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Abstract: Rain gauges, weather radars, satellite sensors and modelled data from weather centres are used operationally 
for estimating the spatial-temporal variability of rainfall. However, the associated uncertainties can be very high, espe-
cially in poorly equipped regions of the world. Very recently, an innovative method, named SM2RAIN, that uses soil 
moisture observations to infer rainfall, has been proposed by Brocca et al. (2013) with very promising results when ap-
plied with in situ and satellite-derived data. However, a thorough analysis of the physical consistency of the SM2RAIN 
algorithm has not been carried out yet. In this study, synthetic soil moisture data generated from a physically-based soil 
water balance model are employed to check the reliability of the assumptions made in the SM2RAIN algorithm. Next, 
high quality and multiyear in situ soil moisture observations, at different depths (5–30 cm), and rainfall for ten sites 
across Europe are used for testing the performance of the algorithm, its limitations and applicability range. 

SM2RAIN shows very high accuracy in the synthetic experiments with a correlation coefficient, R, between syntheti-
cally generated and simulated data, at daily time step, higher than 0.940 and an average Bias lower than 4%. When real 
datasets are used, the agreement between observed and simulated daily rainfall is slightly lower with average R-values 
equal to 0.87 and 0.85 in the calibration and validation periods, respectively. Overall, the performance is found to be bet-
ter in humid temperate climates and for sensors installed vertically. Interestingly, algorithms of different complexity in 
the reproduction of the underlying hydrological processes provide similar results. The average contribution of surface 
runoff and evapotranspiration components amounts to less than 4% of the total rainfall, while the soil moisture variations 
(63%) and subsurface drainage (30%) terms provide a much higher contribution. Overall, the SM2RAIN algorithm is 
found to perform well both in the synthetic and real data experiments, thus offering a new and independent source of data 
for improving rainfall estimation, and consequently enhancing hydrological, meteorological and climatic studies. 
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INTRODUCTION 
 
Rainfall is the most important input variable for many appli-

cations in hydrology, geomorphology, climatology, and agron-
omy. For instance, rainfall has to be accurately quantified for 
flood prediction at the catchment scale (Brocca et al., 2013; 
Kirchner, 2009), for the assessment of landslide susceptibility 
(e.g., Brocca et al., 2012; Hong et al., 2007), or for the predic-
tion of crop yield (Ramarohetra et al., 2013). Therefore, the 
knowledge of rainfall is essential for mitigation strategies of 
natural hazards (Wake, 2013), as well as for disease and famine 
prevention (Hou et al., 2014). 

The most common ground-based method for estimating rain-
fall relies on rain gauge observations that are known to be prone 
to spatial representativeness issues (Kidd et al., 2014). In this 
respect, weather radars can be used to overcome the spatial 
coverage problem of rain gauges by providing rainfall estimates 
over large areas with high spatial and temporal resolutions 
(Villarini and Krajewski, 2010). However, weather radars 
measure rainfall indirectly and, therefore, might be affected by 
large uncertainties (Borga, 2002). In recent years, remote sens-
ing sensors are increasingly employed in many parts of the 
world, mainly in poorly gauged areas, for estimating rainfall 
through different algorithms and sensor types (Hou et al., 2014). 
Despite this, satellite rainfall products often fail in reproducing 

the rainfall patterns because of the indirect nature of satellite-
based observations (Kucera et al., 2013). An alternative source 
for rainfall estimation is provided by short-range forecasts from 
numerical weather prediction models (Ebert et al., 2007) that, 
however, suffers from the known limitations of modelled data 
(e.g., model structure, parameterization, input data). Therefore, 
the estimation of rainfall with good accuracy is still an open 
issue and the use of new methodologies or observation types 
can be highly beneficial (Tuttle and Salvucci, 2014). 

In the last few years, some attempts have been made for us-
ing discharge (Kirchner, 2009; Krier et al., 2012) and soil mois-
ture (e.g., Brocca et al., 2014a; Chen et al., 2012; Pellarin et al., 
2013) observations for correcting or for estimating rainfall. 
More specifically, some authors (Crow et al., 2009, 2011; 
Pellarin et al., 2013) integrated satellite soil moisture observa-
tions with land surface modelling in a data assimilation frame-
work. The differences between observed and simulated data 
through the land surface model are used to correct the input 
rainfall data. A different approach was recently proposed by 
Brocca et al. (2013) who used soil moisture data to obtain a 
direct quantitative estimate of rainfall. By doing “hydrology 
backward” (as suggested by Kirchner, 2009), rainfall is com-
puted from the knowledge of soil moisture state and its varia-
tion in time through an algorithm called SM2RAIN. A similar 
approach was also proposed by Tian et al. (2014) for estimating 
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snowfall from snow water equivalent observations obtained by 
passive microwave satellite sensors. 

SM2RAIN has been applied to in situ (Brocca et al., 2013) 
and satellite (Brocca et al., 2014a, 2014c; Ciabatta et al., 2015) 
observations with successful results at the regional (Italy and 
Australia) and global scale. Moreover, the rainfall estimates 
obtained from SM2RAIN have also been considered for the 
correction of observed rainfall data obtained from rain gauge. In 
particular, Massari et al. (2014), in a small catchment in south-
ern France, found that the corrected rainfall provides improve-
ment in flood modelling when compared to the use of rain 
gauge observations only. These results are promising, but a 
detailed study investigating the physical basis of the SM2RAIN 
algorithm, its range of applicability and its limitations is needed. 
Indeed, for sake of simplicity, in the first applications of the 
SM2RAIN algorithm it is assumed that the contribution of 
evapotranspiration and surface runoff are negligible during 
rainfall. The validity of these assumptions has still to be ad-
dressed. 

On this basis, the main objective of this study is to investi-
gate the physical basis of the SM2RAIN algorithm formulation 
and its performance over a range of climates and locations in 
Europe. For this purpose, ten sites across Europe are selected 
for which high-quality (i.e., good accuracy and fine temporal 
resolution) in situ observations of rainfall, soil moisture and air 
temperature are available. For each site, different formulations 
of the SM2RAIN algorithm are used and compared to assess the 
differences in terms of performance and physical consistency. 
Besides real observations, synthetic data derived from the appli-
cation of the physically-based soil water balance model devel-
oped by Brocca et al. (2014b) are considered. This allows us to 
test more in depth the trustworthiness of the assumptions made 
in the SM2RAIN algorithm. 

 
SOIL MOISTURE AND RAINFALL DATASETS 

 
Rainfall, soil moisture and air temperature data from ten sites 

across Europe are used: Petrelle (hereinafter named as PET) and 
Ingegneria (ING) in central Italy (Brocca et al., 2014b), Bagnoli 
(BAG), Salento (SAL), and Torano (TOR) in southern Italy 
(Brocca et al., 2011; Dorigo et al., 2011), Ressi (RES) in 
northern Italy (Penna et al., 2014), Bibeschbach (BIB) in Lux-
embourg (Matgen et al., 2012), K10 and M09 stations of the 
Remedhus network in Spain (Martinez-Fernandez and Ceballos, 
2005) and Valescure (VAL) in France (Tramblay et al., 2010). 
The main characteristics of each site are reported in Table 1 
while Figure 1 shows the location of the test sites. The climatic 
properties of the sites range between humid temperate (northern 
Italy, France and Luxembourg) and semiarid (Southern Italy  
 

 

 

 
 

Fig. 1. Location of test sites with hourly observations of rainfall, air 
temperature, and soil moisture. 
 
and Spain). At each site, hourly-based observations are availa-
ble for at least two consecutive years. Volumetric soil moisture 
measurements were taken at different depths (Table 1) through 
continuous monitoring sensors based on Frequency and Time 
Domain Reflectometry (FDR and TDR) techniques. 

 
METHODS 
SM2RAIN algorithm 
 

The SM2RAIN algorithm is based on the inversion of the 
soil water balance equation for retrieving rainfall from soil 
moisture data. The soil is assumed to work as a natural rain 
gauge for measuring the amount of rainfall fallen into the 
ground. Specifically, the soil water balance equation can be 
described by the following expression (Figure 2): 
 

( ) ( ) ( ) ( ) ( )  nZ ds t dt p t g t r t e t= − − −  (1) 

 
where n [–] is the soil porosity, Z [L] is the soil layer depth, 
s(t) [–] is the relative saturation of the soil or relative soil  
 

Table 1. Main characteristics of the selected test sites. 
 

# Site ID Location Country Data period 
Soil moisture sampling 

depth [cm] 
Climate 

1 BAG Bagnoli Southern Italy 2007–2008 25–35 Semiarid 
2 BIB Bibeschbach Luxembourg 2007–2008 4–7 Humid temperate 
3 ING Ingegneria Central Italy 2009–2012 2.5–7.5 Sub-humid 
4 K10 Remedhus-K10 Spain 2007–2009 2.5–7.5 Semiarid 
5 M09 Remedhus-M09 Spain 2008–2012 2.5–7.5 Semiarid 
6 PET Petrelle Central Italy 2010–2014 5–15 Sub-humid 
7 RES Ressi Northern Italy 2012–2014 0–30 Humid temperate 
8 SAL Salento Southern Italy 2010–2014 15–25 Semiarid 
9 TOR Torano Southern Italy 2007–2010 25–35 Semiarid 
10 VAL Valescure France 2008–2010 25–35 Humid temperate 
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Fig. 2. Schematic representation of the soil water balance equation 
and fluxes used in the SM2RAIN algorithm. 
 
moisture, t [T] is the time and p(t), r(t), e(t) and g(t) [L/T] are 
the precipitation, surface runoff, evapotranspiration and drain-
age (deep percolation plus subsurface runoff) rate, respectively. 
For sake of simplicity, the interception rate is not considered 
here, as it would need the use of another expression for simu-
lating the water content of the interception storage. For the 
drainage rate, the following relation is adopted (Famiglietti and 
Wood, 1994): 
 

( ) ( )b
g t a s t=  (2) 

 

where a [L/T] and b [–] are two parameters expressing the non-
linearity between drainage rate and soil saturation. Note that 
g(t) includes the contribution of deep percolation and subsur-
face runoff (interflow plus baseflow). Basically, g(t) represents 
the lateral and downward losses of water from the soil column 
(see Figure 2). The surface runoff rate is expressed in accord-
ance with Georgakakos and Baumer (1996): 
 

( ) ( ) ( )c
r t p t s t=  (3) 

 

where c [–] is a parameter which assumes values greater than 
unity, with large values representing a highly nonlinear thresh-
old behaviour. The evapotranspiration rate is represented by a 
linear relation depending on the potential evapotranspiration, 
ETpot(t) (e.g., Brocca et al., 2014b): 
 

( ) ( ) ( )pote t ET t s t=  (4) 
 

The potential evapotranspiration is computed through the 
empirical relation of Blaney and Criddle as modified by 
Doorenbos and Pruitt (1977): 
 

( ) ( )( )2 1.26 0.46 8.13pot aET t T tξ = − + +   (5)
 

 

where Ta(t) [°C] is the air temperature and ξ [–] is the percent-
age of total daytime hours for the period used (daily or monthly) 
out of total daytime hours of the year (365×12). The rearrange-
ment of Equation (1), by integrating Equations (2–4), yields: 

 
 

( ) ( ) ( ) ( ) ( )
( )

*

1

b
pot

c

Z ds t dt a s t ET t s t
p t

s t

+ +
=

−
 (6)

 

 
where Z* = Zn [L] represents the water capacity of the soil layer. 
This equation can be used for estimating the precipitation rate, 
p(t), once the relative soil moisture, s(t), the four parameters 
(Z*, a, b, and c) and the potential evapotranspiration rate,     
ETpot(t), are known. Negative rainfall values, that might occur 
during some dry-down cycles, are set equal to zero. 

We note that the use of Equation (6) for estimating rainfall 
has some limitations that occurs when the soil is saturated, for 
highly permeable soils, during snow and frozen conditions and 
for densely vegetated areas. Some of these issues are discussed 
in the text. 

 
SM2RAIN algorithm simplifications 

 
In previous studies, a simplified version of the SM2RAIN 

algorithm was considered (Brocca et al., 2013, 2014a) by ne-
glecting the contributions of surface runoff and evapotranspira-
tion. With the purpose of quantifying the contribution of each 
term of Equation (6) to the total rainfall estimation and to its 
performance, three further algorithm simplifications are intro-
duced: 
 

( ) ( ) ( )
( )

*

1

b

c

Z ds t dt a s t
p t

s t

+
=

−
 
neglecting e(t) (7) 

 

( ) ( ) ( ) ( ) ( )* b
potp t Z ds t dt a s t ET t s t= + +  

 neglecting r(t)  (8) 
 

( ) ( ) ( )* b
p t Z ds t dt a s t= +  

                                            neglecting both r(t) and e(t) (9) 
 

We note that Equation (9) is the expression used in previous 
studies (Brocca et al., 2013, 2014a; Massari et al., 2014). It is 
characterized by the lowest number of parameters to be estimat-
ed (three). Therefore, four algorithm versions of SM2RAIN are 
tested in this study with decreasing complexity. Firstly, the 
parameters of the complete model (Eq. 6) are calibrated for 
reproducing observed rainfall data. Secondly, the three simpli-
fied expressions (Equations 7–9) are used. Note that the param-
eters associated to Equations (7–9) are re-calibrated allowing to 
obtain the maximum performance for each configuration. 
 
Set up of the synthetic experiments 
 

The physically-based soil water balance model developed by 
Brocca et al. (2014b) is employed for producing synthetic soil 
moisture data. The model uses the semi-analytical relationship 
proposed by Corradini et al. (1997) for simulating the soil mois-
ture temporal evolution at the soil surface and for the soil pro-
file. The model is found to be accurate, with respect to the exact 
solution given by the Richard’s equation, even for very complex 
rainfall events characterized by a sequence of infiltration–
redistribution cycles. The model evaluation with in situ and 
laboratory observations (Brocca et al., 2014b; Melone et al., 
2008; Morbidelli et al., 2011) confirms its reliability in repro-
ducing the temporal evolution of soil moisture. 



Luca Brocca et al. 

204 

The synthetic experiments are built as follows. Rainfall and 
temperature data from three representative sites, according to 
climatic conditions and measurement depth, are considered (i.e., 
ING, K10, and VAL). These data are used as input into the soil 
water balance model for simulating the hourly soil moisture 
temporal evolution from the surface to the depth of the corre-
sponding in situ observations (e.g., from 0 to 5 cm for the ING 
site). The parameter values used in the simulations are obtained 
from a previous model application at the same sites (Brocca et 
al., 2014b). Then, the simulated soil moisture data are used as 
input into the SM2RAIN algorithm and the estimated rainfall, 
obtained by minimizing the root mean square error, RMSE, 
between observed and simulated data, is compared in turn with 
the observed rainfall data. In this way, it is guaranteed that 
rainfall and soil moisture observations are not affected by 
measurement errors. Assuming that the employed soil water 
balance model is able to properly reproduce the physical pro-
cesses involved in the simulation of soil moisture, the error is 
only due to the assumptions made in the SM2RAIN algorithm 
(e.g., neglecting surface runoff). Therefore, synthetic experi-
ments represent a robust test for the physical consistency of the 
SM2RAIN algorithm. 
 
Performance score 
 

The assessment of the performance of the SM2RAIN algo-
rithm is carried out by considering three different scores: the 
correlation coefficient, R; the Bias, defined as the mean differ-
ence between simulated and observed rainfall; and the fractional 
root mean square error, fRMSE, that is the ratio between the 
root mean square error, RMSE, and the standard deviation of 
the observed rainfall time series. The fRMSE is self-contained, 
and has a well-defined range between 0 (perfect estimates) and 1 
(noise, with no signal of the truth) (Draper et al., 2013). We 

note that fRMSE values greater than 1 2 0.707=  imply an 

error variance that exceeds the variance of the true time series 
(see Draper et al. (2013) for details). Therefore, fRMSE lower 
than 0.707 indicates satisfactory model performance. For all 
algorithm formulations, the minimization of the fRMSE is 
considered as objective function while a gradient-based ap-
proach is adopted as optimization algorithm. All the results are 
analysed at a daily time scale, i.e. the capability of SM2RAIN 
to estimate the daily-cumulated rainfall is assessed. A daily time 
step is chosen because previous studies (Brocca et al., 2013; 
Massari et al., 2014) showed that SM2RAIN is able to repro-
duce rainfall with a time step from four to six times larger than 
the one of the input soil moisture data (e.g., if hourly soil mois-
ture data are used, good results for 6-hour accumulated rainfall 
estimates are obtained). 
 
 

RESULTS AND DISCUSSIONS 
 

As mentioned above, the different formulations of 
SM2RAIN are tested by firstly considering the synthetic exper-
iments. Secondly, the real data are analysed by splitting the 
dataset in a calibration and a validation period. The algorithm 
performance and the parameter values for each site are ana-
lysed, also as a function of climate and sensor depth. Moreover, 
the contribution of each component of Equation (6) is investi-
gated for quantifying their significance in the determination of 
the total rainfall. 
 
Synthetic experiments 
 

For the synthetic experiments, three sites are selected, i.e., 
ING, K10, and VAL, and the corresponding rainfall and air 
temperature data are used as input into the soil water balance 
model. From the inversion of the simulated soil moisture data 
through the SM2RAIN algorithm, rainfall is estimated and 
compared against observed rainfall at a daily aggregation step. 
Figure 3 shows the comparison of daily rainfall data for the K10 
and VAL sites along with the simulated soil moisture time 
series through the complete version of the SM2RAIN algorithm 
(Equation 6). As it can be seen, the simple analytical equation 
proposed here is able to reproduce the observed rainfall data 
with very high accuracy. In terms of performance scores 
(Table 2), the R-values for the three sites range between 0.922 
and 0.957 and the fRMSE values range between 0.289 and 
0.388. A mean value of fRMSE equals to 0.337 indicates a very 
high performance of SM2RAIN as it is much lower than the 
fRMSE threshold value (= 0.707) below which a model is 
assumed to properly reproduce observations (Draper et al., 
2013). Successively, all versions of the SM2RAIN algorithm 
(Equations 7–9) are applied to the synthetic soil moisture data; 
Table 2 summarizes the model performance for all cases. The 
results clearly show that the model performances are very 
similar for the different formulations (mean R-values ranging 
between 0.940 and 0.944) with differences in the scores being 
lower than 3%. It should be underlined that SM2RAIN is also 
able to reproduce accurately the total amount of rainfall with 
average Bias values always lower than 4%. Surprisingly, even 
though not significantly different from the other formulations, 
better performance is obtained by using Equation (7) which 
incorporates only the surface runoff component and not the 
evapotranspiration. This unexpected result might be due to the 
indirect incorporation of the evapotranspiration losses in the 
drainage term. Therefore, the addition of the evapotranspiration 
term provides a deterioration of the model performance. 
However, further analyses are required to clarify this aspect.  

 

Table 2. Performance of the different formulations of the SM2RAIN algorithm in the synthetic experiments (R: correlation coefficient, 
fRMSE: fractional root mean square error). The highest R-values are highlighted in bold. 

 

Site ID 

Eq. (6) Eq. (7) Eq. (8) Eq. (9). 

R fRMSE Bias R fRMSE Bias R fRMSE Bias R fRMSE Bias 

[–] [–] [%] [–] [–] [%] [–] [–] [%] [–] [–] [%] 

ING* 0.942 0.335 8 0.949 0.315 3 0.942 0.336 6 0.945 0.327 3 

K10* 0.922 0.388 2 0.926 0.377 –1 0.923 0.384 1 0.925 0.379 –1 

VAL* 0.957 0.289 3 0.958 0.287 1 0.955 0.297 4 0.955 0.296 2 

Av. 0.940 0.337 4 0.944 0.326 1 0.940 0.339 4 0.942 0.334 1 
 

* Synthetic data generated by using the observed rainfall and temperature data at the corresponding sites. 
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Fig. 3. Comparison between the observed and simulated, through Equation (6), daily rainfall time series (upper panels) and soil moisture 
data (lower panels) for the synthetic experiment with K10 (a) and VAL (b) dataset as input. 

 

 
 

Fig. 4. Performance of the different formulations of the SM2RAIN algorithm in the calibration (left) and validation (right) period for the 
real data experiment (R: correlation coefficient, fRMSE: fractional root mean square error). 

 
Finally, by comparing the results of the three sites, the 

highest performance of all configurations is obtained for the 
VAL site and the lowest for the K10 site, thereby indicating that 
SM2RAIN seems to perform better in humid temperate 
climates. This can be ascribed to the less pronounced variations 
of soil moisture data in humid temperate climate that allow us to 
obtain better results when the data are inverted through the 
SM2RAIN algorithm. 
 
Real data experiments 

 
For the ten selected sites, the parameter values of the com-

plete version of the SM2RAIN algorithm (Equation 6) are cali-
brated in the first half of the period (that is different for each 
site). Next, the model is applied with the calibrated parameter 
values to the second half of the period. The performance in the 
two periods in terms of R and fRMSE are summarized in Figure 4. 

The agreement between observed and estimated daily rainfall 
data is quite satisfactory with an average R equal to 0.87 (0.87) 
and an fRMSE equal to 0.49 (0.54) in the calibration (valida-
tion) period. However, the model was found to underestimate 
the total rainfall amount at all sites except for ING, where the 
Bias (not shown for brevity) ranges between -23% to -8% (ex-
cluding ING) with an average value of -15%. Moreover, also 
the temporal variability of the estimated rainfall is slightly un-
derestimated with an average difference of -12% between the 
estimated and observed standard deviation. This could be as-
cribed to the well-known issue occurring at saturation in all the 
methodologies based on soil moisture data for estimating or 
correcting rainfall (Brocca et al., 2013; Chen et al., 2014). In-
deed, at saturation the soil moisture value remains at a constant 
level for any rainfall amount; i.e. soil moisture measurement 
cannot provide useful information for rainfall estimation. Based 
on these considerations, it is expected that soil moisture-based  
 



Luca Brocca et al. 

206 

 

 
 

Fig. 5. Comparison between the observed and simulated, through Equation (6), daily rainfall time series (upper panels) and soil moisture 
data (lower panels) for the real data experiment in the calibration and validation periods at: a) M09, b) PET, c) BIB, and d) VAL sites. 
Missing data for PET site in January-March 2013 is due to malfunctioning of the soil moisture sensor. 

 
methods will provide an underestimation of the total rainfall 
(Crow et al., 2011). For the same issue, an underestimation of 
large rainfall intensities is also obtained (Figure 5). 

Figure 5 shows the observed and simulated rainfall for four 
representative (again according to their climate and measure-
ment depth) sites: M09, PET, BIB, and VAL. The issue occur-
ring at saturation is evident for the PET site (Figure 5b) in the 
second half of 2012 and in the period from October 2013 to Janu-
ary 2014 where the model consistently underestimates rainfall. 
However, in January 2011 the same issue is not observed likely 
due to lower rainfall intensities. Therefore, underestimation is 
found when saturated soil conditions and high rainfall intensi-
ties occur. Another issue is observed in the summer periods, 
especially for semiarid climates and for sensors located close to 
the soil surface, for which soil moisture patterns are noisy due 
to the influence of air temperature on the measured signal. For 
instance, in Figure 5a it is evident that at the M09 site (sensor 
depth of 5 cm) artificial rainfall is estimated from SM2RAIN 
during summer with no corresponding observed rainfall. More-
over, for sensors installed horizontally at locations deeper than 
~20 cm, it might occur that no soil moisture variations are ob-
served after a rainfall event as the water does not infiltrate down 
to the depth of the sensor. This issue is observed at the VAL site 
in the summer of 2009 and 2010 (see Figure 5d). The same does 
not occur in the synthetic experiments (Figure 3b) as the simu-
lated data are representative of a soil layer between 0 and 30 cm 
for the VAL site. Notwithstanding all these issues, SM2RAIN is 
found to be able to capture the temporal variability of daily 
rainfall reasonably well both in the calibration and in the valida-
tion periods with only a slight degradation of the performance 
in validation period (see Figure 4). 

By analysing the effect of the climate, we find that the per-
formance increases from semiarid to humid temperate climates 

with average R-values varying from 0.84 to 0.90. Similarly, 
higher R-values are found for sensors at depths of ~15 cm, or 
installed vertically, confirming the expected behaviour under-
lined in the examples of Figure 5. Indeed, one of the best results 
is found at the RES site for which the sensor is installed verti-
cally (0–30 cm) thus allowing to measure the soil moisture 
variations for the entire first 30 cm of the soil layer. However, it 
should be noted that the relatively small number of sites ana-
lysed in this study does not allow us to draw general conclu-
sions and a further study will specifically aim to address these 
aspects by considering a larger dataset (e.g., by taking the data 
from USA available for free at the International Soil Moisture 
Network (Dorigo et al., 2011)). 

Besides model performance, it is interesting to analyse the 
results obtained from the different algorithm formulations 
(Equations 6–9). As shown in Figure 4, variations in the per-
formance scores are very small and all configurations perform 
very similar. The only differences are found in the application 
of Equation (7), which neglects only the evapotranspiration 
term, for the ING, PET and K10 sites. These variations are 
mainly linked to a different value of the exponent c of the sur-
face runoff term (see Table 3) to which the algorithm is highly 
sensitive when Equation (7) is considered. However, the simu-
lated rainfall with the different algorithms is very similar as 
already shown in the synthetic experiments. To further investi-
gate this aspect, the contribution to the total simulated rainfall 
of each term of Equation (6) is computed by considering the 
whole data period. Figure 6 shows the time averaged contribu-
tion of each term for each site. As it can be seen, the major 
contribution is provided by the term incorporating the soil mois-

ture variations, ( )*Z ds t dt , with an average value of 63%, 

followed by the drainage term (30%). The evapotranspiration  
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Table 3. SM2RAIN parameter values for the different algorithm formulations (Z* [mm]: soil water capacity; a [mm/h]: coefficient of the 
drainage component; b, c [–]: exponents of the drainage and the surface runoff components, respectively). 
 

Site ID 
Eq. (6) Eq. (7) Eq. (8) Eq. (9) 

Z* a b c Z* a b c Z* a b Z* a b 

BAG 64 19 7.2 40 64 18.8 7.1 39 65 22.6 7.7 67 21.7 7.6 

BIB 63 0.7 9.9 40 65 0.8 11.5 40 62 1.2 12.4 65 1.2 12.6 

ING 56 5.4 12.1 28 54 5.3 12.3 28 57 8.1 13.4 59 7.8 13.2 

K10 28 2.3 2 100 29 1.9 1.7 46 28 2.3 2 28 1.8 1.6 

M09 14 10.1 4 100 16 9.4 3.8 100 14 10.1 4 16 9.3 3.8 

PET 44 0.8 4.3 7 53 2 5.2 38 51 1.4 4.6 52 1.3 4.4 

RES 115 54.3 6.7 100 116 53.3 6.6 100 115 54.3 6.7 116 53.3 6.7 

SAL 71 30.5 8.1 38 73 29.6 8 37 72 36.1 8.7 75 35.2 8.5 

TOR 69 31 10 69 71 30.2 9.9 69 69 31 10 71 29.6 9.9 

VAL 117 8.6 2.1 58 118 8.6 2.1 57 117 8.7 2.1 118 8.7 2.1 

 
 

 
 

Fig. 6. Percentage contribution to the total simulated rainfall of the 

different terms in Equation (6): ( )*Z ds t dt = soil moisture varia-

tions, ( )bas t = deep percolation and subsurface runoff rate, 

( )potE s t = evapotranspiration rate, and ( ) ( )c
p t s t = surface runoff 

rate. 
 
and the surface runoff components are negligible for all sites 
with an average combined contribution lower than 6%. Only at 
the two Spanish sites (K10 and M09) the evapotranspiration 
component reaches a value higher than 7% while the surface 
runoff is relevant only at the PET site (16%). These results 
explain why the evapotranspiration and the surface runoff com-
ponents do not provide significant modification in the 
SM2RAIN algorithm performance and reliability. 

Finally, also the model parameter values, shown in Table 3, 
are found to be very similar among the different algorithm 
formulations. This highlights the simplicity of the proposed 
algorithm that allows one to obtain a robust rainfall estimates 
with no significant issues related to the identification of the 
model parameter values. As obtained in previous studies 
(Brocca et al., 2013), the parameters are also consistent with 
their expected physical values. The highest Z* value is obtained 
for the RES and VAL sites with sensors installed at a deeper 
soil layer (30 cm). The lowest values are observed for Spanish 
sites (K10 and M09) located close to the surface (5 cm) and 
characterized by a coarse soil texture. A similar behaviour can 

be also highlighted for a and b parameter values even though in 
this case the physical interpretation is more complex as these 
two parameters are not independent from each other. The lowest 
c values are found for the two sites in central Italy (ING and 
PET) determining a larger contribution of surface runoff. This is 
expected and it can be ascertained by analysing the soil mois-
ture time series that frequently reach values close to saturation 
(see Figure 5b). 

 
CONCLUSIONS 
 

An in depth investigation of the physical consistency and of 
the performance of the SM2RAIN algorithm in reproducing 
observed daily rainfall data is carried out by using synthetically 
generated data as well as high-quality in situ observations of 
rainfall, temperature and near-surface soil moisture for ten sites 
across Europe. Based on the obtained results, the following 
conclusions can be drawn: 

1) For the synthetic experiments (Table 2 and Figure 3), 
the algorithm performance is found to be very high, thereby 
indicating that the simplified analytical equation of SM2RAIN 
allows to capture the dominant processes involved in the esti-
mation of rainfall from soil moisture data. 

2) For the real data experiments (Table 3 and Figures 4–5), 
the performance are found satisfactory both in the calibration 
and the validation periods (correlation values larger than 0.75 at 
all sites), with a consistency between the calibrated model pa-
rameter values and their expected physical values. 

3) By analysing the results between the different sites 
(Figure 4), better performance is obtained for sites in humid 
temperate climates and for sensors installed vertically or hori-
zontally at a depth of ~15cm. 

4) The most important result is that the surface runoff and 
evapotranspiration terms give a small contribution to the esti-
mation of rainfall through SM2RAIN (Figure 6). Therefore, 
neglecting this does not deteriorate the algorithm performance 
(i.e., by considering Equation 6). 

The reliability and accuracy demonstrated by the SM2RAIN 
algorithm in this study allows us to conclude that in situ soil 
moisture observations can be efficiently employed for providing 
an improvement in the estimation of rainfall. Indeed, even 
though classical measurement methods still represents point 
information, as those obtained by rain gauges, new approaches 
(e.g., Zreda et al., 2012) have been recently developed for 
providing area-integrated soil moisture measurements and, 
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possibly, even rainfall estimates through the application of the 
SM2RAIN algorithm. Moreover, if considering satellite sensors 
data the potential of the SM2ARIN algorithm to improve rain-
fall estimates from state-of-the-art methods has been already 
demonstrated in previous studies (Brocca et al., 2014a; Ciabatta 
et al., 2015) and needs further investigations. 

Future studies will be carried out to further improve the for-
mulation of the SM2RAIN algorithm by considering the addi-
tion of a term for simulating the interception, the use of more 
accurate formulations for surface runoff estimation, the tem-
poral variability of the parameter values (e.g., at monthly scale) 
and an improved methods for filtering noise from soil moisture 
measurements. For instance, for reducing the underestimation 
issue occurring at saturation, the integration of discharge data 
into the algorithm is foreseen by considering the method pro-
posed by Kirchner (2009) or by Herrnegger et al. (2014). More-
over, the application of SM2RAIN to a large dataset will allow 
us to provide more robust indications on its applicability as a 
function of climate, soil texture, land use, and sensor installa-
tion type (depth and orientation). 
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