
J. Hydrol. Hydromech., 63, 2015, 1, 21–28 
DOI: 10.1515/johh-2015-0006 

  21 

 
 
 

Spatial interpolation of point velocities in stream cross-section 
 

Eliška Hasníková*, Jiří Pavlásek, Marek Vach 

 
Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 – Suchdol, 165 21, Czech Republic. 
* Corresponding author. Tel.: +420732371341. E-mail: hasnikova@fzp.czu.cz 

 
Abstract: The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is 
the propeller–type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpola-
tion of measured data should produce a dense velocity profile, which is not available from the measuring itself. This pa-
per describes the preparation of interpolation models. 

Measuring campaign was realized to obtain operational data. It took place on real streams with different velocity dis-
tributions. Seven data sets were obtained from four cross-sections varying in the number of measuring points, 24–82. 
Following methods of interpolation of the data were used in the same context: methods of geometric interpolation arith-
metic mean and inverse distance weighted, the method of fitting the trend to the data thin-plate spline and the geostatisti-
cal method of ordinary kriging. Calibration of interpolation models carried out in the computational program Scilab is 
presented. The models were tested with error criteria by cross-validation. Ordinary kriging was proposed to be the most 
suitable interpolation method, giving the lowest values of used error criteria among the rest of the interpolation methods. 
 
Keywords: Open channel; Current meter; Cross-validation; Arithmetic mean; Inverse distance weighted; Thin-plate 
spline; Kriging. 

 
INTRODUCTION 

 
A propeller-type current meter is frequently used 

measurement instrument for point velocity of open channels in 
the Czech Republic, especially streams. The number of 
revolutions of the current propeller is proportional to the 
velocity in the particular place of the river cross-section. The 
propeller-type current meter as the most affordable instrument 
has the disadvantage of scatterness of the data that is the output 
of the measurement. In order to produce a dense cloud of data 
measurement would have to take many hours, which is not 
realizable in practice. River discharge is usually the output of 
processing velocity data. Routine processing by Harlacher 
method or by the method of vertical section segments results 
from a velocity information from cross-section verticals, being 
specified by standards (e.g. ČSN EN ISO 748, 2008 in the 
Czech Republic). Working with complex information, not only 
the vertical ones, requires a spatial procedure. 

This paper presents the approach of assimilation of velocity 
vectors magnitude only, which is often the approach used in the 
hydrometrical computing. Geospatial types of the interpolation 
are commonly used to produce the shape of terrain in 
geography, to estimate the precipitation in hydrology, to 
estimate the deposits of ore in geology or to define the soil 
characteristics in pedology. Why not use them also in the task 
of processing the velocity profile of river cross-section? A 
spatial interpolation can provide information about the 
magnitude of the velocity in more points, where it was not 
measured. Knowing the velocity distribution in the river is 
helpful especially in those parts, where the sediment transport 
can play a role.  

Software application HYDROS by Starý, used as a standard 
in Czech hydrometeorological institute (Starý, 2012), uses cubic 
spline to define velocity distribution in cross-section. The cubic 
spline fit between the points in the verticals is made at first, the 
cubic spline fit between the verticals in horizontal direction is 
made after. The same principle, but with polynomial regression 
instead of cubic spline, was successfully used in the paper of 
Stošić et al. (2012). Real spatial approach was realized by Ünal 

and Özcakal (2011) by Surfer 8.0 software. They separately 
interpolated two data sets by ten methods implemented in the 
program and pointed triangulation with linear interpolation, 
natural neighbour and spline as the best methods.  

In presented paper, it was chosen four following methods 
and computation was done in the free and open source software 
Scilab (Baudin and Consortium Scilab – DIGITEO, 2011). 
Arithmetic mean is the simplest method of the local exact 
interpolations. It should be giving the most straightforward 
estimation of velocities, because its formula does not include 
any additional and possibly confusing coefficients. The 
arithmetic mean and the inverse distance weighted 
interpolation (IDW) are computationally much more 
inexpensive compared to two other chosen methods. Thin-plate 
spline – a spatial analogy of one-dimensional cubic spline, was 
chosen, because the mentioned studies had good results by 
spline. Ordinary kriging was chosen, as it is said to produce the 
best linear unbiased estimation (Clark, 2001; Webster and 
Oliver, 2007; and others). Spatial interpolation models well 
calibrated with a view of hydraulic laws, which is not covered 
by any geographical software, should be the tool for the 
estimation of velocity distribution of a stream cross-section as 
well as the tool for evaluation of stream discharge. The aims of 
this paper are the evaluation of velocity distribution using the 
selected interpolation methods and the comparison of the 
methods applied on measured point velocities in a stream cross-
section. 

 
METHODS AND MATERIALS  
Measuring the data 

 
Four cross-sections of three streams were chosen for 

measuring. Reasons for the choice were the difference in shape 
and roughness of measuring profiles – natural and enrocked 
mandesigned stream bed, suitable discharge and geometry of 
cross-sections. 

A steel tape was used for tracing cross-sections and 
evaluating the distances between gauging verticals. A propeller- 
type current meter has being set step by step on a wading rod to 
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Fig. 1. Four measured cross-sections from the viewpoint upstream. 
 
the gauging verticals. Three different measuring units of OTT-
C-2 on the wading rods were used, the same propeller was used 
for the whole cross-section within each measurement of cross-
sections. Measuring time in each point was 30 seconds, 
measured by OTT signal counter. The measurements were 
recorded on paper hydrometric sheets. The measuring campaign 
was held in April and August 2010 and 2011. 

There was a steady flow in the course of all measurements. 
In total, seven available data sets were collected by the 
measurements. The cross-sections were less than 3 m wide, 
their maximum depth was under 0.5 m and on average 60 
particular measuring points were measured in each cross-
section. The placement of the points in the gauging verticals 
was according to hydrometric conventions (ČSN EN ISO 748, 
2008). Depending on the number of particular points in the 
vertical, their position was: close to the stream bed (0.05 m 
from the stream bed), in 0.2, 0.4, 0.6 and 0.8 times the depth 
and in the immediate vicinity to the water surface. Selected 
cross-sections were with the normal velocity distribution. To 
obtain more variety in velocity distributions, a barrier was put 
up on the bottom of the stream bed in front of the measured 
cross-section for three measurements – a block of two layers of 
two firebricks. The view of four cross-sections from upstream is 
in Fig. 1. 

First measurement was realized on Šárecký stream in 
downstream part of Šárecké valley in Prague. The cross-section 
was without bed vegetation with stationary pebbly bed, and was 
of an asymmetric shape. The top width of the cross-section was 
2.55 m, the range of depths in gauging verticals was 0.08–
0.18 m. 

Second measurement was realized on Drnový stream 
in Klatovy. Drnový stream is regulated and flows in a 
symmetrical trapezoidal river channel. The river-basin is 
composed of a grass in an upper part and an enrockment in a 
lower and bottom part – while measuring, water-level was just 
in the lower part. The measurements were realized on two 
cross-sections on Drnový stream. First cross-section had these 
characteristics: the top width of 2.8–2.82 m, the bottom width of 
2 m, the maximum depth of 41–44 m, the side slopes 1:0.68 
and 1:1.15. Second cross-section had these characteristics: the 
top width 2.65–2.68, the bottom width of 1.85 m, the maximum 
depth of 0.44–0.465, the side slopes 1:0.89 and 1:1. 

Last measurement took place on the north edge of Rohozno 
on the canal, joining the stream Korytský potok with the river 
Úhlava. The canal had an asymmetric shape with partly muddy 
bottom with remains of vegetation matters from streamside 

stand. The top width of the cross-section was 2.12 m, the range 
of depths in gauging verticals was 0.1–0.23 m. 

 
Interpolation methods used 

 
Each estimation model was composed of one of four exact 

methods. These methods were arithmetic mean and inverse 
distance weighted (IDW), as two geometrical interpolation 
methods, thin-plate spline, as a method of fitting the trend to the 
data of surface, and the geostatistical method of ordinary 
kriging. In the exact interpolations, an estimated velocity in 
required point is a function of known velocities in neighbouring 
measured points. Weights are assigned to the neighbouring 
points and the sum of the weights equals one. A velocity v0 
in a point x0 in space is estimated by the linear estimation v0 =  

( )0xv̂  as (1). Minimal difference between estimated and true 
value in a point x0 is required (Fedorov, 1987).  
 

( )ˆ 0x = Τv w v , (1) 
 
where wT = transposed vector of weights w∈ Rn, v = 
(v1,v2,...,vn), where n is the number of neighbouring points, vi = 
v(xi). 

Estimation of the velocity in a point x0 by the equation of 
arithmetic mean assumes the same weight of all neighbouring 
points – the inverse value of the number of neighbouring points, 
no spatial correlation between data locations (Wackernagel, 
2003). 

The method of IDW counts with the inverse distance be-
tween a neighbouring measured point xi and an estimated point 
x0 (2). More distant measured point has smaller value of weight 
than less distant point.  
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where n denotes the number of neighbouring points, β = integer 

constant usually up to 5, ( ) ( )22
0,i 0 i 0 id = X X + Z Z− − . 

X0 and Z0 represent x and z-coordinates of a point x0 
and analogically for a point xi. 
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The third method used was spatial cubic spline, namely thin-
plate spline. Estimation of velocity follows Dyn et al. (1986)  
 

( ) ( ) ( )ˆ
n

0 0 i i 0,i
i=1

x = P x + w φ dv  (3) 

 
where n is number of neighbouring points, ( )0,idφ  is a vector of 
radial basis functions 
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with distance d0,i of point x0 and points xi as  
 

( ) ( )2 2+0,i 0 i 0 id = X X Z Z− − . 
 
And polynomial P(x0) = a1 + a2X0 + a3Z0 for known coordi-

nates [X0, Z0] of estimated point x0 (Bookstein, 1989). Weights 
wi and coefficients aj were computed according to Bookstein 
(1989).  

An initial step using kriging is computing an experimental 
variogram (in general form 4), which represents the variances of 
differences between measured values within the lag. 
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= − +  γ * v v  (4) 

 
where * denotes „experimental“ value of the variogram calcu-
lated from measured values, n is the number of measured 
points, ( )ixv  = the velocity in a position xi, ( )hxi +v  = the 
velocity in the lag distance h from velocity in a position xi 
(Clark, 2001). 

Half the variogram represents the semivariogram. Value of 
the experimental semivariogram and the distance between 
points in experimental semivariogram are variables, on which 
the selection of a theoretical model of semivariogram depends. 
Four theoretical models were considered in this case: linear, 
exponential, spherical and Gaussian model (Webster and Oliver, 
2007). The omnidirectional semivariogram, as well as the semi-
variograms of horizontal and vertical directions were consid-
ered. Weights of neighbouring points to be filled into (1) are 
calculated using ordinary kriging according to (5) (Raid et al., 
2013) 
 

1( ) ( )
0 1

i j i= S ,S S ,V
λ

−
     
     
     T

w γ J γ
J

 (5)  

 

where λ = Lagrange multiplier, J  and TJ = unit vectors, wT = 
(w1,w2,...,wn) is transposed vector of weights wi, ( )iS ,Vγ are 
covariances of samples Si and volume to be estimated V, 

( )i jS ,Sγ are covariances of samples Si and samples Sj. 
To follow hydraulic laws, as behaviour of fluid near the 

stream walls belongs to a transition region between boundary 
layer and turbulent layer conditions, following assumption was 
set. Velocity is assumed to be zero on the tops of friction 
patterns, interpolation by simple power expansion is used 
between the zone of the tops of friction patterns and the zone of 
lowest measured points in the verticals. 
 
 

Parameters of calibration 
 

A program for numerical computing Scilab, version 5.3.3, 
was used for computations of a calibration and a validation. 
Basic build-in functions of the program were used and own 
scripts were produced, no toolbox was used. Four measurement 
series were selected as calibration data sets, three were used for 
validation. A verification processes were mostly based on the 
cross-validation principle. One different measuring point was 
dropped in each calibration calculation and a value of velocity 
was calculated there. This means that the calibration through the 
cross-validation had following number of loops: the number 
of measured points in all calibration data sets multiplied by the 
number of combinations of tested parameters.  

The tested calibration parameters were: 
1. the parameters of the interpolation formulas, 
2. a type of „coordinate system“, 
3. a shape of neighbourhood, 
4. boundary conditions, 
5. a special condition. 
Parameter β from IDW formula (2) was tested for values 

[ ]3 2; 1; . The number of points used in the interpolation, which 
is denoted by n in the models, was selected from integers 
in an interval 
1; number of points with known velocity in cross-section . 

 

 
 

Fig. 2. The orthogonal mesh in a cross-section visualised in two 
types of coordinate system, that were used as one of parameters in 
the calibration process. 

 
„Coordinate system“ was of two types with a difference in z-

coordinate (vertical coordinate). One with zero in the stream 
bed and positive values rising towards the water surface, second 
with zero on the water surface and with negative values towards 
the stream bed (Fig. 2). 

The neighbourhood of each calculated point was tested in the 
shape of ellipse with major axis parallel to the water surface. 
The elliptical shape should ensure that the interpolations are not 
based only on the values in their own vertical, as opposed to 
most other methods of measuring discharge evaluation. The 
ratio of major and minor axis a : b was gradually increased. The 
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value of minor axis b stayed 1 and the value of major axis a was 
chosen from the set 5 … 1.03 1.02, 1.01, 1, . 

The boundary conditions were based on hydraulic 
presumptions, three types were tested separately:  
a. no boundary condition, 
b. zero point velocity in grid nodes of intersections of a stream 

bed with gauging verticals, 
c. zero point velocity in grid nodes of intersections of a stream 

bed with gauging verticals; point velocity in an intersection 
of a gauging vertical with a water surface assumed equal to 
velocity measured in a closest position to a water surface in 
a gauging vertical. 

The special condition was established by ignoring the 
information from one’s own vertical. This condition should 
have similar effect as setting an elliptic neighbourhood. 

 
Calibration and evaluation of outputs 

 
Error criteria, error graphs, which show measured values 

against estimated ones, and visualization of the simulated points 
and the measured points together were used for determining the 
better models. The error criteria used were the mean error (ME), 
the mean absolute error (MAE), the root mean squared error 
(RMSE) and the standard deviation of residuals (STD), in their 
relative form for comparison between the data sets and in abso-
lute form. The substitution of the difference between the meas-
ured and estimated velocity ˆ( ) ( )i ix x−v v  with the fraction 

ˆ( ) ( )
( )

i i

i

x x
x
−v v

v
 in the equations of the absolute form of the crite-

ria (Madsen et al., 2010) was done to obtain the relative form of 
the criteria equations. 

RMSE and MAE were found for every measured/estimated 
point and the arithmetic means of both criteria were calculated 
for the calibration data sets. A model with a minimal value of 
the arithmetic means of these criteria was stated to be the model 
with the best parameters. The mentioned approach was applied 
for arithmetic mean and IDW, a different approach was applied 
for the calibration of thin-plate spline and kriging. The 
minimum approach was found not appropriate for thin-plate 
spline in all situations. The results of thin-plate spline were 
judged separately for each calibration data set. Kriging also had 
a different approach. Fitting a semivariogram to the calibration 
data was done to each cross-section data set to calibrate 
universal kriging model for all measured data sets. Two 
theoretical semivariogram models were found the best and 
RMSE and MAE were calculated for all cross-section data sets 
for this method. After the selection of the semivariogram model, 
the rest of model parameters were tested on the same calibration 
data sets in the same way as the other methods. 

The calibration of the data led to the definition of the 
parameters of the interpolation formulas. The best parameters 
were used for the validation of chosen interpolation models. 
The same error criteria as for the calibration and the error 
graphs were used also for the validation part. Significance of the 
difference between measured and estimated values of validation 
data sets was measured by pair t-test in the statistical software 
R, version 3.0.2 (Venables et al., 2014). Unpaired test was used 
to evaluate the difference between the mean of the measured 
values and the estimated ones. An association between MAE 
and measured velocities, between MAE and distance of a 
point´s location from a bank and between MAE and depth of a 
point´s location was tested by Pearson´s correlation coefficient 
in the statistical software R, too. 

RESULTS  
Models of interpolation 

 
The best number of neighbouring points used for the estima-

tion using the arithmetic mean was detected number 3. The 
relative value of the mean RMSE of all calibration data sets 
changing with the number of neighbouring points is shown in 
Fig. 3. Another graph in the same Figure represents the chang-
ing value of RMSE with the different rate of minor and major 
axes of the elliptic neighbourhood. The lowest value of RMSE 
criterion was detected for three known values in the neighbour-
hood of the elliptic shape with the scale of major and minor axis 

: 1.6 :1a b= . Other parameters chosen as better of the tested 
ones were z-coordinate with zero value in the stream bed and 
the boundary condition labelled as c. in the part of Parameters 
of calibration. 

The best interpolation by IDW was made in the coordinate 
system with zero value of z-coordinate in the stream bed. A 
boundary condition was settled as c. from Parameters of calibra-
tion of this paper. The model of interpolation (6) gave the best 
results with the estimation based on twenty known points (Fig. 
3) from the elliptic neighbourhood with the scale of major and 
minor axis : 1:1a b=  (Fig. 3). Parameter β set on value 1 gave 
the best error value (RMSE in the relative form = 0.229), as 
shown in Fig. 3. 
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No particular value n of known points was found for the 

method of thin-plate spline, the formula (3). The criteria mean 
(example of RMSE in Fig. 3) showed an inconsistent picture, 
each data set showed different preferred value. But a linear 
relation of the number of points used for the interpolation, de-
noted by n, with the total number of measured points, denoted 
by m, was found (7). 

 
0.07 8.5n = m+− ⋅  (7) 

 
No boundary condition was found the best. The elliptic 

neighbourhood with the scale of major and minor axis of 
: 2.8:1a b = was chosen (Fig. 3) and the coordinate system with 

zero value of z-coordinate at the bottom. 
An omnidirectional semivariogram of Gauss type was select-

ed up by the „by eye“ method as the best semivariogram model 
of the ordinary kriging 
 

2

2( ) 0.003 0.035 1 exp
0.38

hh = +
  

⋅ − −     
γ  (8) 

 
where γ is semivariogram function of the lag distance h. 

The omnidirectional semivariogram means a rounded shape 
of a neighbourhood of an estimated point. The cross-validation 
had the best results with z-coordinate with zero in the water 
surface, provided there is no boundary condition and the num-
ber of neighbouring points for the purpose of the estimation n = 
3. Fig. 3 shows the growth of the relative RMSE criterion by 
one used point, but when error graphs are considered, better 
results were registered for three neighbours. 
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Fig. 3. Mean relative value of RMSE for the calibration data sets. a) RMSE in relation with the ratio of axes for three interpolation meth-
ods, b) RMSE in relation with the number of neighbouring points used in estimation for all methods, c) RMSE in relation with the number 
of neighbouring points for IDW with different values of parameter β. 

 
Value of errors and velocity profile 
 

The difference between values of computed criteria for the 
calibration data sets and the validation data sets on the final 
interpolation models was similar for the arithmetic mean, IDW 
and the thin-plate spline. As far as RMSE is considered, the 
criterion had about 53 % higher value for the validation data 
sets then for the calibration data sets for the arithmetic mean, 
about 59 % higher for IDW, 61 % for the thin-plate spline and 
2 % for the ordinary kriging. The minimum values of majority 
of absolute and relative criteria were reached by the arithmetic 
mean (Table 1), maximum values were obtained by the thin-
plate spline. The mean value of ME being minimum for the 
ordinary kriging, but not for MAE (Table 1) shows 
a symmetrical distribution of overestimated and underestimated 
velocities by the method. 

A distribution of MAE along a cross-section is in Fig. 4, 
where the validation data set 1 is used as an example. The 
arithmetic mean generated underestimation of lower velocities 
(Fig. 4). The IDW method showed the highest error rate of all 
methods. The whole lower half of the cross-section showed 

errors. The velocities are underestimated there, too. The ordi-
nary kriging made an overestimation of velocities close to the 
stream bed. No linear dependence of MAE on velocity was 
found for any method, weak positive relationship with distance 
from the banks was found for all methods. MAE by the arithme-
tic mean and IDW were in positive moderate relationship with 
the depth (higher depth higher error), Pearson’s r for the arith-
metic mean was 0.29 and for IDW was 0.38. 

Interpolation using IDW produces triangular forms repre-
senting so-called „bull’s eyes“ (Fig. 5) that do not occur in a 
real velocity profile with high probability. The ordinary kriging 
and the thin-plate spline produced rather monotone profile in 
comparison with the arithmetic mean and IDW (Fig. 5). 

The estimated velocities were significantly different (confi-
dence level 0.95) from the measured ones by all methods except 
the ordinary kriging. The mean of estimated velocities and the 
mean of measured velocities were not significantly different 
(confidence level 0.95) for any of the methods. The mean veloc-
ity closest to the mean of measured values was calculated from 
the estimations by the ordinary kriging (Table 2). 
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Fig. 4. Visualisation of the absolute error of velocities [m∙s–1] in the cross-validation in all estimated points in the validation data set 1. 
 

 
 

Fig. 5. Visualisation of interpolated velocities [m∙s–1] in a mesh of 3 cm in the validation data set 1. 

 
Table 1. Mean values of the error criteria in absolute and relative form [m∙s–1] from the cross-validation of the validation data series for 
each method of interpolation computing. 
 

Computing 
method 

Error criterion [m∙s–1] 
ME MER MAE MAER RMSE RMSER STD STDR 

Arithmetic 
mean 0.039 0.118 0.058 0.18 0.081 0.315 0.071 0.293 

Inverse 
distance 
weighted 

0.055 0.177 0.066 0.21 0.088 0.361 0.066 0.313 

Thin-plate 
spline 0.036 0.13 0.081 0.266 0.118 0.505 0.111 0.488 

Ordinary 
kriging –0.003 –0.066 0.076 0.26 0.102 0.452 0.101 0.45 

 

Note: ME – mean error, MAE – mean absolute error, RMSE – root mean squared error, STD – standard deviation of residuals. The criteria with the 
index R are in a relative form, the criteria without index R are in an absolute form. 



                                                                                                                            Spatial interpolation of point velocities in stream cross-section 

27 

Table 2. Mean velocity [m∙s–1] of the validation data series and mean of the estimated values for each method of interpolation computing 
with percentage of the measured data in brackets. 
 

Computing method 
Mean velocity [m∙s–1] and (percentage of mean of measured data) 

Valid. data set 1 Valid. data set 2 Valid. data set 3 
Measured data set 0.495 0.522 0.245 
Arithmetic mean 0.446 (90) 0.475 (91) 0.224 (91) 
Inverse distance weighted 0.412 (83) 0.471 (90) 0.214 (87) 
Thin-plate spline 0.447 (90) 0.498 (95) 0.209 (85) 
Ordinary kriging 0.505 (102) 0.521 (100) 0.245 (100) 

 
DISCUSSION  

 
Interpolation in orthogonal mesh by IDW produced „bull’s 

eyes“, which does not agree with the general idea of a parabolic 
velocity distribution. The same phenomenon was for instance in 
Sanabria et al. (2013), Yao et al. (2013), Ünal and Özcakal 
(2011). The underestimation of velocities by IDW was another 
disadvantage in this case. 

Higher values of the criteria computed in the validation 
process than the ones from the calibration process was caused 
by not completely covering variety in the data of the validation 
process by the calibration process. This situation is a common 
phenomenon if different data sets for calibration and validation 
are used. Neglectable growth of the error criterion between the 
calibration and the validation by the ordinary kriging was 
probably caused by fitting the semivariogram model on all 
available data sets. Optically more flat velocity profile made by 
the ordinary kriging corresponds with the result of Ünal and 
Özcakal (2011), who used Surfer software for the interpolation. 
In their paper, errors of IDW were higher than those of ordinary 
kriging, which is, except for ME, the opposite of the results 
presented here. Resulting RMSE in IDW is lower than the one 
in kriging in Yao et al. (2013), who used Geostatistical Analyst 
of ArcGIS software. Velocities estimated by the ordinary 
kriging were similar to measured ones in the presented paper, 
evaluated by the statistical pair test, and they had the same 
mean as the mean of measured velocities. This good result 
could be surprising, because using the ordinary kriging in the 
presence of apparent trend is arguable. But Journel and Rossi 
(1988) showed that estimations made by the ordinary kriging 
are unaffected by the trend specification. So they recommend 
simpler ordinary kriging for calculations also in case of clear 
possibility to split equation into a trend and use of more difficult 
kriging types with trend. 

As Fig. 4 showed, more errors in the estimation by all 
methods occurred in the bottom and side parts of the cross-
sections. Positive correlation between MAE and location of 
estimated values reflects the right assumption to pay attention to 
a boundary condition. However, it does not seem to be enough. 
Adding more accurate adjustment with hydraulic boundary 
conditions and a calibration on more data sets could help. 

The mean velocity persisting approximately equal calculated 
by all methods indicates that methods should be ready to use in 
1-dimensional computing of discharge. With a well calibrated 
model, just a few measuring points from the field are needed 
and the same result is achieved as after a time-consuming 
measurement to obtain a number of measured points. But 
having a well calibrated model means having a simple tool for 
indication of places threatened with an erosion and a 
sedimentation, which is a multi-dimensional computing task. 
An enrockment on the correct part of a cross-section is 
economical and efficient. 

CONCLUSIONS 
 

Cross-validation of four interpolation models on several data 
sets from four cross-sections of three streams was made, 
including several calibration parameters. The thin-plate spline 
method reached the worst value of MAE and RMSE among 
used methods. The evaluation of velocity distribution in the 
orthogonal mesh was done, IDW produced unrealistic velocity 
profile. The shape of the velocity profiles interpolated using the 
model of arithmetic mean, thin-plate spline and ordinary kriging 
agreed with the general idea of a parabolic velocity distribution. 
Moderate positive correlation between depth and MAE was 
found for the arithmetic mean and IDW, more attention paid to 
the boundary layer could help improve the performance of the 
models. The best result in keeping the mean velocity was 
obtained using ordinary kriging. 

Routine processing of the data measured with a propeller-
type current meter by standardized methods does not offer a 
direct assimilation of a spatial relation between the points 
measured in different verticals, which a spatial interpolation 
does. The estimated detail velocity distribution can be provided 
by the spatial interpolations. 
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