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Abstract: To calculate the critical depth and the least specific energy of steady non-uniform flows in open channels, one 
has to solve the polynomial equations. Sometimes, the polynomial equations are too difficult to get them solved. In this 
study, the theory of algebraic inequality has been used to derive formulas for determining the critical depth and the least 
specific energy of a steady non-uniform flow in open channel. The proposed method has been assessed using examples. 
Results using this new method have been compared to those using other conventional methods by engineers and scien-
tists. It is found that the proposed method based on algebraic inequality theory not only makes the calculation process to 
be easy, but also gives the best calculation results of the critical depth and the least specific energy of a steady non-
uniform flow.  
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INTRODUCTION 

 
In practice, the critical depth of steady non-uniform flow in 

open channel is an important variable for engineers to deter-
mine optimal cross section (Vatankhah, 2013). Some cross-
sectional shapes are often chosen by river engineers in engi-
neering design, such as trapezoidal shape and U-shape, since 
flow conditions in channels having such cross sections are 
relatively less complicated in addition to being easily construct-
ed (Liu and Xu, 2016). However, for the steady non-uniform 
flow in channels having such cross sections, it is not easy to 
determine the critical depth since either polynomial equations 
or transcendental equations have to be solved. Normally, either 
the curve-fitting method or trial-and-error method is used to 
solve the polynomial equations and transcendental equations. 
Engineers have to put a lot of efforts to solve polynomial equa-
tions or transcendental equations. Also, the calculation process-
es by means of both curve-fitting method and trial-and-error 
method are multifarious with relatively low accuracy.  

The least specific energy and the critical depth of the steady 
non-uniform flow in open channel have attracted much atten-
tion of researchers. Up to date, some methodologies have been 
proposed for calculating the least specific energy and the criti-
cal depth. By introducing following factors x = m hk/b and  
k = 4mb–1(αQ2g–1b–2)1/3, formula have been developed by means 
of the identical transformation of the basic formula for deter-
mining the critical depth in open channels with a trapezoidal 
cross section (Swamee, 1993; Swamee and Rathie, 2005; 
Swamee, et al., 1999; Wang, 1998; Zhao, et al., 2009). Li et al. 
(2010) converted the U-shape cross section into one rectangular 
part plus two triangular parts. Based on this approach, Li et al. 
(2010) developed the formula for calculating the critical depth 
for flow in a channel having an U-shape cross section. By re-
placing factors in the formulas usually used for calculating the 
critical depth, Zhang and Li (2012) derived an iterative formula 
for calculating the critical depth by means of the algebraic 
transmutation method. Up to date, researchers have improved 
the calculation accuracy for determining the critical depth by 
means of different methodologies. However, dimensionless 
variables have to be solved prior to determining the critical 
depth. Afterward, based on the calculated dimensionless varia-
bles, the critical depth can be determined. Overall, the existing 

methods for calculating the critical depth are either cumber-
some or inaccurate. In the present study, we introduce a new 
technique to calculate the critical depth easily and accurately. 
The theory of algebraic inequality is applied to develop formu-
las for determining the critical depth for steady non-uniform 
flow in open channels.  

 
CONVENTIONAL HYDRAULIC CALCULATION 
METHOD FOR STEADY NON-UNIFORM STEADY 
FLOW IN OPEN CHANNELS 

 
Chosen the elevation at the channel bed as the reference da-

tum, the hydraulic calculation for steady non-uniform flow in 
an open channel can proceed. At any individual cross section, 
the specific energy (defined as the energy per unit weight of 
fluid) can be determined using the following formula (Wu, 
2008),  
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2
 cos cos  
2 2

s
v QE h h
g g A

α αθ θ= + = +  (1) 

 
where,  ES is the specific energy of flow at the designated cross 
section (m);  h  is flow depth (m);  θ  is the slope angle of the 
channel bed (inclined to the horizontal plane);  α  is the kine-
matic energy coefficient;  v  is the average flow velocity (m/s); 
Q  is the flow discharge (m3/s);  and  A  is cross-sectional area 
of flow (m2). If the specific energy of flow at the designated 
cross section approaches the minimum, the flow depth corre-
sponding to the least specific energy is defined as the critical 
depth (hK). Conventionally, the least specific energy and critical 
depth of flow at the designated cross section are calculated by 
neglecting the slope of channel bed and the kinematic energy 
coefficient, namely,  cosθ  = 1  and  α = 1.0. Then, the first 
derivative of Eq. (1) with respect to h is as follows, 
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The width of water surface  (B)  can be expressed as  dA/dh 

= B; for the least specific energy of flow, let  dES/dh = 0, then, 
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Eq. (3) is very important, since it is the basis for many re-

searchers to study the critical depth of a steady non-uniform 
flow in an open channel having a trapezoidal cross section (as 
shown in Figure 1 in Table 1). From Eq. (3), the critical depth 
hK  can be derived. Afterward, the least specific energy of flow 
in channel  (Esmin)  can be calculated using Eq. (1). 

However, the conventional method for calculating the spe-
cific energy and critical depth of flow is not perfect. From the 
first derivative method, the extremum cannot be determined 
directly. Mathematically, by determining the zero value of the 
first derivative of a function, one can only get the stationary 
point of a function. However, the stationary point of a function 
does not mean that the extremum value exists at this point. To 
determine the point with extreme value, one has to find the 
point with zero value of the first derivative of a function in 
addition to finding the points where the first derivative is ab-
sent. In the mean time, the changes of the first derivative be-
sides the stationary points of a function should be assessed, or 
to determine the extremum by means of the second derivative 
of a function. The calculation of extreme value of a function 
needs the assessment of point, which is extremum of each sta-
tionary maximum. It is a cumbersome process. 

In addition, the conventional methods for calculating the 
specific energy and critical depth of flow do not consider all 
factors that affect the specific energy and flow depth. For cross 
sections having complex shapes, it is really difficult to deter-
mine the specific energy and critical depth accurately using the 
conventional method. 

 
CALCULATION OF THE CRITICAL DEPTH AND THE 
LEAST SPECIFIC ENERGY BY MEANS OF THE 
ALGEBRAIC INEQUALITY THEORY 
Theory of arithmetic-geometric average inequality 

 
Arithmetic-geometric average inequality (AM–GM inequali-

ty) is defined as following, for a list of  n  non-negative real 
numbers  x1, x2, . . . , xn, the arithmetic mean (An) of these non-
negative real numbers is greater or equal to the geometric mean 
(Gn) of the same list, namely, An ≥ Gn (Garling, 2012). 

The arithmetic mean (An) can be determined as following 
 

……1 2

1

1 +n
n

n i
i

x x xA x
n n=

+ += =  (4) 

 
and the geometric mean (Gn) can be determined as following 
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The equal sign in the AM–GM inequality An ≥ Gn is valid if 
and only if x1 = x2 =, . . . , = xn. 

There are many methodologies for proving the AM–GM in-
equality (Garling, 2012). The AM–GM inequality is a classical 
inequality and has been widely used in mathematics. Up to 
date, much research has been conducted to apply the AM–GM 
inequality in engineering designs (Sabnis and Agnihothram, 
2006). 

There is a similar inequality for the weighted arithmetic av-
erage mean and weighted geometric average mean (Furuichi, 
2011). Specifically, let the non-negative numbers x1, x2, . . . , xn 

and the non-negative weights pi >1 (i=, 1, 2, 3, …, n) be given. 

Set  
1

1 1
n

i
i

p
=

= . Then, the inequality 

 

( ) 1

1 1

1
i

nn
pi i

ii i
x x

p= =
≥ ∏  (6) 

 
Inequality (6) holds with equality if and only if x1 = x2 = . . . , 

= xn. In the next sections, Inequality (6) will be used to derive 
formulas for calculating the critical depth and specific energy 
of flow in channels with some specific cross-sectional shapes. 

 
Equations for critical depth and specific energy derived 
based on AM–GM inequality 

 
Mathematically, if one equation can be solved through the 

general arithmetic rules and has at least one solution, this equa-
tion can be defined as an equation having an analytical solution. 
In open channel hydraulics, equations for calculating critical 
depth have analytical solutions. The relationship between flow 
cross-sectional area (A) and flow depth (h) can be described as 
following,  

 

( )rA p h q= +   (7) 

 
where,  p,  q  and  r  are constants and have nothing to do with 
flow depth (h); both  q  and  h  have the same dimension of 
length (m);  r  is a dimensionless constant; the dimension of  p  
depends on the value of “r” (m2–r). Then, the analytical solution 
for the critical depth can be determined by means of the theory 
of weighted mean inequality. 

Combining Eq. (1) with Eq. (7), Eq. (8) can be derived as,  
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As shown in Eq. (8), to obtain the least specific energy, the 

right hand side of Eq. (8) should be transformed. Applying the 
method of the weighted mean inequality, variable  h  can be 
eliminated. Then, under condition of equality holding, the right 
hand side of Eq. (8) can be split into several parts. After identi-
cal transformation, Eq. (8) can be changed as follows, 
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From the weighted mean inequality (6), we obtain the fol-

lowing, 
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If both sides are multiplied by (2r+1), Eq. (9) can be ex-
pressed as follows, 
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Thus, the specific energy of flow at the designated cross sec-

tion can be calculated from the following equation, 
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Inequality (11) holds with equality if the flow has the least 

specific energy. Thus, considering the case when weighted 
mean inequality holds with equality, we obtain the following, 
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Then the equation for the critical depth of flow can be de-

termined as follows,  
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From Eq. (14), the calculation of the critical depth of flow at 

a designated cross section (hK) can be expressed as follows, 
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Eq. (15) has been derived provided that the relationship be-

tween flow cross-sectional area and flow depth can be described 
by Eq. (7). The calculated critical flow depth at the designated 
cross section as defined by Eq. (14) is an analytical solution.  

Generally, flow cross sections in natural rivers can be ap-
proximated by one of the following shapes: rectangular,  
(quasi-)trapezoidal, (quasi-)U, or a high-order parabolic shape. 
The relationship between the cross-sectional flow area and flow 
depth for all above-mentioned cross-sectional shapes can be 
described as Eq. (7). Namely, there exist analytical solutions for 
critical flow depth in channels having above-mentioned cross-
sectional shapes. In the following sections, equations for deter-
mining the critical depth and the least specific energy for natu-
ral channels having such typical cross-sectional shapes will be 
derived. 

 
Solving equations for determining critical depth and 
specific energy for steady non-uniform flow 

 
Mathematically, the following methodologies can be used to 

get numerical solutions of equations by means of numerical 
analysis, iterative method, numerical step-by-step method, and 
interpolation method. One can calculate the critical depth of 
flow by means of numerical analysis provided the relationship 
between flow cross-sectional area and flow depth can be de-
scribed as follows, 

 

( )
1

i
n

r
i

i
A p h q

=
= +∏  ,   (n ≥ 2) (16) 

where,  p,  q  and  r  are constants and have nothing to do with 
flow depth (h); both  qi  and  h  have the same dimension of 
length (m);  r  is a dimensionless constant; the dimension of  p  
depends on the value of “r” (m2–r). 

Then, combining Eq. (1) with Eq. (16), the following equa-
tion has been derived for determining the specific energy,  
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To get the least specific energy from Eq. (17), flow depth (h) 

is eliminated by means of the method of mean inequality. Then, 
by holding with equality, the critical depth can be determined. 
By splitting and identical transforming of the right side of Eq. 
(17), and through such an inequality minification as Inequality 
(6), we get following, 
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When both sides are multiplied by 
1
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+ , we get,  
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Eq. (17) can be modified as following, 
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where, ki  (i = 1, 2, …, n) in inequality (20) are un-determined 
dimensionless coefficients. Since inequality (20) is the identical 
transformation of the right hand side of Eq. (17), therefore,  
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According to conditions for holding with equality of the 
weighted mean inequality, the following equation was obtained,  

 

( ) ( )
( )

2

22

1

cos cos

2 i
i i j j n

r
i

i

Qk h q k h q
gp h q

αθ θ

=

+ = + =
+∏

 (22) 

 

In Eq. (22),  i ≠ j.  Combining Eq. (21) with Eq. (22), coeffi-
cients ki  (i = 1, 2, …, n) can be determined. By holding with 
equality, Es = Emin, and thus, h = hk. Letting the un-determined 
coefficients ki  (i = 1, 2, …, n) to be following, 
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Considering convergence speed of iterative solution, with 
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Combining Eq. (23) with Eq. (24), resulted in Eq. (25), 
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From Eq. (25), one can see that  hK  can be described as 

( )K Kh hϕ= . Thus,  hK  is the fixed point of this function equa-

tion. The fixed point iterative formula for the critical depth is 

( ), 1 ,K s K sh hϕ+ = , where  s  represents the iteration number (s = 

1, 2, …, ). Thus,  
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After successive iteration of Eq. (26), the { },K sh  series will 

be determined. Then, ,lim K s Ks
h h

→∞
= . Thus, the critical depth 

can be determined using the fixed-point iteration. Afterward, 
the least specific energy can be calculated using Eq. (1). To 
speed up the iterative convergence, the iterative method pro-
posed by Kincaid and Cheney (2003) can be used. Critical 
depth calculated using Eq. (26) is the numerical solution for 
open channel flows (in these open channel flows, the relation-
ship between cross-sectional area and flow depth can be de-
scribed by Eq. (16)).  

In practice, the cross sections of natural rivers have either 
trapezoidal or U shapes. The relationship between cross-
sectional area and flow depth for channels having both trape-
zoidal and U-shapes can be described by Eq. (16). For other 

complicated cross-sectional shapes, by means of some approx-
imation methods such as interpolation, the relationships be-
tween cross-sectional area and flow depth can be also described 
by Eq. (16). The theory of algebraic inequality can also be used 
to solve the critical flow depth.  

In the following section, we take the trapezoidal cross sec-
tion shape and derive the hydraulic calculation of the critical 
depth and the least specific energy of flows by means of alge-
braic inequality. For flow in channels having other common 
cross- sectional shapes, a similar calculation method will be 
used to determine the critical depth and the least specific ener-
gy, as shown in Table 1. 

 
Formulas for hydraulic calculation of flow in channel 
having a trapezoidal cross section 

 
In river engineering, the cross section of natural channels 

has been often assumed to have a trapezoidal shape. As shown 
in Figure 1, the width of channel bottom is  b;  the width of 
water surface is  B;  m1  and  m2  represents the left side slope of 
and right side slope of channel banks, respectively.  

The relationship between cross-sectional area and flow depth 
for the channel having a trapezoidal cross-sectional shape can 
be written as follows, 
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Comparing Eq. (27) to Eq. (16), p = (m1+m2)/2,  q1 = 0;  r1 = 

1, q2 = 2b/(m1+m2),  and  r2 = 1.  Combining Eq. (21) and Eq. 
(22) with Eq. (27), then,  
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From { } 1
1
max 1i M

i n
r r r

≤ ≤
= = = ,  qM = q1 = 0  and Eq. (26), the 

formula for determining the critical flow depth is derived as 
following, 
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When  m1 = m2 = 0,  the shape of trapezoidal cross section 

becomes a rectangular cross-sectional shape. When b = 0, the 
trapezoidal cross-sectional shape becomes to a triangular cross-
sectional shape. This means, critical flow depths for flows in 
channels having cross sections of both rectangular and triangu-
lar shapes can be calculated using Eq. (29). The derived formu-
las for specific conditions (such as either “m1 = m2 = 0” or “b = 
0”) for determining critical flow depths from Eq. (29) are iden-
tical to those for flows in channels having cross sections of both 
rectangular and triangular shapes, respectively (Wu, 2008). 
This proves the accuracy of Eq. (29). 

As summarized in Table 1, formulas for determining the 
critical depth and the least specific energy of flow in channels 
having other typical cross-sectional shapes have been also 
derived. 
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Table 1. Formulas for calculating critical depth of steady non-uniform flow (hK) in open channel developed by the method of algebraic 
inequality. 

 

Typical shapes of channel cross section Cross-sectional area (A) Values of  p, q, r Critical flow depth (hK) 

 
 

Fig. 1. Diagram of channel having a trapezoidal 
cross-sectional shape. 
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Fig. 2. Diagram of channel having a U- shape 
cross-sectional shape. 
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Fig. 3. Diagram of channel having a rectangle 
cross-sectional shape. 
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Analytical solution: 
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Fig. 4. Diagram of channel having a quasi trape-
zoid shape cross-sectional shape. 
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Fig. 5. Diagram of channel having a quasi-U-
shape cross-sectional shape. 
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Fig. 6. Diagram of channel having a high-order 
parabolic cross-sectional shape. 
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Calculation examples 
 
Example 1:  In an open channel having a trapezoidal cross 

section as shown in Figure 1, since the soil in the left bank of 
the channel is different from that in right bank of the channel, 
the side slope of the left bank is m1 = 1.5, and the side slope of 
the right bank is m2 = 1.0, respectively. The width of channel 
bottom is  b = 6 m. The designed flow discharge is  Q = 54 
m3/s. The slope of channel bed is i = 0.008. The kinematic 
energy coefficient α = 1.0.  Determine the critical flow depth 
(hK) and the least specific energy (Esmin). 

Solution:  the channel slope is 0.008, thus, cosθ = 
1/(1+i)0.5. For flow in an open channel having a trapezoidal 
cross section, the critical flow depth can be calculated using Eq. 
(29),  
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Letting  hK,0 = 0,  from Table 1, hK,1 = 2.022 m, hK,2 = 

1.744 m, hK,3 = 1.779 m, hK,4 = 1.775 m, and  hK,5 = 1.775 m. 
Thus, the critical flow depth hK = 1.775 m. 
Using Eq. (3), the hydraulic calculation can be checked:  
 

3 cos
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One can see that the relative error using our proposed meth-

od is just:  
297.55 297.44

100% 0.037%
297.55

− × =  

From the given data, the discharge per unit width is q = Q/b 
= 9 m3/s/m, the average side slope of channel is m = (m1+m2)/2 
= 1.25, the dimensionless factor is  

2
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4
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m qk
b g
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In Table 2, the calculated result using our proposed method 

is compared to five other methods. One can see from Table 2 
that the calculation accuracy using our proposed method 
(0.037%) is much higher than those of others. 

After determining the critical flow depth (hK), the least spe-
cific energy (Esmin) can be calculated using either Eq. (1) or Eq. 
(20),  
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Thus, using our formulas, the critical flow depth is 

hK = 1.775 m, and the least specific energy Esmin = 2.474 m, 
respectively. 

 
Example 2:  In an open channel having U-shape cross sec-

tion as shown in Figure 2, the flow has a designed discharge of 
Q = 45 m3/s, D = 5.0 m. The channel bed is horizontal. The 
kinematic energy coefficient α = 1.1. Determine the critical 
flow depth (hK) and the least specific energy (Esmin). 

Solution:  the channel slope is 0, thus,  cosθ = 1. For the 
flow in an open channel having U-shape cross section, as 
shown in Table 1, the critical flow depth (hK) and the least 
specific energy (Esmin) can be calculated as follows, 
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Table 2. Comparison of calculated critical depth of steady non-uniform flow (hK) in open channel using different formulas proposed by 
other researchers. 
 

Formulas proposed by x  value hK  (m) Relative error  (%) 
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The calculated critical flow depth of hK = 2.623 m, and the 
least specific energy of Esmin = 3.666 m are the exact solutions. 

One can see that, it is a practical method to apply the theory 
of algebraic inequality for determining the critical depth and the 
least specific energy of flow. The calculation process is 
straightforward and convenient. The calculation results using 
our proposed formula are more accurate than those using other 
methods. 

 
CONCLUSIONS 

 
In this paper, a new technique based on the theory algebraic 

inequality has been developed to determine the critical depth 
and the least specific energy of the steady non-uniform flow in 
open channel. By means of the theory of weighted arithmetic 
average mean and weighted geometric average mean, the itera-
tive formulas for calculating the critical flow depth and the least 
specific energy have been improved. Assessment of the rela-
tionships between flow cross-sectional area and flow depth for 
the typical cross-sectional shapes indicate that there exists 
analytical solution and numerical solution of equation for de-
termining critical depth. In our proposed new technique for 
determining the critical depth and the least specific energy of 
energy, the complicated and cumbersome derivative calculation 
process of the conventional method has been avoided. Instead 
of using the time-consuming trail-and-error method, one can 
calculate the critical flow depth and the least specific energy 
directly. The calculation process of this new technique is con-
scious and convenient. Two examples are given to test the 
calculation results of the critical depth and the least specific 
energy of flows in channels having the most common cross-
sectional shapes, namely, trapezoidal and U-shapes. The com-
parison of calculation results using this new technique to those 
using other conventional methods has been conducted. Results 
show that the proposed new method for determining the critical 
depth and the least specific energy of a steady non-uniform 
flow is a straightforward and easy calculation process, giving 
the best results. The method of algebraic inequality can be used 
in the hydraulic analysis and calculation, and provide better 
results in engineering practice. 
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