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Abstract: Calibration of parameters of mathematical models is still a tough task in several engineering problems. Many 
of the models adopted for the numerical simulations of real phenomena, in fact, are of empirical derivation. Therefore, 
they include parameters which have to be calibrated in order to correctly reproduce the physical evidence. Thus, the suc-
cess of a numerical model application depends on the quality of the performed calibration, which can be of great com-
plexity, especially if the number of parameters is higher than one. Calibration is traditionally performed by engineers and 
researchers through manual trial-and-error procedures. However, since models themselves are increasingly sophisticated, 
it seems more proper to look at more advanced calibration procedures. In this work, in particular, an optimization tech-
nique for a multi-parameter calibration is applied to a two-phase depth-averaged model, already adopted in previous 
works to simulate morphodynamic processes, such as, for example, the dike erosion by overtopping. 
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INTRODUCTION 

 
The calibration of parameters of the physically-based math-

ematical models governing different problems is still a difficult 
task in engineering.  

Many of the models adopted for the numerical simulations 
of real phenomena, in fact, are of empirical derivation. As a 
consequence, they often include coefficients that cannot be 
measured directly due to measurement limits and scales issues 
and, therefore, have to be calibrated in order to correctly repro-
duce the physical evidence. Thus, the success of the application 
of any numerical model is strongly dependent on how precisely 
the model is calibrated.  

However, for most models the calibration of the parameters 
can be of great complexity, especially for large number of 
model parameters. 

Engineers and researchers traditionally count on knowledge 
and experience with the model to adjust the parameters through 
manual trial-and-error procedures and comparison against 
available experimental data, often varying a single parameter 
and assuming the other ones as constant. Yet, this approach to 
calibration is subjective and cumbersome. Since the models 
themselves are increasingly sophisticated, it seems more proper 
to look at more advanced calibration procedures. Modern 
hardware and software systems nowadays allow for high speed 
and capacity calculation, but the choice of an optimal method to 
effectively identify the set of parameter sets is still of some 
concern. Automatic calibration methods, at the same time ob-
jective and easy to implement with high speed computers, have 
become popular in recent years (e.g. Finley et al., 1998;  
Kleidorfer et al., 2009). Global optimization algorithms, for 
example, can efficiently search the set of parameters able to 
minimize (or maximize) objective functions quantifying the 
agreement between observations and simulations. On the other 
hand, a considerable amount of research has recently concerned 
modeling of fast geomorphic processes, and more complex 
morphodynamic multi-layer (e.g. Capart and Young, 2002; Li 
et al., 2013; Savary and Zech, 2007; Swartenbroekx et al., 
2010) or multi-phase (e.g. Evangelista et al., 2013a; Garegnani 

et al., 2011; Greco et al., 2012; Rosatti and Begnudelli, 2013) 
models have been proposed, which account for the mass and 
momentum conservation for both water and sediments (Evan-
gelista et al., 2015c). The increased complexity of the morpho-
dynamic models is rewarded by the possibility to better repro-
duce fast geomorphic transients. Most of these models include 
more than one empirical coefficients to be calibrated.  

Nevertheless, the calibration is still entrusted in general to 
manual trial-and-error procedures. Only recently few attempts 
to make use of more sophisticated automatic approaches for the 
calibration of morphodynamic models can be found in the 
literature, but especially in the fields of Hydrology and Coastal 
Engineering (e.g. Lo et al., 2015; Smith et al., 2009, 2013), 
rather than in Fluvial Hydraulics. 

In this work a global optimization algorithm, and, specifical-
ly, the derivative free Nelder-Mead algorithm (Nelder and 
Mead, 1965) has been adopted to optimize the multi-parameter 
calibration of a two-phase depth-averaged model (Greco et al., 
2012), already applied in previous works to simulate morpho-
dynamic processes, such as, for example, the dike erosion by 
overtopping (Evangelista, 2015; Evangelista et al., 2015a). 

Results are encouraging and suggest that the optimization 
algorithm here proposed can be possibly successfully applied to 
different mathematical models in river hydraulics and in gen-
eral in the fields of hydraulics involving geomorphic processes 
(erosion/deposition of movable bottoms, sediment transport). 
 
DIKE EROSION BY WAVE OVERTOPPING 

 
The optimization procedure is applied here to the numerical 

simulation of some small-scale experiments of dike erosion by 
wave overtopping conducted in the Water Engineering Labora-
tory (LIA Lab) at University of Cassino and Southern Lazio, 
Cassino (FR), Italy. These experiments have been performed in 
a horizontal rectangular channel (Evangelista et al., 2015a; 
Evangelista et al., 2014b), where a dam break is simulated 
through the sudden opening of a gate closing an upstream  
reservoir (Fig. 1). A downstream trapezoidal sand dike is built 
upon a wooden ramp and, therefore, the dike overtopping occurs 
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Fig. 1. Sketch of the laboratory physical model (lateral view). 

 
if the hydrodynamic energy possessed by the wave is sufficient 
(Evangelista, 2015).  

Different tests have been performed starting from different 
initial water levels in the reservoir and using two different 
almost-uniform non-cohesive sands (Evangelista et al., 2014a) 
for the dike structure. Specifically, three initial configurations, 
illustrated for both sands in Table 1 and corresponding to the 
three initial water levels H0, have been considered. The dike 
height Hd is the same for all tests and equal to 0.179 m. 

In the first scenario (H0 = 0.20 m, Tests A1 and B1), the ini-
tial water level in the upstream reservoir is almost equal to the 
dike top elevation. The dam break wave originating from the 
gate opening, therefore, does not possess enough energy to 
overtop the dike and induces erosion only on the upstream 
slope of the dike. 

In the second case (H0 = 0.25 m, Tests A2 and B2), the ini-
tial upstream level is such that the water wave overtops the dike 
and erodes it along its entire profile. 

In the third situation (H0 = 0.395 m, Tests A3 and B3), the 
potential energy of the impact wave is almost double that in the 
previous case, thus causing a more evident erosion of the dike. 

 
Table 1. List of performed tests. 

 
 H0 (cm) 
Test 20 25 39.5 
Fine sand A1 A2 A3 
Coarse sand B1 B2 B3 

 
A computer-controlled camera is positioned laterally with 

respect to the channel with transparent walls, in order to record 
(with an acquisition frame rate of 14.5 Hz) the evolution of the 
water wave and of the dike erosion process (Fig. 2). The evolu-
tion of the dam-break wave and the closely-connected evolution 
of the dike profile are investigated through image-analysis 
measuring techniques. 

Preliminary tests demonstrated, in fact, that the process may 
be considered approximately 1D. The longitudinal section 
detected from the images on the sidewall can be, thus, assumed 
as representative of any other longitudinal section in the flow. 
A regular grid is also attached to the channel walls in order to 
permit proper rectification and scaling of the recorded images 
and, consequently, the correct measurement operation. 

For each frame, the water surface and dike profiles along the 
channel are, therefore, evaluated through pre-processing and 
edge-detection tool software, also useful for the fast and objec-
tive processing of a great number of images (Evangelista, 2013; 
Evangelista et al., 2013a). The adopted reference frame axes 
coincide with the channel bottom and the gate position in the 
longitudinal and vertical directions, respectively (Evangelista, 
2015). In this way, the evolution of the time- and space-
dependent processes can be properly evaluated. 

 
 
Fig. 2. Sketch of the laboratory physical model (top view). 

 
The obtained experimental data have been used already in a 

previous work (Evangelista, 2015) to test the predictive capa-
bility of a numerical code based on a morphodynamic depth-
integrated two-phase approach (Greco et al., 2012). 

 
NUMERICAL MODEL AND CALIBRATION 
PROCEDURE 

 
The model (Greco et al., 2012) adopted for the numerical 

simulation of the above described experiments (see also Evan-
gelista et al., 2013a, b) neglects cohesion, suspended load sed-
iment transport and seepage effects, but it is still capable of 
catching some features of the physical evidence, offering some 
indications for prediction and practical use. 

The model is based on a depth-integrated two-phase ap-
proach, under the assumptions of the hydrostatic distribution of 
pressures, bed load sediment transport and a uniform non-
cohesive sediment, and includes a geo-failure operator (Evan-
gelista et al., 2013b, 2015c). Conservation equations of mass 
and momentum are written for the water and solid phases sepa-
rately, with a closure relation for the bed deformation rate. 

The numerical integration of the model is performed using a 
mixed cell-centered and node-centered finite-volume discretiza-
tion over unstructured triangular meshes and the first-order 
Harten-Lax-Van Leer (HLL) solver for the flux calculation 
(Harten et al., 1983), evolved to a second-order one for the 
water surface elevation (Evangelista et al., 2013a), with a spe-
cific wet-dry treatment (Greco et al., 2008). This model in-
cludes also a geo-failure operator that permits reproducing the 
failure mechanisms induced by the water rising over the steep 
slopes of river beds and banks, which significantly affect geo-
morphic flows. The operator is based on a limiting slope stabil-
ity criterion: when in the cell the bed slope exceeds a critical 
angle, depending on the saturation degree of the sand, the bot-
tom collapse occurs and the corresponding bed material and 
pore water become available to flow, thus following the two-
phase flow dynamics. The algorithm also permits the failure to 
propagate from the single cell to the entire domain, preserving 
both the continuity of the bottom surface and the mass conser-
vation (Evangelista et al., 2013b, 2015c). 

The results of the laboratory experimental campaign have 
been utilized already (Evangelista, 2015) to validate the capa-
bility of the numerical model of predicting the physical evi-
dence and its reliability for analyzing also this kind of scenario. 

In the previous work simulations have been run with a time 
step Δt = 0.001 s and a grid size Δx = 0.01 m. Besides the sand 
physical parameters (density, mean diameter, porosity and 
friction angle), the parameters to be assigned in the model are 
the following: the Chezy coefficient Ch, the friction coefficient 
expressing the shear exerted on the liquid phase while flowing 
over the erodible bed; the drag coefficient Cd, involved in the 
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momentum exchange between the liquid and the ensemble of 
bed-load sediment particles but lumps in it the particle shape 
factors; and finally the Bagnold coefficient α which regulates 
the amount of momentum loss by the sediment phase due to 
inter-particle collisions. Actually the latter was demonstrated to 
do not affect much the results (Evangelista et al., 2015c); this 
assertion was also proved, as explained in detail in section 4, 
with the optimization procedure of calibration. 

The values for the Chezy Ch and drag Cd coefficients, in-
stead, have been chosen, respectively, equal to 15 and 0.2 (see 
Evangelista et al., 2013a, 2015c) after a sensitivity analysis and 
a manual trial-and-error calibration procedure. A better calibra-
tion of the parameters has been sought in this work with a pro-
cedure aimed at optimizing the parameter calibration (see also 
Evangelista et al., 2015b).  

In particular, in order to find the optimal values of the model 
coefficients (the Ch and Cd coefficients), the authors have 
solved the following minimization problem in Scilab (2012) 
through the Nelder-Mead algorithm (Nelder and Mead, 1965): 
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where i is the considered time step, ,

s
num iδ  and exp,

s
iδ  are the 

numerical and experimental dike profiles for the i-th time step, 
respectively, and ,

w
num iδ  and exp,

w
iδ  are the numerical and ex-

perimental water surface profiles for the i-th time step, respec-
tively.  

The goal of the Nelder-Mead algorithm is is to solve the 
unconstrained optimization problem stated by: 

 
( )min f x   (2) 

 
where ∈ ℝ , n is the number of optimization parameters and f 
is the objective function : ℝ → ℝ. 

The algorithm is based on the iterative update of a simplex 
made of n + 1 points { } 1, 1i i nS = += v . Each point in the simplex, 

called vertex, is associated with a function value = v , for 
i = 1, n + 1. All the vertexes are sorted by increasing function 
values so that the best vertex has index 1 and the worst vertex 
has index n + 1, i.e.: 

 
1 2 +1n nf f f f≤ ≤ ≤ ≤   (3) 

 
The v1 and the vn+1 vertexes are called the best and the worst 

vertex respectively, since they are associated with the lowest 
and the highest function value, respectively. 

Accordingly to the simplex vertexes, the centroid of the 
simplex ( )jv  is the center of the vertexes where the vertex vj 
has been excluded. This centroid is:  

 

( )
1, +1,

1
i

i n i j
j
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= v v   (4) 

 
The algorithm attempts to replace some vertex vj by a new 

vertex ( ), jρv  on the line from the vertex vj to the centroid

( )jv , by means of the so called reflection factor ρ , usually 
equal to 1: 

 
( ) ( ) ( )r , 1 jj jρ ρ ρ= = + ⋅ − ⋅v v v v . (5) 

 
More in detail, the Nelder-Mead algorithm uses four 

parameters: the coefficients of reflection ρ , expansion χ , 
contraction γ  and shrinkage σ . When the expansion or 
contraction steps are performed, the shape of the simplex is 
changed. 

Moreover, the four parameters should satisfy the following 
inequalities 

 
0, 1, , 0 1, 0 1ρ χ χ ρ γ σ> > > < < < <   (6) 

 
The standard values for these coefficients are: 
 

1 11, 2, ,
2 2

ρ χ γ σ= = = =  (7) 

 
At each iteration, when the worst vertex is replaced through 

reflection by a new one accordingly to: 
 

( ) ( ) ( )r 1, 1 1 1 nn nρ ρ ρ += + = + ⋅ + − ⋅v v v v , (8) 
 
a new value ( )r rf f= v  of the function is obtained.  

From this new value, several possibilities can be followed, in 
order to obtain a better vertex: 

If r 1f f< , the reflected point rv  reduces the function 
value. Therefore, the algorithm tries to expand the simplex in 
order to reduce the function value even more: 

 
( ) ( ) ( )e 1, 1 1 1 nn nρ χ ρ χ ρ χ += ⋅ + = + ⋅ ⋅ + − ⋅ ⋅v v v v  (9) 

 
and the new function value ( )e ef f= v  is computed. If the 

function value is improved (reduced), the worst vertex jv  is 

replaced in the simplex by ev . Otherwise, the reflection point 

rv  is accepted. 
If 1 r nf f f< < , the worst vertex 1n+v  is replaced in the 

simplex by rv . 
If r 1n nf f f +< < , the point: 
 

( ) ( ) ( )c 1, 1 1 1 nn nρ γ ρ γ ρ γ += ⋅ + = + ⋅ ⋅ + − ⋅ ⋅v v v v   (10) 
 
is considered and cv  is accepted if it is better than rv . 
Otherwise, a shrink is performed by moving all vertexes toward 
the best one 1v . 

In all the other cases the following point is considered: 
 

( ) ( ) ( )c 1, 1 1 1 nn nγ γ γ += − + = − ⋅ + + ⋅v v v v   (11) 
 
in this application the optimization algorithm was first applied 
calibrating the three parameters (Ch, Cd and α) and then cali-
brating only the two parameters Ch and Cd. The starting sim-
plex was: 
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for the three-parameters optimization, and 
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0.05 0.10 0.15

Ch
Cd

 
 
 

  

 
for the two-parameters optimization, respectively. 

Convergence was reached if the absolute variation for each 
parameter and for the function was lower than 10–8. 
 

 
 

Fig. 3. Flowchart describing the whole optimization procedure. 

It has to be pointed out that a preliminary sensitivity analysis 
was made in order to determine the optimal number of time 
instants and the corresponding time values to be used in the 
optimization procedure. The maximum number of considered 
time instants was equal to 10 distributed in the range 0 to 15 s. 
The analysis was performed taking into account also the com-
putational efficiency.  

The results show that the optimal number of time steps is 
three. An increase of the number of the considered time values 
led to a variation of the estimated parameters lower than 2%, 
with, on the other side, a significant increase of the computa-
tional time. The selected times have been 1.40 s, 3.00 s and 
15.00 s. A shift of their position in the time scale did not lead as 
well to significant variations of the optimization results.  

The flowchart of the optimization procedure is reported in 
Fig. 3. 

The computational time required for each performed test 
was about 8 hours on a single 2.35 GHz Intel ® Core 2 Quad 
CPU computer with 8.00 GB RAM. 

 
RESULTS 

 
The optimization procedure gave also the chance to test the 

opportunity of effectively neglecting the influence of the Bag-
nold coefficient α, as done in the previous work, which actually 
seems important in the model but whose variability was 
demonstrated to not affect much the results (Evangelista et al., 
2015c). The three-parameter optimization results, obtained 
taking into account also the α coefficient and shown in Table 2, 
confirm that this assumption is acceptable.  

 
Table 2. Results of the three-parameter calibration. 

 

 
 
The optimization algorithm was, therefore, applied to the 

calibration of only two parameters. Specifically, as mentioned 
before, three different times after the gate removal have been 
considered: 1.40 s, 3.00 s and 15.00 s, respectively. The optimi-
zation has been performed with the aim of obtaining at the 
same time the best fit between both the water and the sand 
profiles at all the selected times, according to Equation (1). 
However, the algorithm is flexible enough to permit to set 
priorities in the optimization process, for example to seek for a 
better fit of the water profile with respect to the dike one, or to 
prefer a better correspondence at long instants after the gate 
removal respect to the initial ones. Results for all tests (A1–A3 
and B1–B3) are summarized in Table 3. 
 
Table 3. Results of the two-parameter calibration for all tests. 
 

 

Input parameters 

(Ch,Cd) 

Scilab 

 
Numerical simulation 

Water and sand profiles  

( s
num,iδ , s

exp,iδ , w
num,iδ w

exp,iδ ) 

Is eq.(1) 
verified?

Optimal parameters 

(Ch,Cd) 

End 

Yes 

No 

TEST Ch Cd α
A1 23.33 0.120 4.64E-05
A2 23.47 0.101 1.07E-06
A3 37.98 0.083 6.96E-05

TEST Ch Cd
A1 24.82 0.110
A2 24.28 0.107
A3 32.53 0.074
B1 21.21 0.125
B2 24.80 0.115
B3 21.21 0.125



A multi-parameter calibration method for the numerical simulation of morphodynamic problems 

179 

a)  

b)  

c)  
 
Fig. 4. Test A1: comparison between numerical (with and without 
optimization) and experimental results in terms of water and dike 
profiles at times a) 1.40, b) 3.00 and c) 15.00 s, respectively, after 
the gate removal. 
 

Some comparisons of the experimental results against the 
numerical ones, respectively simulated in the previous work by 
Evangelista (2015) (in black) and with the optimization proce-
dure (in grey) are illustrated in Figs. 4–6 for tests A and in Figs. 
7–9 for tests B. Specifically, the water-surface and dike profiles 
at specific times, a) 1.40, b) 3.00 and c) 15.00 s, respectively, 
after the gate removal are plotted for tests A1, A2, A3, B1, B2, B3. 

The observation of the comparisons in Figs. 4–9 proves a 
general improvement in the numerical results in terms of corre-
spondence with the experimental data, respect to the ones  
obtained through the trial-and-error calibration performed in the 
previous work (Evangelista, 2015). A better agreement with the 
experimental curves is obtained on the average with the optimi- 

a)   

b)  

c)  
 
Fig. 5. Test A2: comparison between numerical (with and without 
optimization) and experimental results in terms of water and dike 
profiles at times a) 1.40, b) 3.00 and c) 15.00 s, respectively, after 
the gate removal.  
 
zation procedure application. In few cases the accuracy of 
numerical results achieved with and without optimization are 
comparable. However, the advantages of the calibration optimi-
zation are undeniable in terms of calculation times, computa-
tional efficiency and, least but not last, objectivity of the re-
sults, in comparison with a trial-and-error calibration. This 
traditional procedure, in fact, requires long processing times 
and laborious tasks, and it is certainly affected by the subjectiv-
ity of the operator and of the phases of the process. 

In particular, the maximum relative differences between the 
numerical results and the experimental data are reported in 
Table 4, showing the best performance of the proposed  
methodology. 
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a)  

b)  

c)  
 

Fig. 6. Test A3: comparison between numerical (with and without 
optimization) and experimental results in terms of water and dike 
profiles at times a) 1.40, b) 3.00 and c) 15.00 s, respectively, after 
the gate removal.  

 

a)  

b)  

c)  
 

Fig. 7. Test B1: comparison between numerical (with and without 
optimization) and experimental results in terms of water and dike 
profiles at times a) 1.40, b) 3.00 and c) 15.00 s, respectively, after 
the gate removal.  

 
Table 4. Worst relative errors for sand and water profiles. 
 

TEST 
100num,s exp,s

exp,s

δ δ
δ

−
⋅  100num,optim,s exp,s

exp,s

δ δ
δ

−
⋅  100num,w exp,w

exp,w

δ δ
δ

−
⋅  100num,optim,w exp,w

exp,w

δ δ
δ

−
⋅  

A1 40.7 32.7 26.0 37.1 
A2 100.7 96.2 64.9 50.8 
A3 178.3 127.6 163.6 112.0 
B1 27.6 13.5 26.8 12.1 
B2 34.5 29.6 29.6 17.3 
B3 46.4 41.8 47.8 46.8 
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a)  

b)  

c)  
 

Fig. 8. Test B2: comparison between numerical (with and without 
optimization) and experimental results in terms of water and dike 
profiles at times a) 1.40, b) 3.00 and c) 15.00 s, respectively, after 
the gate removal.  

 
CONCLUSIONS 

 
Calibration of parameters in the application of most mathe-

matical models of empirical derivation for the simulation of 
real physical problems is still a tough task in several problems. 
Nevertheless, the success of the application of the numerical 
model is strongly dependent on the reliability of its calibration.  

The optimum achievement would be the independence of the 
mathematical models from parameters, but since most of them 
necessarily contain empirical coefficients, it is still necessary to 
count on a reliable estimation of them. 

a)  

b)  

c)  
 

Fig. 9. Test B3: comparison between numerical (with and without 
optimization) and experimental results in terms of water and dike 
profiles at times a) 1.40, b) 3.00 and c) 15.00 s, respectively, after 
the gate removal.  

 
The calibration can be of great complexity, especially for 

models with a large number of parameters. Engineers and re-
searchers traditionally adjust the parameters through manual 
trial-and-error procedures and comparison against available 
experimental data, often varying a single parameter and assum-
ing the other ones as constant. Yet, this approach to calibration 
is subjective and cumbersome. Since the models themselves are 
increasingly sophisticated, it seems more proper to look at more 
advanced calibration procedures.  

In this work, in particular, the derivative-free Nelder-Mead 
algorithm has been adopted to optimize the multi-parameter 
calibration of a two-phase depth-averaged model (Greco et al., 
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2012), already applied in previous works to simulate morpho-
dynamic processes, such as for example dike erosion by over-
topping (Evangelista, 2015). 

Results show significant advantages of the calibration opti-
mization in terms of calculation times, computational efficiency 
and objectivity of the results with respect to the previous results 
obtained through a trial-and-error calibration. 

The optimization algorithm here adopted for the multi-
parameter calibration can be, therefore, supposedly applied 
with successful results to different mathematical models in river 
hydraulics and in general in the fields of hydraulics involving 
geomorphic processes (erosion/deposition of movable bottoms, 
sediment transport). 
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