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Abstract: In many Austrian catchments in recent decades an increase in the mean annual air temperature and precipita-
tion has been observed, but only a small change in the mean annual runoff. The main objective of this paper is (1) to ana-
lyze alterations in the performance of a conceptual hydrological model when applied in changing climate conditions and 
(2) to assess the factors and model parameters that control these changes. A conceptual rainfall-runoff model (the TUW 
model) was calibrated and validated in 213 Austrian basins from 1981–2010. The changes in the runoff model’s efficien-
cy have been compared with changes in the mean annual precipitation and air temperature and stratified for basins with 
dominant snowmelt and soil moisture processes. The results indicate that while the model’s efficiency in the calibration 
period has not changed over the decades, the values of the model’s parameters and hence the model’s performance (i.e., 
the volume error and the runoff model’s efficiency) in the validation period have changed. The changes in the model’s 
performance are greater in basins with a dominant soil moisture regime. For these basins, the average volume error 
which was not used in calibration has increased from 0% (in the calibration periods 1981–1990 or 2001–2010) to 9% 
(validation period 2001–2010) or –8% (validation period 1981–1990), respectively. In the snow-dominated basins, the 
model tends to slightly underestimate runoff volumes during its calibration (average volume error = –4%), but the 
changes in the validation periods are very small (i.e., the changes in the volume error are typically less than 1–2%). The 
model calibrated in a colder decade (e.g., 1981–1990) tends to overestimate the runoff in a warmer and wetter decade 
(e.g., 2001–2010), particularly in flatland basins. The opposite case (i.e., the use of parameters calibrated in a warmer 
decade for a colder, drier decade) indicates a tendency to underestimate runoff. A multidimensional analysis by regres-
sion trees showed that the change in the simulated runoff volume is clearly related to the change in precipitation, but the 
relationship is not linear in flatland basins. The main controlling factor of changes in simulated runoff volumes is the 
magnitude of the change in precipitation for both groups of basins. For basins with a dominant snowmelt runoff regime, 
the controlling factors are also the wetness of the basins and the mean annual precipitation. For basins with a soil mois-
ture regime, landcover (forest) plays an important role. 
 
Keywords: Climate change; Efficiency of runoff model; TUW model; Regression trees; Austria. 

 
INTRODUCTION 
 

Conceptual rainfall-runoff (r-r) models are useful tools for a 
wide range of tasks such as flood forecasting (Nester et al., 
2016), reservoir and water management (Farkas et al., 2016), 
climate studies (Merz et. al., 2011), etc. These models are sim-
plifications of the complex processes of runoff generation in a 
catchment. Components of these models often have to be de-
scribed by empirical functions based on observations. The 
models therefore usually contain a number of parameters that 
do not directly represent measurable entities and thus must be 
estimated through the model’s calibration in order to adjust the 
behavior of the model to mimic the behavior of an actual sys-
tem (Valent and Szolgay, 2012). In their practical use such 
models may be operated under conditions different from those 
used for the model’s calibration and validation, e.g., when we 
need to simulate the streamflow caused by extreme meteorolog-
ical conditions or under a changing climate. It is therefore of 
interest to evaluate a model’s performance in situations when 
the model has to simulate runoff under conditions dissimilar to 
those observed during the model’s calibration (Seibert, 2003) in 
order to provide trustworthy runoff simulations when running 
models under conditions that may be significantly different 
from those used for their calibration. There are still many un-

knowns concerning the actual extrapolation capacity of particu-
lar hydrological models, which in general may depend on the 
quality and availability of the inputs, the calibration period of 
the climate model, the degree of the identifiability (sensitivity) 
of the model parameters, and other factors (Coron et al., 2011). 
There is also a growing interest in rainfall-runoff modelling 
over larger spatial domains in a multi-basin manner in order to 
explore spatial patterns by methods of comparative hydrology 
(Pechlivanidis and Arheimer, 2015).  

A model’s performance, for which the term “model efficien-
cy” will also be used throughout this study, can be quantified 
by many characteristics, such as the runoff volume error, Nash-
Sutcliffe efficiency, peak flow errors, the error in the timing of 
the peaks, etc. (Beven, 2005). The study of model efficiency is 
important for various reasons; for example, it is important to know 
how reliable the streamflow and flood forecasts will be, and it is 
essential to know what the limits of the model efficiency are.  

In this paper, we will focus on two aspects of the robustness 
of the TUW r-r model: the changing climatic conditions (com-
pared to those of the model’s calibration) and diverse physio-
graphic/climatic zones (the multi-basin behavior of the model) 
on the territory of Austria. Both aspects are intended to shed 
light on the applicability of the model: the first aspect mainly 
focuses on climate studies, since the model’s performance 
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should remain good under climatically-different simulation 
periods at the application stage, when the models are used in a 
climate change context. The second should complement the 
knowledge gained from modelling a single catchment, and it 
also substitutes here for an investigation of the uncertainties of 
the at-site parameters by a spatial comparative analysis in a 
large number of catchments. The final aim is to detect links 
between the model’s performance and physiographical charac-
teristics in order to understand the inadequacies and strengths 
of the model’s performance for its future use in Austria (and in 
similar settings). 

It is well documented that the efficiency of many models for 
a given regional application domain depends on the quality of 
the data (e.g., Andréassian et al., 2001; Coron et al., 2014; 
Oudin et al., 2006; Perrin et al., 2008), the length of the calibra-
tion period (Brath et al., 2004; Coron et al., 2014; Perrin et al., 
2007), and the model’s structure (Bai et al., 2015; Das et al., 
2008; Fenicia et al., 2011; Merz et al., 2011; Perrin et al., 2001, 
2003; Valent and Szolgay, 2012; van Esse et al., 2013; Vaze et 
al., 2010). In this context, quite a few authors have investigated 
the relationships between the model’s efficiency and the climat-
ic and catchment characteristics (e.g., Brigode et al., 2013; 
Coron et al., 2012; Fowler et al., 2016; Magand et al., 2015; 
Merz et al., 2009, 2011; Nester et al., 2011; Osuch et al., 2015; 
Oudin et al., 2006; Seifert et al., 2012; Seiler et al., 2012; Slezi-
ak et al., 2016a, b; Vaze et al., 2010). Nester et al. (2011) cali-
brated and validated a semi-distributed hydrological model for 
a set of 57 catchments in Austria and Germany and analyzed 
how the model efficiency related to various catchment and 
climatic characteristics. They found a relation between model 
efficiency (as evaluated by the Nash-Sutcliffe efficiency NSE) 
and climate characteristics (such as the mean annual precipita-
tion and runoff) and catchment characteristics (the catchment’s 
size). According to their study, the catchment’s size was the 
most significant control on the model efficiency. This is con-
sistent with previous studies (e.g., Das et al., 2008; Merz et al., 
2009; van Esse et al., 2013), which showed that model efficien-
cy is mainly controlled by a catchment’s size. Along a similar 
line Bai et al. (2015) evaluated the efficiency (in terms of the 
NSE and the water balance error) of 12 hydrological models in 
relation to different catchment and climatic characteristics. 
According to their study, the model efficiency was mainly 
influenced by the aridity index, the variability of the runoff, and 
the catchment’s area. Oudin et al. (2006) used two lumped 
hydrological models (GEJ4 and TOPMODEL) for a sample of 
12 US catchments and evaluated their efficiency (in terms of 
the NSE and the water balance error). They found that the 
model efficiency was controlled by climatic indicators (mainly 
precipitation). Similar results have been reported by Vaze et al. 
(2010), who calibrated four r-r models (SIMHYD, Sacramento, 
MARG, IHACRES) for 61 catchments in Australia and evalu-
ated their efficiency. They found that the annual precipitation 
was the main control on the model efficiency.  

Investigations of the efficiency of models during periods 
with contrasting climates has been a frequent topic of recent 
scientific literature as demonstrated in a review of common 
problems linked with using r-r models by Coron et al. (2011). 
Vaze et al. (2010) found that the model efficiency decreases 
and the bias increases with differences in the annual precipita-
tion between the calibration and validation periods. This is in 
agreement with Coron et al. (2012), who assessed the efficiency 
of three lumped r-r models (GRJ4, MORDOR6, and SIMHYD) 
in relation to various climatic characteristics. The results from 
their study showed that the model efficiency was mainly affect-
ed by changes in the mean rainfall between the calibration and 

validation periods. Numerous studies have found that the loss 
of model efficiency can be related to a difference in precipita-
tion (e.g., Coron et al., 2012; Fowler et al., 2016; Oudin et al., 
2006; Vaze et al., 2010). There is also evidence that prolonged 
dry conditions can lead to a degradation in model efficiency 
over time (Saft et al., 2015; Saft et al., 2016). 

Several authors have observed a decreasing trend in model 
efficiency when the model parameters were transferred over 
time (Fowler et al., 2016; Merz et al., 2011; Osuch et al., 2015). 
For example, Merz et al. (2011) found errors in simulations 
after transferring parameters between climatically different 
periods. They also revealed significant correlations between 
model parameters [snow correction factor (SCF), degree-day 
factor (DDF), the BETA parameter of runoff generation and 
field capacity (FC)], and climatic characteristics (mean annual 
precipitation, mean annual air temperature). 

One of the possible approaches for evaluating which climat-
ic and catchment characteristics control a model’s performance 
is to use the technique of regression trees. In recent years, this 
technique has gained great popularity as has been demonstrated 
in various modeling studies, e.g., Iorgulescu and Beven (2004), 
Stauer et al. (2010), Seibert et al. (2016), Kuentz et al. (2016), 
Poncelet et al. (2017). Poncelet et al. (2017) investigated 
catchment controls on daily runoff simulations in France, Ger-
many, and Austria. They examined how catchment features 
(i.e., 29 climate and catchment characteristics) and model effi-
ciency criteria (i.e., the Nash-Sutcliffe efficiency, the Kling-
Gupta efficiency on inverse streamflow and the mean and devi-
ation biases) are linked. The results from this study showed that 
the catchment features that most affect a model’s performance 
were the flashiness of precipitation and streamflow, the season-
ality of evaporation, and catchment’s aridity. While several of 
the previous studies analyzed the relationship between the 
hydrological model efficiency and various climatic and catch-
ment characteristics, in this study we intend to focus on a better 
quantification of the factors that control change in the hydro-
logical model efficiency over time in the context of a case study 
by using the TUW r-r model over the whole territory of Austria.  

The aim of the paper is to evaluate the temporal changes of 
the efficiency and the factors controlling these changes. In 
particular, two aspects of the model efficiency are studied, i.e., 
the effect of the temporal change of at-site climatic conditions 
as expressed by a) the mean catchment precipitation b) and the 
air temperature (compared to those of the model’s calibration) 
in two large groups of catchments representing diverse physio-
graphic/climatic zones (the multi-catchment behavior of the 
model). The two disjunctive catchment groups are delineated 
by a study of the sensitive parameters of a model and represent 
catchments with predominantly snow and rain-fed runoff, re-
spectively. Specifically, we address two scientific questions:  
(1) What factors (i.e., climatic and catchment characteristics) 
control the temporal changes in the hydrological model effi-
ciency in both groups? (2) To what extent is it possible to quan-
tify and evaluate these factors? We have used a multi-
dimensional analysis by regression trees to evaluate the factors 
controlling changes in the hydrological model efficiency. This 
methodology has been tested for 213 catchments, which pro-
vide a representative (e.g., Viglione et al., 2013) sample of the 
different climatic and physiographic conditions in Austria. 

The paper is organized as follows: the hydrological model, 
the calibration strategy, and the regression tree technique are 
described in Section 2; the study area and catchment set are 
presented in Section 3; the results are presented and discussed 
in Section 4; and an overall discussion and conclusions are 
given in Section 5. 
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METHODS 
The TUW model 
Description of the TUW model 

 
A lumped conceptual r-r model at the basin scale (the TUW 

model, Viglione and Parajka, 2014) was used for the modeling. 
This model has also previously been used in various modeling 
studies across Austria (e.g., Parajka and Blöschl, 2008; Parajka 
et al., 2007; Sleziak et al., 2016a, b; Viglione et al., 2013) and 
Europe (Ceola et al., 2015). The TUW model has a structure 
similar to the Hydrologiska Byråns Vattenbalansavdelning 
(HBV) model (Bergström, 1995). The model works on a daily 
time step and requires the following catchment inputs: daily 
precipitation totals, mean daily air temperature, and daily po-
tential evapotranspiration.  

The model has 15 calibration parameters (Table 1), and its 
structure can be divided into three routines: a snow, soil mois-
ture, and runoff routine (Merz and Blöschl, 2004). The role of 
the snow routine is the accumulation and melting of snow by a 
degree-day concept, using degree-day factor (mm/°C day) 
(DDF) and melt air temperature parameter Tm (°C). The catch 
deficit of precipitation gauges during snowfall is corrected by a 
snow correction factor SCF (–). A threshold temperature inter-
val Tr – Ts (°C) is used to distinguish between rainfall, snow-
fall and mix of rain and snow (e.g., Parajka et al., 2005). 

The soil moisture routine represents the runoff generation in 
a basin. Its role is to simulate the processes taking place in the 
basin’s soil profile. This routine includes parameters such as the 
BETA (–) parameter of runoff generation, the maximum soil 
moisture storage (FC) (mm), and the limit for potential evapo-
transpiration Lprat (–).   

The runoff routine is used to transform the outflow from up-
per and lower reservoirs. This routine contains five parameters: 
parameters related to surface and subsurface runoff (k0, k1, and 
k2), the threshold storage state (Lsuz) (mm), the constant per-
colation rate (Cperc) (mm/day), the maximum base and low 
flows (Bmax) (day), and the Croute transformation parameter 
(day2/mm). More details about the model and its structure are 
given, e.g., in Parajka et al. (2007). 

 
Table 1. The TUW model parameters including lower and upper 
bounds. The parameter ranges were taken from the literature (e.g. 
Merz et al., 2011). 
 
Parameter Abbreviation, unit Range 
Snow correction factor SCF (–) 0.9–1.5
Degree-day factor DDF (mm/°C day) 0–5 
Rain threshold temperature Tr (°C) 1–3 
Snow threshold temperature Ts (°C) –3–1 
Melt temperature Tm (°C) –2–2 
Limit for potential evapotranspiration Lprat (day) 0–l 
Maximum soil moisture storage FC (mm) 0–600 
Nonlinearity parameter BETA (–) 0–20 
Very fast storage coefficient k0 (days) 0–2 
Fast storage coefficient k1 (days) 2–30 
Slow storage coefficient k2 (days) 30–250
Upper storage coefficient LSuz (mm) 1–100 
Percolation rate Cperc (mm/day) 0–8 
Maximum base parameter Bmax (days) 0–30 
Free scaling parameter Croute (day2/mm) 0–50 

 
Calibration strategy 

 
The TUW model was calibrated for three 10-year periods 

between 1981–2010. The model’s parameters are estimated by 
automatic calibration using the Deoptim differential evolution 

algorithm (Ardia et al., 2015). This algorithm has also success-
fully been used in previous modeling studies (e.g., Sleziak et 
al., 2016a, b). Deoptim belongs to the class of genetics algo-
rithms which use biology-inspired process such as crossover, 
mutation, and selection on a population. The principle of this 
algorithm is based on repeated evaluation of the objective func-
tion in order to move the population toward a global minimum. 
For more detailed information regarding the Deoptim algorithm 
see, e.g., Ardia et al. (2015). 

The parameter ranges used in this study were taken from the 
literature (see, e.g., Merz et al. 2011; Viglione et al., 2013). A 
warm-up period of one year is used in the calibrations. The 
objective function combines the Nash-Sutcliffe efficiency 
(NSE) (Nash and Sutcliffe, 1970) and the logarithmic Nash-
Sutcliffe efficiency (logNSE) (Merz et al., 2011). While the 
NSE puts a greater emphasis on high flows, the logNSE puts a 
great emphasis on low flows. Mathematically, these criteria can 
be expressed as follows:  
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where isimQ ,  and iobsQ ,  represent the simulated and observed 

mean daily flows on day i, and obsQ  is the average of the flows 

observed. The NSE and logNSE coefficients range between –∞ 
and 1 (NSE = 1 indicates a perfect simulation, i.e., an absolute 
agreement between the observed and simulated flows). The 
combination of NSE and logNSE in the objective function (OF) 
is defined as: 
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The given objective function (Eq. 3) is minimized by the dif-

ferential evolution algorithm Deoptim (see above). 
 

Performance assessment 
 
In this study, the Differential Split-Sample Test (DSST, 

Klemeš, 1986) has been adopted to evaluate the ability of the 
TUW model to simulate runoff under conditions different from 
those used for the model’s calibration. The DSST allows us to 
evaluate the model’s efficiency (performance) in contrasting 
climatic periods (i.e., in cooler and warmer periods or wetter 
and drier periods). Some applications of DSST can also be 
found in, e.g., Seibert (2003), Wilby (2005), Chiew et al. 
(2009), Vaze et al. (2010), Merz et al. (2011), Brigode et al. 
(2013), Bai et al. (2015), Sleziak et al. (2016a, b).  

The quality of the model simulations is quantified by the 
Nash-Sutcliffe efficiency (NSE, Eq. 1) and the volume error 
(VE) (e.g., Merz et al., 2011). The VE is not used in calibration, 
this metric is used only for the assessment of the model perfor-
mance. The value VE = 0 means that the simulated mean runoff 
equals the observed one (i.e., no bias). The values VE < 0 and 
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VE > 0 denote underestimations and overestimations of the 
flows. 

 
Multi-dimensional analysis 

 
In this study we applied a multi-dimensional approach using 

regression trees to identify factors that control changes in vol-
ume error between the calibration and validation periods. Here 
we chose VE values as representative for the comparison be-
cause they can be directly comparable between periods and 
catchments (e.g., Coron et al., 2012). A regression tree is an 
analytical and visualization method which, via tree-building 
algorithms, provides information about interactions between 
various characteristics (i.e., between the variables and the mod-
el’s features). Based on this technique we can determine the 
importance of the explanatory variables and also find some 
common patterns. The principle of this technique is based on 
the binary splitting of a dataset according to features (i.e., deci-
sion variables), which are automatically selected by the algo-
rithm. By implementing the rpart package (Therneau et al., 
2017), it is possible to apply one of these algorithms (CART, 
Breiman et al., 1984) in the R software environment (R Devel-
opment Core Team, 2011). In general, the CART algorithm 
creates two main clusters which are further divided into subsets. 
In order to simplify the structure of the trees we set the mini-
mum number of basins in each final cluster (leaf) to 25. These 
smaller trees are better suited for capturing general patterns and 
this way we avoid very complex trees that are difficult to inter-
pret. For more detailed information about regression trees, see, 
e.g., Kuentz et al. (2016) and Poncelet et al. (2017). 

We apply regression trees to identify factors that control 
changes in bias when a model’s parameters are transferred from 
the calibration to the validation period. As explanatory factors 
we use (1) climatic characteristics, such as the mean annual 
precipitation (P), the mean annual air temperature (T), the rela-
tive change in mean annual precipitation (Pdif), and the abso-
lute change in mean annual air temperature (Tdif) and, (2) 
catchment characteristics such as the area, elevation, slope, 
percentage of forest cover, and aridity (defined as the ratio of 
the mean annual potential evapotranspiration to the mean annu-
al precipitation). 

 
STUDY REGION AND DATA 

 
Austria was selected as the study region. This region was se-

lected as the test bed region due to (a) the variability of the 
climate (i.e., an increase in precipitation and air temperatures 
over recent decades has been observed, Merz et al. 2011), (b) 
diverse physiographic conditions (i.e., different catchment 
areas, elevations, geology, etc., Gaál, et al. 2012), (c) the avail-
ability of inputs (i.e., precipitation, air temperatures, potential 
evapotranspiration and streamflow), and the suitability of inputs 
(i.e., quality of the data) for modeling experiments (e.g., 
Viglione et al., 2013). 

We used a representative sample of 213 catchments in Aus-
tria, which represent a large variety of climatic and physio-
graphic conditions of Central Europe. The catchment areas 
range from 14 to 6200 km2; mean elevation range from 295 to 
2915 m a.s.l. Annual precipitation varies from 400 to 3000 
mm/year and mean annual air temperature from –8 to 10°C.  

We used daily hydrometeorological catchment data (i.e., the 
daily precipitation totals, mean daily air temperature, mean 
daily streamflow, and daily potential evapotranspiration) from 
the period 1981–2010. These data have also been extensively 
used in previous modeling studies, e.g., Viglione et al. (2013), 

Sleziak et al. (2016a, b). Before processing the data, quality 
flags, missing data, etc., were visually inspected. The precipita-
tion data came from 1091 rainfall gauges. These measurements 
were used to interpolate the catchments’ mean areal precipita-
tion using the external drift kriging method (see Merz et al., 
2011). The air temperature data came from 212 climatic sta-
tions. The catchments’ mean air temperatures were calculated 
using the least squares trend prediction method (Pebesma, 
2001). The mean daily runoff data from 213 gauged catchments 
were provided by the Austrian Hydrographic Service (HZB). 
These data were used to calibrate and validate the TUW model. 
The daily potential evapotranspiration was calculated by a 
modified Blaney-Criddle method (Parajka et al., 2005). More 
details about the data (e.g., the methods used to interpolate the 
data) can be found, e.g., in Merz et al. (2011) and Viglione et 
al. (2013). 

 
Classification of the basins based on a sensitivity analysis 

 
The selected Austrian basins (213) were classified into two 

groups using a sensitivity analysis of the TUW model’s param-
eters. This analysis was carried out using a combination of the 
Latin Hypercube (LH) and one-factor-at-a-time sampling (van 
Griensven et al., 2006), which allowed us to identify patterns of 
parameter dominance. The sensitivity analysis is used to detect 
the most relevant model parameters in relation to the objective 
functions selected (see calibration strategy, above). The LH 
subdivides the range of each parameter into N segments, each 
with a probability of occurrence equal to 1/N. Random values 
for each parameter are generated such that each of the segments 
are sampled one time. A detailed description of this method is 
presented in van Griensven et al., 2006.  

In our case, the sensitivity of the model parameters was test-
ed in three specific periods (i.e., 1981–1990, 1991–2000, and 
2001–2010). This is documented in Table 2, which gives in-
formation about the occurrence of the most sensitive model 
parameters in these periods. For example, we can see that the 
degree-day melt parameter (DDF) was 87 times the most sensi-
tive in 1981–1990, 65 times in 1991–2000, and 75 times in 
2001–2010 (the value of 0 in the table means that the given 
parameter did not appear to be the most sensitive in a particular 
period). With this analysis we identified four model parameters  
 
Table 2. Frequencies of the most sensitive model parameters in 
three specified calibration periods (1981–1990, 1991–2000, 2001–
2010). 
 

Parameter 1981–1990 1991–2000 2001–2010

SCF (–) 0 0 0 
DDF (mm/°C day) 87 65 75 
Tr (°C) 0 0 0 
Ts (°C) 0 0 0 
Tm (°C) 0 0 0 
Lprat (day) 0 0 0 
FC (mm) 91 127 130 
BETA (–) 9 2 0 
k0 (days) 0 0 0 
k1 (days) 0 0 0 
k2 (days) 0 0 0 
LSuz (mm) 0 0 0 
Cperc (mm/day) 20 19 8 
Bmax (days) 0 0 0 
Croute (day2/mm) 0 0 0 
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Fig. 1. Map of Austria with the selected catchments (213). The blue circles indicate catchments with a dominant snow regime (71 catch-
ments), and the red circles are catchments with a dominant soil moisture regime (142 catchments). Both groups of catchments were deline-
ated by a model parameter sensitive study. 

 
which have a close relationship with the objective function 
selected. These results are also presented in Fig. 1 where we 
can identify two distinct regions showing different sensitivities 
to the model parameters. In alpine (mountainous) regions, the 
most sensitive parameters are related to the accumulation and 
melting of snow (degree-day melt parameter (DDF)). On the 
contrary, the most sensitive in the flatlands are the parameters 
related to the soil (maximum soil field capacity (FC), the BETA 
parameter related to runoff generation, and the percolation rate 
(Cperc)). These groups were also compared in terms of the 
hydrological regime. Using this comparison, we classified the 
213 Austrian catchments into two main groups of snow (71 
catchments, where the DDF was the most sensitive parameter) 
and soil moisture regimes (142 catchments, where FC, BETA 
or Cperc was the most sensitive parameter). Table 3 summariz-
es the main characteristics of these two groups of basins. 

 
Table 3. Basic statistical values (i.e., minimum, median, maximum 
and mean) computed for the selected characteristics of two group 
of basins, i.e., basins with a) dominant snow and b) soil moisture 
regimes. 
 

Area (km2) Min Median Max Mean

Basins with a snow regime 14.2 150.8 6120 594.8 

Basins with a soil moisture regime 13.7 178.2 6214 319.0 

Mean elevation (m a.s.l.) Min Median Max Mean

Basins with a snow regime 984 1551 2915 1636 

Basins with a soil moisture regime 295 702 1924 795 

Forest cover (%) Min Median Max Mean

Basins with a snow regime 2.1 40.3 86.8 43.8 

Basins with a soil moisture regime 9 56 98 55.6 

Slope (%) Min Median Max Mean

Basins with a snow regime 19.9 38.9 54.2 38.8 

Basins with a soil moisture regime 2.6 16.1 47.8 19.3 

 
For a better understanding of the variability between the two 

different groups of catchments (i.e., catchments with snow and 
catchments with a soil moisture regime) and also for a better 
interpretation of the temporal changes in the model parameters, 
we plotted the changes in the climatic characteristics over three 

decades for both groups separately (Fig. 2). Figure 2 shows that 
catchments with a snow-dominant regime are characterized by 
higher precipitation and lower air temperatures. While the 
median values of the mean annual precipitation (P) increased 
from 1032 to 1095 mm/year in catchments with a dominant soil 
moisture regime, catchments with a dominant snow regime 
have fairly stable median values (between 1460 and 1455 
mm/year). Also, the medians of the mean annual air tempera-
tures (T) show an increasing trend over three decades. The 
median values of the mean annual air temperatures increased on 
average by 0.7°C and 0.4°C in catchments with snow and soil 
moisture regimes, respectively. Interestingly, the medians of the 
mean annual runoff (Q) practically did not change over three 
decades.  

Based on this analysis, it would be interesting to examine 
how these changes in climatic characteristics can be linked to 
changes in the model parameters. 

 

 
 

Fig. 2. Changes in the hydroclimatic characteristics (mean annual 
precipitation, air temperature and runoff) over three decades. The 
blue line indicates medians for catchments with a snow regime (71 
catchments), and the red line shows medians for the catchments 
with a soil moisture regime (142 catchments). The shaded area 
represents 75% and 25% percentiles between the catchments. 



Patrik Sleziak, Ján Szolgay, Kamila Hlavčová, Doris Duethmann, Juraj Parajka, Michal Danko 

386 

RESULTS AND DISCUSSION 
Assessment of the model’s efficiency in different climatic 
periods 

 
In this section we assess the model’s efficiency over differ-

ent climatic periods (i.e., colder/warmer or drier/wetter periods) 
for the two groups of catchments. In this study, the period 
1981–1990 is considered as colder/drier and the period 2001–
2010 as wetter/warmer (see section above). 

In the snow-dominated catchments, the mean NSE values 
during the calibration period were between 0.73 and 0.74 and 
varied only slightly over the decades (Fig. 3), which means that 
the model could be calibrated equally well in each period. The 
average volume errors of –0.02 to –0.07 indicate a tendency to 
underestimate the simulated runoff volume in the calibration as 
well as the validation periods.  

In the catchments with a dominant soil moisture regime, the 
median NSE values during the calibration period were between 
0.7 and 0.73 for the three calibration periods (Fig. 4), thereby 
showing a slightly lower model performance in comparison 
with the snow-dominated catchments. The decrease in the mod-
el performance from the calibration to the validation periods is 
greatest between the calibration from 2001–2010 and the vali-
dation from 1981–1990. The assessment of the VE efficiency 
indicates that the model’s calibration is essentially unbiased 
(the median VE equals 0). Interestingly, the model tends to 
overestimate flows in warmer validation periods, but underes-
timates flows in colder and drier decades.  

The comparison of the runoff model efficiencies in the two 
groups of catchments indicates larger NSE efficiencies in 
catchments with a dominant snow regime for both the calibra-
tion and validation periods.  

In this context, Schaefli and Gupta (2007) pointed out the 
correct interpretation of the NSE values. The benchmark model 
when using NSE is the mean observed flow. In strongly sea-
sonal regimes (like snow-dominated regimes with low flows 
during winter and high flows during the melting period), a 
model that can capture the general seasonal regime already 
achieves a good NSE and therefore often higher NSE values are 
obtained in snow dominated catchments.  

Similar to our study, the Viviroli et al. (2009) focused on 
calibration of large number of catchments (i.e., 140 catchments 
in Switzerland) between different calibration periods. They 
calibrated the distributed r-r model PREVAH (Precipitation-
Runoff-EVApotranspiration-HRU model) in hourly time step 
between 1984–2003. They proposed a robust calibration strate-
gy that combines traditional calibration approach (multiple 
measures of goodness-of-fit) and a fuzzy approach (used for 
modeling high flows). They observed a decreasing trend in 
model performance after transferring parameters between con-
trasted calibration periods. For example, for 49 representative 
basins (i.e., with a long record of observations) the median of 
NSE decreased from 0.75 (calibration period) to 0.72 (valida-
tion period). For high flows slightly poorer values of NSE were 
obtained (i.e., 0.69 in calibration and 0.67 in validation).  

Merz et al. (2011) found errors in simulations (overestima-
tion of Q95 by about 12%, overestimation of Q50 by about 15%, 
and overestimation of Q05 by about 35%) when the model pa-
rameters were transferred over time. 

Our findings also indicate that in snow-dominated catch-
ments the model tends to systematically underestimate the 
volume of the flows. On the contrary, in catchments with a soil 
moisture regime, the model simulates flow volume closer to the 
observation in the calibration periods, but overestimates flows 
when the model parameters are transferred from colder/drier to 

wetter/warmer decades (i.e., from 1981 – 1990 to 2001-2010) . 
These results contrast with previous findings, e.g., Vaze et al. 
(2010) or Coron et al. (2012), who observed a tendency to 
overestimate mean runoff when the calibration period was 
wetter (i.e., a wet to dry parameter transfer). This can be related 
to the different regions (i.e., Austria vs Australia) and physio-
graphic conditions studied.  

Generally, for hydrological simulations under varying condi-
tions, physically based distributed models are usually preferred 
over conceptual r-r models (like TUW), because of their pro-
cess foundation they are valid for conditions outside the cali-
bration period and also allow a better description of spatial 
heterogeneity (e.g., Finger et al., 2012). However, they require 
more input data, which is often not available, and have more 
parameters. Furthermore, the higher complexity of these mod-
els demands a longer computation time (Sun, et al., 2017). 
While conceptual models like HBV have minimal data re-
quirements, require minimal computing time, they may not be 
well suited under changing conditions. 

 

 
 
Fig. 3. Comparison of the variability of the Nash-Sutcliffe efficien-
cy (NSE) and the volume error (VE) in the specified calibration 
and validation periods for catchments with a dominant snow re-
gime. The horizontal line of box plots shows the median of the 
values, and the upper and lower whiskers show the 95 and 5 per-
centile values. The horizontal line inside the bottom graph shows a 
zero volume error. The orange box plots represent the calibration 
periods. The blue box plots represent the validation periods. The 
line inside the boxes shows the median of the NSE and VE. The 
black circles are the mean values of the NSE and VE. C are cali-
bration periods and V are validation periods. 
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Fig. 4. Comparison of the variability of the Nash-Sutcliffe efficien-
cy (NSE) and the volume error (VE) in the specified calibration 
and validation periods for catchments with a dominant soil mois-
ture regime. The horizontal line of the box plots shows the median 
of the values, and the upper and lower whiskers show the 95 and 5 
percentile values. The horizontal line inside the bottom graph 
shows a zero volume error. The orange box plots represent the 
calibration periods. The blue box plots represent the validation 
periods. The line inside the boxes shows the median of the NSE 
and VE. The black circles are the mean values of the NSE and VE. 
C are calibration periods, V are validation periods. 

 
The relationship between changes in the climatic 
characteristics and changes in the volume errors 

 
Figure 5 shows changes in the simulated runoff volume er-

rors between the calibration and the two validation periods as a 
function of changes in the mean annual precipitation and air 
temperature between those time periods. Thus, each catchment 
results in two data points. The data points were interpolated to 
obtain a smooth response surface. While the left panels in Fig-
ure 5 show the changes from a colder/drier calibration decade 
(i.e., 1981–1990) to warmer/wetter validation periods, the right 
panels show the changes from a warmer/wetter calibration 
period (i.e., 2001–2010) to colder/drier validation periods. The 
top and bottom panels show the changes in the snow and soil 
moisture-dominated catchments, respectively. The results indi-
cate that transferring parameters to a colder/drier or warm-
er/wetter decade leads to runoff underestimation or overestima-
tion, respectively. This trend is more pronounced in the catch-
ments dominated by soil moisture processes. It can be seen that 
changes in simulated runoff volume are mainly related to 
changes in precipitation, but that this relationship tends not to 
be linear. An increase in mean annual precipitation of 10–20% 
leads to an increase in volume error of 5–15%. In contrast,  
 

 
 

Fig. 5. Changes in the simulated runoff volume error when 
transferring model parameters calibrated in 1981–1990 (left panels) 
or 2001–2010 (right panels) to the remaining two decades. The 
changes in air temperature and precipitation indicate differences 
with respect to the calibration period. The change is estimated for 
basins with dominant snowmelt (bottom panels) and soil moisture 
(top panels) regimes. 

 
when the change in precipitation is in a range of 0 to –20% and 
the air temperature decreases, the change in runoff volume 
errors is in a range of –5% to –10%. These results are in general 
agreement with the findings presented, e.g., by Oudin et al. 
(2006), Vaze et al. (2010), and Coron et al. (2012), who showed 
the significant effect of changing precipitation on a runoff 
model’s efficiency. For example, Coron et al. (2012) compared 
the model efficiency of three commonly used lumped r-r mod-
els (GRJ4, MORDOR6, and SIMHYD) in relation to selected 
climatic characteristics (i.e., mean annual precipitation, air 
temperature). The results of their study indicated a 20% bias in 
total volumes when the mean rainfall differed by 10–20% be-
tween the calibration and validation periods. This study was 
performed in 216 catchments in southeast Australia. Along 
similar lines, Vaze et al. (2010) reported that simulations of 
runoff are acceptable when changes in precipitation are no 
more than 15% less or 20% greater than the precipitation during 
the calibration period. 

 
Changes in the model parameters in different climatic periods 

 
The changes in the selected model parameters (i.e., the de-

gree-day melt parameter (DDF), the BETA parameter of runoff 
generation, the maximum soil moisture storage (FC), and the 
percolation rate (Cperc)) over three different decades are shown 
in Fig. 6. The selection of these parameters is based on the  
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Fig. 6. Changes in the model parameters (the degree-day factor 
(DDF), the BETA parameter of runoff generation, the maximum 
soil moisture storage (FC) and the percolation rate (CPERC)) in 
three different climatic periods (1981–1990, 1991–2000, 2001–
2010). The blue line indicates medians for the catchments with a 
snow regime (71 catchments), and the red line shows medians for 
catchments with a soil moisture regime (142 catchments). The 
shaded area represents 75% and 25% percentiles between the 
catchments. 
 
results of the sensitivity analysis (see Section data, above). The 
changes in the parameters are described by selected percentiles 
(i.e., 25%, 50%, and 75%). The degree-day melt parameter 
(DDF) is one of the most sensitive parameters in catchments 
with a dominant snow regime. The results indicate that DDF 
tends to decrease in warmer/wetter decades. Such changes are 
likely to be associated with changes in snow melting in the 
spring, which tend to be greater in colder years (1981–1990) 
(see Merz et al., 2011). The DDF values in catchments with a 
soil moisture regime have a much larger scatter, but the median 
values are more stable over the decades. The BETA nonlinear 
runoff generation parameter and field capacity (FC) are the 
most sensitive parameters in catchments with a soil moisture 
regime. Both tended to increase over the decades analyzed (Fig. 
6). This increase is likely associated with increasing evapotran-
spiration, mainly in flatland catchments. As was pointed out by 
Merz et al. (2011), an increasing trend in the BETA parameter 
is also connected with a more non-linear runoff generation in 
the last decade analyzed. The median values of FC in basins 
with a snow regime show a decreasing trend over decades; 
however, the scatter is large. Interestingly, the values of FC are 
higher in snow-dominated basins, which are largely in the 
mountainous region where one would expect shallow soils 
(generally, the small FC values imply shallow hydrologically 
active soil depths and vice versa, Merz et al., 2011). This is 
possibly due to (a) cross-correlation between the parameters 
BETA and FC, i.e., when FC is high, then BETA is small, (b) 
heterogeneous conditions (i.e., alpine vegetation, forests, 
bareland covers a substantial portion of the catchments areas, 
e.g., Merz and Blöschl, 2004). The findings also show that the 
median maximal available FC increased from 95 mm to  
approximately 150 mm within 20 years (Fig. 6). This can be 
related to increasing trend in air temperature (FC may vary in 

response to the variability of climatic conditions) between 
periods (see Fig. 2). The change in FC does not necessarily 
mean that the storage capacity of the soils has changed but can 
also be a sign of a compensation effect for the rather low poten-
tial evaporation (Nijzink et al., 2016). In this context, Wang-
Erlandsson et al. (2016) pointed out that the root storage zone 
capacity (which determines the maximum soil moisture) is 
critical for correctly simulating surface runoff. Authors in their 
study present a method to estimate root zone storage capacity 
from satellite-based evaporation and observation-based precipi-
tation data. The results showed that the method eliminated the 
need for poor resolution soil and rooting depth data and there-
fore can be useful for the modelling community.  

The percolation rate (Cperc) is only sensitive in a few 
catchments, and the median values did not change much in both 
groups of catchments. Merz et al. (2011) found that changes in 
model parameters are related to changes in climate variables, 
such as increases in air temperature and potential evapotranspi-
ration. Here, we show that the changes in model parameters are 
further related to whether the catchment belongs to a snow or 
soil processes-dominated group (i.e., different climatic condi-
tions – catchments in mountainous part of regions vs. catch-
ments in flatlands, see section Study region and data).  In com-
parison to our study, Merz et al. (2011) analyzed changes in 
model parameters calibrated by a semidistributed version of the 
TUW model in different 5-year periods. Our results for DDF, 
the most sensitive snow model parameter, and the BETA non-
linear runoff generation parameter show similar trends in 
changes over time, but the tendency is different for the field 
capacity (FC) model parameter. While Merz et al. (2011) pre-
sented a clear increase in FC during 5-year calibration periods, 
our results indicate an increasing trend only in flatland catch-
ments. The difference between the results is likely caused by 
the different spatial distribution of the model inputs and differ-
ences in the length of the calibration periods.  

 
Factors controlling changes in runoff volume 

 
In this section, we use regression trees to investigate which 

climatic and catchment characteristics controlled the differ-
ences in the simulated runoff volume error (VEdif) in two 
different decades.  

The regression trees are identified separately for the two 
groups of catchments, and the results are presented in Figs. 7 
and 8. Figure 7 shows a case of changing simulated flow vol-
ume (VEdif), when the model is calibrated in a colder/drier 
decade and applied (validated) in a warmer/wetter time decade. 
In both groups of catchments, the main controlling factor of the 
VEdif is the magnitude of the precipitation change (Pdif). In the 
snow-dominated catchments, an increase in the annual precipi-
tation greater than 2.3% results in an average increase in the 
simulated runoff volume of 5%. In contrast, a decrease in the 
mean annual precipitation, particularly in catchments with a 
mean annual precipitation lower than 1834 mm and a size less 
than 124 km2, results in an average 12% decrease in the simu-
lated flow volume. In catchments with a dominant soil moisture 
regime (Fig. 7, right panels), a change in mean annual precipi-
tation also affects the degree by which the simulated runoff 
volumes increase. In almost all the catchments the application 
of the model parameters from a colder/drier period to a warm-
er/wetter period leads to increased simulated runoff volumes. 
The largest increase was observed in catchments where the 
mean annual precipitation increased by at least 3.7% and the 
forest cover was greater than 45%. 
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Fig. 7. Factors describing changes in runoff volume when simulating runoff in warmer and wetter decades (1991–2000 and 2001–2010) by 
using model parameters calibrated in a colder and drier period (1981–1990). The left side shows basins with a snow regime; the right side 
shows basins with a soil moisture regime. G1–G4 represent the final clusters (leaves) of the resulting trees. 
 

 
 

Fig. 8. Factors describing changes in runoff volume when simulating runoff in colder and drier decades (1981–1990 and 1991–2000) by 
using model parameters calibrated in a warmer and wetter period (2001–2010). The left side shows basins with a snow regime; the right 
side shows basins with soil moisture regime. G1–G4 represent the final clusters (leaves) of the resulting trees. 
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Fig. 8 shows the factors influencing the simulated runoff 
volume when applying model parameters calibrated in a warm-
er/wetter (2001–2010) decade and applied to colder/drier dec-
ade. The changes in the simulated runoff volume in different 
climate conditions are again mostly determined by changes in 
the mean annual precipitation (Pdif). The Pdif is the only dif-
ferentiating factor in catchments with a dominant soil moisture 
regime (Fig. 8, right panels). Interestingly, in the snow-
dominated catchments the second most influential factor is the 
aridity of the catchment. For drier catchments (aridity < 0.32) 
or catchments with a small Pdif, the difference in the changes in 
the simulated volume is the smallest (a range of –2% to 1%).  

The results are in agreement with previous analyses (e.g., 
Coron et al., 2012; Oudin et al., 2006; Vaze et al., 2010), which 
showed that changes in model efficiency are mainly affected by 
changes in the mean annual precipitation. These results also 
correspond with the greatest correlations (not presented here) 
between the magnitude of changes in precipitation and changes 
in runoff volume. The size of the catchments and amount of 
aridity, which were determined to be important factors in previ-
ous studies (Nester et al., 2011; Poncelet et al., 2017), are only 
influential for smaller and snow-dominated catchments, respec-
tively. In flatland catchments, (landcover) forest also has some 
impact on changes in the bias of simulated runoff volumes.  

 
CONCLUSIONS 

 
Hydrological models are simplified mathematical represen-

tations of complex rainfall-runoff processes. These models can 
be considered useful tools for the diagnosis of the impacts of 
climate change on water resources. The use of these models 
under conditions that may be significantly different to those 
used for their development still remains a challenging task.  

In this study, we have evaluated the impact of changing cli-
mate conditions with differential split-sample testing. We found 
that changes in simulated runoff volume are clearly related to 
changes in precipitation, but the relationship is not always 
linear, particularly in flatland catchments. Our results indicate 
that a trustworthy simulation can be achieved if a change in 
mean precipitation is no more than ±10%. 

The analysis of temporal changes in model parameters over 
three different decades showed that the parameters controlling 
snow processes (i.e., snow correction factor SCF and degree-
day factor DDF), and soil moisture processes (i.e., parameter of 
runoff generation BETA and maximum soil moisture storage 
FC) have changed over time.  

The evaluation of factors which control changes in simulated 
runoff volumes showed that the most influential factor is a 
change in mean annual precipitation. Additionally, the aridity 
or wetness of the catchments had some influence on catchments 
with a dominant snowmelt runoff regime.  

From the results of our study we conclude that it is indeed 
important to re-calibrate conceptual r-r models (e.g., the HBV 
type and its derivatives) if the climatic conditions change. For 
practical applications of hydrological models, it would be suit-
able to consider various calibration periods and change the 
model parameters, depending on the hydroclimatic regime. The 
findings also revealed a need for regionalization of the method-
ology and a need to verify it in different climatic and physio-
graphic conditions. More analysis needs to be done in the fu-
ture, for example to apply similar testing approaches to differ-
ent regions, to use HVB vs. physically based models, etc. 
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