0.652 0.694 0.852 0.303 0.701 0.579 0.016
Fred-4p 0.883 0.767 0.952 0.938 0.982 0.900 0.962 0.880 0.008
Fred-3p 0.893 0.731 0.936 0.946 0.974 0.873 0.974 0.850 0.010
Fr(B) 0.807 0.004 0.652 0.695 0.852 0.302 0.016 0.013 0.016
Fr(T-W) 0.761 0.00 0.615 0.647 0.819 0.113 0.641 0.496 0.018
G 0.786 0.554 0.818 0.831 0.901 0.929 0.930 0.835 0.001
J 0.826 0.005 0.822 0.665 0.497 0 0.529 0.532 0.010
SLN 0.962 0.590 0.876 0.833 0.827 0.877 0.770 0.768 0.006
Log 0.694 0.000 0.790 0.603 0.806 0.432 0.727 0.850 0.004
L-E 0.807 0.004 0.652 0.694 0.852 0.303 0.696 0.560 0.017
MLG 0.903 0.825 0.961 0.938 0.988 0.891 0.966 0.860 0.009
Norm 0.692 0.406 0.591 0.731 0.746 0.727 0.778 0.811 0.006
ONL 0.937 0.892 0.933 0.901 0.948 0.808 0.908 0.867 0.007
ORL 0.928 0.779 0.882 0.917 0.995 0.567 0.918 0.824 0.008
SH-C 0.963 0.592 0.867 0.834 0.827 0.877 0.770 0.769 0.006
VG 0.889 0.741 0.962 0.940 0.927 0.855 0.911 0.857 0.009
Wei 0.913 0.883 0.967 0.933 0.999 0.950 0.961 0.873 0.008

Correlation of PSD parameters with soil physical properties

We next correlated various representations of the soil PSD
(e.g. SSC, d, and o, D5y and Dy, as well as the model parame-
ters of the most accurate PSD models) with selected soil physi-
cal properties. While neither SSC nor d,, o, Dsy and Dg
showed significant statistical correlations with either Kj; or
logKy;, the fitted parameters of several PSD models correlated
significantly with Kj; and/or logKj, as shown in Table 6. Most
of the correlations were stronger with logK; as compared to K.
Since Kj; is known to be one of the most variable soil properties,
finding effective inputs to derive PTFs for Kj remains a chal-
lenge (e.g. Mbonimpa et al., 2002). Our results suggest that the

use of fitting parameters of the PSD models provides an attrac-
tive alternative to account for the effects of soil texture on K.
Correlations between the mean weight diameter (MWD) of
soil aggregates with selected PSD model parameters were gen-
erally higher for either SSC, d, or Ds, and Dy, (Table 6). While,
@ and p,, correlated significantly with selected fitting parame-
ters of the PSD models, p, showed also significant correlation
with many or most geometric (d,), mechanical (Dsy and D),
and agronomic (clay and sand) representations of the PSDs
(Table 6), with the exception of the parameters m (Fred-3p) and
¢ (Wei) which showed essentially no correlations. The parame-
ters dy (Fred-4p), 6 (ONL), b, (AD), ¢, (AD) correlated only
with o, while m (Fred-4p) had a significant positive correlation
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Table 6. Correlations between various PSD model parameters and selected soil physical properties.

Ky logKj MWD D pb dg Oy Dso Dego Clay Silt Sand
a (Fred-4p) | -036 | -0.26 —0.677 | -027 0.52" 0.87" 0.61" 0.78™" 087" | —0.67" | —0.66"™" 0.87""
dy(Fred-4p) 0.18 0.23 —0.14 -0.03 | —0.06 0.21 0.50" 0.08 0.17 -0.02 —0.24 0.13
m (Fred-4p) 0.39 0.30 0.17 -0.19 -0.11 -0.17 -0.08 -0.08 -0.13 -0.19 0.55" -0.07
n (Fred-4p) | -038 | —0.66" -0.27 —0.14 0.48" 0.54" 0.05 0.64" 0.64" -0.48" -0.36 0.58"
¢(ONL) 048" | —044" | -0.63" | -0.28 0.617 0.88™" 0.50" 0.78"" 0.85™" | —0.66™" | —0.68"" 0.87""
u (ONL) 032 | -038 —0.62" | —043" 0.68" 0.95" 0.46" 0.87"" 091" | —0.92™ | —0.45" 0.97™
5 (ONL) —0.01 | -0.28 —0.16 —0.07 | -0.19 —0.11 0.67" —0.37 —0.22 0.19 —0.09 -0.11
by (AD) 0.11 0.24 —0.22 -0.20 0.01 0.20 0.57" —0.04 0.05 -0.25 -0.03 0.22
co(AD) 025 | -0.29 0.22 032 | -0.15 023 —0.60" 0.08 0.01 0.21 -0.03 —0.16
dy(AD) 037 | 030 —0.62" | —0.27 0.57" 0.96" 0.41 0.94™" 096" | —0.73"" | -0.68" 0.917"
/o (AD) 023 | -0.25 -0.36 0.19 0.09 0.41 0.02 0.40 0.44" -0.05 -0.58" 0.31
o (Fred-3p) | -0.40 | -0.38 —0.65" | -0.28 0.60" 0.95" 0.48" 0.91™" 096" | —0.73"™" | —0.68"" 0.93™
m (Fred-3p) 0.38 0.39 0.43 0.05 | —0.40 —0.36 —0.02 035 —0.41 0.24 0.31 —0.34
n (Fred-3p) | —0.42" | -0.65™ | —0.38 -0.17 0.49" 0.60" 0.04 0.72"™"" 0.70™" | -0.61" -0.27 0.65"
a (MLG) 059" | 053" 0.47" 040 | -0.72"" | -0.59" -0.25 -0.53" ~0.60"" 0.57" 0.31 —0.62""
b (MLG) 046" | 039 0.59™ 037 | -0.62" —0.68" —0.64" -0.58" -0.71"" 0.63" 0.46" -0.75"
¢ (MLG) 043" | —0.60" | -0.52" -0.20 0.55™ 0.75" 0.33 0.77"" 0.79™" | —0.71"™" | -0.39 0.80™"
a (Wei) —0.02 | -0.20 0.32 029 | 031 -0.50" 079" | —0.36 043 0.32 0.57" —0.54"
b (Wei) 033 | 053" | 043 -0.19 0.48" 0.60" -0.00 0.72""" 0.69™" | —0.75™ | -0.07 0.67"
¢ (Wei) 037 | 025 -0.19 027 | —0.08 -0.05 -0.15 —0.01 ~0.00 0.37 —0.34 —0.12
dy 027 | 035 —0.53 042" | 065" 1.00
0y —0.11 0.04 —0.40 —0.27 0.26 —0.40 1.00
Dso 033 | -037 -0.53" -0.29 0.63™ 0.97" 0.25 1.00
Deo 035 | 034 -0.61" | -0.28 0.63” 0.97" 0.40 0.95™ 1.00
Clay 0.18 0.33 0517 0.44" | -0.61" -0.82" -0.32 076" | —077™" 1.00
Silt 0.39 0.22 0.35 0.11 | -0.37 —0.54" —0.36 —0.63" —0.63" 0.11 1.00
Sand 034 | 038 059" | —041 0.68"" 0.97" 0.43" 0.93™" 0.94™" | —0.88"" | -0.58" 1.00

*

, ™, and "": indicate significant correlation at P < 0.05, P < 0.01, and P < 0.001, respectively. Soil bulk density (p;), soil total porosity (@), Field saturated

soil hydraulic conductivity (Ky), Mean Weight Diameter of soil aggregates (MWD).

only with silt content (Table 6). The values of a (Fred-4p), d,
(Fred-4p), n (Fred-4p), ¢ (ONL), 4 (ONL), d, (AD), a (Fred-
3p), n (Fred-3p), ¢ (MLG), and b (Wei) correlated positively
with soil particle size. These parameters increased with the size
of soil particles, while the parameters ¢ (MLG), b (MLG), and
a (Wei) decreased with increasing soil particle size. Further-
more, as shown in Table 6, values of a (Fred-4p), d; (Fred-4p),c
(ONL), 1 (ONL), 0 (ONL), b, (AD), a (Fred-3p) increased with
a widening of the PSD range (as reflected by the standard devi-
ation of the soil particle diameter, g,). However, ¢, (AD), b
(MLG), and a (Wei) decreased with increasing o, values.

CONCLUSIONS

In this preliminary study we investigated the feasibility of 19
models to describe measured soil particle-size distributions
(PSDs) of 24 different soils in terms of different efficiency
criteria. Results indicate that rankings of the model perfor-
mance differed depending upon the particular efficiency criteria
considered. For example, RMSE, MAX,, and STDEV values
varied widely among the PSD models, which implies that these
criteria all represented different aspects of the accuracy of the
models. Six models were found to provide the most accurate
results: a modified logistic growth function (MLG), Fredlund
type models with 3 and 4 parameters (Fred-3p and Fred-4p), an
Anderson type model (AD), an offset nonrenormalized lognor-
mal function (ONL), and a Weibull type function (Wei). Pre-
diction errors of these models depended on the particle diame-
ter at which the cumulative PSD fraction was estimated. Accu-

racies were found to decrease with increasing soil particle di-
ameter. This implies that one should consider the range of sizes
of the soil particles for which the model will be used. A model
may be acceptable for some range of the particle diameter, or
the entire PSD, but not necessarily for other particle sizes.
Based on the mean values of the RMSE, MAX,, and STDEV, all
of the selected models performed significantly better for fine-
textured soils as compared to coarse-textured soils.

The fitting parameters of selected PSD models showed sta-
tistically significant correlations with several soil quality indi-
ces such as K;, MWD, soil porosity, and soil bulk density.
These results may be used to advantage in future studies to
derive more accurate pedotransfer functions (PTFs) for estimat-
ing the unsaturated soil hydraulic properties and/or related soil
physical parameters from PSD data. Still, we acknowledge that
the number of soil samples (n = 24) used in this study is not
sufficient to draw strong conclusions. A similar analysis as
followed herein, but with a much larger soils database, may be
needed to obtain more definite conclusions.
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