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Abstract 
Under an alternating electrical signal, biological tissues produce a 
complex electrical bioimpedance that is a function of tissue 
composition and applied signal frequencies. By studying the 
bioimpedance spectra of biological tissues over a wide range of 
frequencies, we can noninvasively probe the physiological 
properties of these tissues to detect possible pathological 
conditions. Electrical impedance spectroscopy (EIS) can provide 
the spectra that are needed to calculate impedance parameters 
within a wide range of frequencies. Before impedance parameters 
can be calculated and tissue information extracted, impedance 
spectra should be processed and analyzed by a dedicated software 
program. National Instruments (NI) Inc. offers LabVIEW, a fast, 
portable, robust, user-friendly platform for designing data-
analyzing software. We developed a LabVIEW-based electrical 
bioimpedance spectroscopic data interpreter (LEBISDI) to analyze 
the electrical impedance spectra for tissue characterization in 
medical, biomedical and biological applications. Here, we test, 
calibrate and evaluate the performance of LEBISDI on the 
impedance data obtained from simulation studies as well as the 
practical EIS experimentations conducted on electronic circuit 
element combinations and the biological tissue samples. We 
analyze the Nyquist plots obtained from the EIS measurements 
and compare the equivalent circuit parameters calculated by 
LEBISDI with the corresponding original circuit parameters to 
assess the accuracy of the program developed. Calibration studies 
show that LEBISDI not only interpreted the simulated and circuit-
element data accurately, but also successfully interpreted tissues 
impedance data and estimated the capacitive and resistive 
components produced by the compositions biological cells. 
Finally, LEBISDI efficiently calculated and analyzed variation in 
bioimpedance parameters of different tissue compositions, health 
and temperatures. LEBISDI can also be used for human tissue 
impedance analysis for electrical impedance-based tissue 
characterization, health analysis and disease diagnosis.  
 
Keywords: Electrical Bioimpedance, Electrical Impedance 
Spectroscopy (EIS), LabVIEW-Based Electrical Bioimpedance 
Spectroscopic Data Interpreter (LEBISDI), Curve Fitting, Nyquist 
Plots, Equivalent Circuit Modelling. 
 
 
Introduction 
 
Biological tissues are made of complex three-dimensional 
arrangements of cells embedded in an extracellular matrix 

called extracellular fluid (ECF). Cells contain intracellular 
fluid (ICF), called protoplasm, which in an animal cell is 
enclosed by the cell membrane (CM) and in a plant cell is 
surrounded by both a CM and a cell wall (CW). When 
subjected to an alternating current signal, animal and plant 
cells differ in their electrical responses, indicating that both 
tissue composition and the frequency of an applied AC 
signal affect their electrical responses [1-4]. The electrical 
behavior of the tissues is usually quantified by its complex 
bioelectrical impedance [1-4], which is the physical 
quantity that we reconstruct from the experimental 
measurements. Because bioelectrical impedance depends 
on the physiological and physiochemical status of the 
probed tissue and because it also varies from subject to 
subject and with changes in the health status of the tissue 
[5-6], such as inflammation, infection and disease, studying 
how a tissue responds to frequency can provide valuable 
information about its anatomy and physiology. Many 
researchers [7-23] have investigated electrical bioimpe-
dance as an effective, noninvasive method to probe the 
pathological status of biological tissues.  

 
For example, bioelectrical impedance analysis (BIA) 

[7-10], electrical impedance spectroscopy (EIS) [11-21], 
impedance plethysmography (IPG) [22-23] and impedance 
cardiography (ICG) [24-26] reveal the impedance response 
of biological tissues at one, two or more specified 
frequencies (f). EIS has been proven as an effective 
technique for noninvasive tissue characterization in 
medical, biomedical and biological applications [27-36]. 
Because EIS is a more generalized method that provides 
impedance variations over a wide range of frequencies, it 
can be used on its own to provide information that explains 
other bioelectrical phenomena like dielectric polarization 
[37-41], dielectric relaxation [37-41] and dielectric 
dispersion [37-41].  

 
Impedance spectra obtained from EIS can be used to 

study the overall anatomy and physiology of organic 
tissues. Impedance parameter plots, such as Nyquist plots 
(Imaginary part of Z versus Real part of Z), impedance (Z) 
versus frequency (f) plots (Bode plots), conductivity (σ) 
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versus frequency (f) plots and permittivity (ε) versus 
frequency (f) plots, are popular tools for visualizing 
different aspects of bioelectrical impedance. In particular, 
Nyquist plots distinguish real from imaginary parts of 
bioimpedance and serve as a guide to define equivalent 
electrical circuit parameters. Because equivalent electrical 
circuit models or equivalent circuit models (ECM) [6, 13] 
are very useful for understanding the anatomical, 
physiological and compositional aspects of biological 
tissues, an accurate analysis of data plots is required for 
effective assessment of a tissue’s properties. 

 
Impedance analyzers are used either to measure the 

electrical impedance of materials at a single frequency or to 
study impedance variation over a wide range of 
frequencies. Impedance analyzers are typically developed 
with selected current frequency limits and other fixed 
specifications. Occasionally, changes to measurement 
parameters are required for a specific application, making 
the individual development of impedance measurement 
systems [42-50] advantageous and essential. Impedance 
analyzers or the impedance measurement hardware 
developed as low-cost [42, 46] and application-specific 
instrumentation measure the impedance data, but it requires 
some complementary dedicated software to process and 
analyze the impedance response of materials. More 
specifically, this software is required to calculate 
impedance parameters and extract tissue information by 
identifying the equivalent electrical circuit of the material 
being tested. Modern electronics technology offers a 
number of fast, portable, robust, user-friendly platforms for 
analog or digital data acquisition and signal processing that 
can be suitably utilized for developing a standalone 
impedance measurement workbench. When a standalone 
impedance measurement workbench is developed to collect 
the impedance data, it is found essentially required to be 
complemented by any software program or virtual 
instrumentation such as LabVIEW (Laboratory Virtual 
Instrument Engineering Workbench) [51] for impedance 
data analyzing.  

 
Here, we developed a LabVIEW-based electrical 

bioimpedance spectroscopic data interpreter (LEBISDI) for 
tissue impedance analysis in medical, biomedical and 
biological applications by extracting the equivalent circuit 
parameters of biological tissues using their Nyquist plots. 
We tested and calibrated the LEBISDI software with both 
the computer-simulated impedance data and experimental 
impedance data collected from a number of electronic 
circuit combinations developed by high-precision resistors, 
capacitors and inductors using a standard impedance 
analyzer using low amplitude, sinusoidal current signal. We 
then used LEBISDI to interpret impedance data collected 
from fruits and vegetables under different physiological 
conditions. We conducted EIS studies on these tissues using 
a standard impedance analyzer. We used LEBISDI to 
analyze their Nyquist plots to calculate and correlate the 

electrical impedance parameters of the compositions, 
structures and conditions of the tissues. 
Materials and methods 

 
2.1. Bioelectrical Impedance (Zb) and Electrical 
Impedance Spectroscopy (EIS) 

 
Biological tissues comprise cells and an extracellular 
matrix. Both have their own electrical behavior and 
collectively produce a complex, frequency-dependent 
bioelectrical impedance, Zb(f) [39]. The impedance Zb(f) 
and its frequency-dependent phase angle, θb(f) are given by: 
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where Rb(f) and Xb(f) are the real and imaginary parts of Zb 
respectively and j is the complex number √(-1). Both Rb(f) 
and Xb(f) depend on the signal frequency and tissue 
composition such that 
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EIS measures Zb and its phase angle (θb) of a test subject by 
injecting a constant amplitude, alternating current (AC) 
signal (I(f)) at different frequency points, fi (fi: f1, f2, f3, … 
fn), and by measuring the boundary potentials (V(fi)) 
through using a linear array of the surface electrodes 
attached to the subject (Figure 1) though other configu-
rations could also be used such as placing the electrodes 
like the corners of a rectangle [52].  

 
The impedance of a material is generally measured 

either by the two-electrode method [8, 20] or four-electrode 
method [8, 20, 50]. In the two-electrode method, as the 
name indicates, two surface electrodes are used for current 
injection and voltage measurement. As shown in Figure 1a, 
in the two-electrode method the current injection and 
voltage measurement are conducted through the same 
electrode pair [8, 20]. Thus, the measurement data contains 
the effect of contact impedance (Zc). To avoid the contact 
impedance problem, the impedance measurement is 
conducted with the four-electrode method as shown in 
Figure 1b and Figure 1c. Thus, the four-probe method 
(Figure 1b) of the impedance measurement process is 
usually preferred to make the measurement insensitive to 
the impedance of the electrodes and wiring systems. In the 
four-probe method, a frequency-dependent constant 
amplitude sinusoidal current (I(f)) is injected through the 
outermost two electrodes, called the current or driving 
electrodes (red electrodes in Figure 1b and 1c), and the 
frequency-dependent AC voltage (V(f)) is measured [13] 
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across the two inner electrodes, called the voltage or 
sensing electrodes (blue electrodes in Figure 1b and 1c). 
From Ohm’s law of AC theory, Zb(f) is the transfer function 
of the test subject, which is calculated from the voltage-
current data by dividing V(f) by I(f):  
 

( ) ( )
( )fI
fVfZb =    (5) 

 

     
 

 
 

 
 

Fig.1: Electrical impedance spectroscopy (EIS) studies using the 
two-probe and four-probe technique. (a) EIS measurements with 
an impedance analyzer using two-electrode method. (b) EIS 
measurements with an impedance analyzer using four-electrode 
method. (c) Current injection and voltage measurement using 
the four-probe method of the impedance measurement system. 
 

In bioimpedance spectroscopy, variations in bioelectrical 
impedance over frequencies are represented as impedance 
curves and are analyzed to characterize the tissue. As an 
example, the real part (Rb) and imaginary part (Xb) of Zb at 
each frequency point (fi: i = 1, 2, 3, …, n) are calculated 
and plotted (along the x-axis and y-axis, respectively) to 
obtain the Nyquist Plot [6, 13] or the Rb-Xb spectrum. 

 
2.2 Equivalent Electrical Circuit Modeling 

 
The lumped electrical impedance value of any material 
(non-biological and biological) measured at a particular 
frequency can be represented by the impedance obtained 
from its equivalent electrical circuit model, which can be a 
combination of circuit elements such as resistance (R), 
capacitance (C) and inductance (L). If we define the 
complex electrical impedance (Z) for any particular 
material (either non-biological or biological), then 
 

( ) ( )( ) ( )( ) ( ) ( )fjXfRfZjImfZRefZ zz −=−= , (6) 
 
where Re(Z(f)) = Rz(f) represents the magnitude of the real 
part of complex Z and Im(Z(f)) = Xz(f) represents the 
magnitude of the imaginary part of the  Z(f). 

 
If the material contains both capacitive and inductive 

elements, then the reactive component (Xz) will have two 
components called the frequency-dependent inductive 
reactance component, XL(f), and the frequency-dependent 
capacitive reactance component, XC(f). Thus, we have: 

 
( ) ( ) ( ) ( )( )fXfXjfRfZ CLz −+= .  (7) 

 
Similarly, in EIS studies on biological material, the 
measured Zb of the test subject can also be represented by 
an equivalent impedance (Zeq). This Zeq can be obtained 
from a combination of some electrical circuit elements 
(e.g., R and/or C) because the magnetic effect of the 
biological tissues at low frequency is negligible [53]. 
Moreover, the equivalent circuit model of biological tissues 
may also contain some special circuit elements, such as a 
constant phase element (CPE) [13] or Warburg impedance 
(W) [13] and/or some complex bioelectrical phenomena 
occurring inside the biological tissues due to the 
physiological changes that take place when they are 
subjected to AC excitation. Warburg impedance represents 
the electrode’s interfaces and the CPE is often interpreted 
as a parameter describing the distribution of relaxation 
times [54] in the system, e.g. due to a distribution of cell 
sizes. 

 
The Nyquist plot is the plot of imaginary part of 

impedance (Xz) versus the real part of impedance (Rz). The 
approximate equivalent circuit model of the material can be 
found from the Xz-Rz curve (Nyquist plots) which is 
generally obtained from the EIS data. Electrical impedance 
spectroscopic analysis followed by the equivalent circuit 
modeling establishes the relationship between the tissue 

a 
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property and its impedance response. As for example, the 
Nyquist plots of some basic circuit models have been 
discussed in the Figure 2.  

 
 

 

 
 

 
 

 
 

 
 

Fig.2: Nyquist plots for different circuit combinations. (a) 
Nyquist plots for a circuit combination containing a resistor r 
and a capacitor C in series, (b) Nyquist plots for a circuit 
combination containing a resistor Rp and a capacitor Cp in 
parallel (Rp||Cp), (c) Nyquist plots for a circuit combination 
containing two sub-circuit blocks with a series resistance of Rs 
and the parallel combination of Rp and a capacitor Cp (Rp||Cp) (d) 
Nyquist plots for a circuit combination containing three sub-
circuit blocks with a series resistance of Rs, (Rp1||Cp1) and (Rp2 || 
Cp2). (e) Nyquist plots for a circuit combination containing two 
sub-circuit blocks, (Rp1||Cp1) and ((Rp2+ Warburg impedance 
(W)) || Cp2), connected in series. 
 

Figure 2a shows a r-C series circuit and its impedance 
spectra (Nyquist plot). Figure 2b shows an electrical circuit 
model containing Rp and Cp connected in parallel and its 
Nyquist plot. As shown in Figure 2b, the Nyquist plot 
contains a semi-circular arc that represent the two parallel 
circuit blocks, (Rp||Cp).  

 
If a model contains a series resistance (r) along with the 
parallel branch (Rp||Cp) as shown in Figure 2c, the 
impedance spectra will be shifted toward positive real axis 
and the amount of the shift will indicate the magnitude of 
the resistance r. Figure 2d shows an equivalent electrical 
circuit model of an object containing several R and C 
components and its impedance spectra. This model contains 
three sub-circuit blocks or sub-circuit parts connected in 
series: Rs, (Rp1||Cp1) and (Rp2||Cp2). As shown in Figure 2d, 
the Nyquist plot contains two semi-circular arcs that 
represent the two parallel circuit blocks, (Rp1||Cp1) and 
(Rp2||Cp2). The high-frequency part of the spectra (left side 
of the graph) cuts the x-axis at a particular distance away 
from the y-axis, and this distance represents the series 
resistance (Rs). Similarly, Figure 2e shows the Nyquist plot 
of a different electrical circuit model, which contains two 
parts connected in series, (Rp1||Cp1) and ((Rp2+W)||Cp2). Its 
impedance spectra contain two semi-circular arcs for two 
parallel circuit blocks, (Rp1||Cp1) and ((Rp2+W)||Cp2). The 
linear part of the spectra on the low-frequency side (right 
side of the graph) indicates Warburg impedance (W) [55-
59], resulting from the diffusion effect [58-61] on 
electrodes at low frequencies. 
 

 

 
 

Fig.3: Nyquist plots of circuit combinations containing two sub-
circuit blocks: one with series resistance, Rs, and another 
containing a CPE in parallel with resistance Rp (Rp || CPE). 
 

In some cases, the Nyquist plots are semi-circular arcs with 
their centers some distance below the x-axis. These 
depressed semi-circular Nyquist plots are complex to 
analyze because of the involvement of the CPE circuit. 
Figure 3 presents a depressed semi-circular Nyquist plot, 
where the equivalent circuit contains the CPE in parallel 

b 

a 

e 

d 
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with R. The high-frequency side of the semi-circular arc 
cuts the x-axis at a particular distance away from the y-axis 
and the distance represents Rs. 

 
By definition, the impedance of the CPE (ZCPE) shown 

in Figure 3 is represented as:  
 

( ) n-

0

n

CPE 2j.
Y
1

j.
1QZ πf=








=

ω
, (8) 

 
where Q is the magnitude of ZCPE and Y0=1/Q, j=√−1 and 
0<n<1. 

 
Note that the phase angle (ϕ) of ZCPE is frequency 

independent. It thus remains constant throughout the 
frequency range of EIS. The ϕ of ZCPE is given by: 
 

( )n*90−=φ .   (9) 
 
For an object with CPE, when n is less than 1, the CPE 
resembles a capacitor, but not a pure capacitor because ϕ is 
less than 90°. As the value of n increases, CPE gradually 
becomes more capacitive. At n = 1, Y0 becomes a pure 
capacitor (CCPE) for which 
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Nyquist plots of the circuits with a CPE are strongly 
influenced by circuit element combinations. When a 
material contains CPE and a resistive element, Rp, parallel 
to each other, the Nyquist plot (R-X plot) of the material 
will be a semi-circular path depressed by an angle of (1-
n)*90°, as shown in Figure 3. But the R-X spectrum of a 
CPE alone is a straight line, generating an angle of (n*90°) 
with a positive x-axis (green dotted line in Figure 3). 
 
2.3 Equivalent Circuit Modeling of Biological Tissues 

 
Biological cells and tissues can be modeled by analysis of 
their impedance responses obtained from EIS studies 
conducted within a suitable frequency range. The 
impedance response of a biological cell is strongly 
influenced by cell composition [62-63]. The individual 
electrical properties of each cell’s composition are thus 
represented by their equivalent electric circuit elements, 
which can be used to develop an equivalent circuit model of 
a single cell [6, 13, 64-70], as described in the following 
sections.  

 
Animal cells can be modeled with an equivalent circuit 

concept as shown in Figure 4. The resistive path created by 
the ICF in biological cells to an electric signal (Figure 4a) is 
represented as a resistive element called ICF resistance 
(RICF). Alternatively, the capacitance [74] offered by the 
protein-lipid-protein structure [62-63] of the cell membrane 
is modeled as cell membrane capacitance (CCM) [5-6] 
(Figure 4a).  

The equivalent impedance of the cell membrane and the 
protoplasm (which comprises cytoplasm and cell 
organelles) [71-72] is called ZPPCM (Figure 4b). Because the 
ECF is made up of conducting solution, it also creates a 
resistive path [6, 13, 65] (Figure 4a) that exerts an electrical 
resistance called ECF resistance (RECF). When cells are 
suspended in or by ECF, RECF becomes a resistive element 
connected as a parallel branch to the ZPPCM. Therefore, an 
animal cell suspended in ECFs can be modeled as an 
equivalent electrical circuit [66-70] called the equivalent 
electrical impedance of an animal cell (ZAC), as shown in 
Figure 4b. 
 

    
 

Fig.4: Equivalent electrical circuit modeling of animal cells. (a) 
An isolated animal cell and the electrical equivalence of the 
intracellular fluids (ICF), extracellular fluids (ECF) and the cell 
membrane (CM). (b) An equivalent electrical circuit model of 
an isolated animal cell surrounded by ECF. 

 
Plant cells (Figure 5a) have cell walls made up of low-
conducting materials, thus creating an additional resistive 
path that produces an electrical resistance called cell wall 
resistance (RCW). Thus, as the envelope surrounding the cell 
membrane, RCW is modeled as a resistance connected in 
parallel with ZPPCM (Figure 5b) of the plant cell. Moreover, 
similar to the animal cell, ECFs in plant cells also produce 
resistive paths (Figure 5b). They are thus represented as 
RECF connected in parallel to the ZPPCMCW, which is the 
parallel combination of ZPPCM and RCW (i.e., ZPPCM || RCW). 
Thus, as plant cells contain ECFs, a cell wall, a cell 
membrane and ICFs, they can be modeled as an equivalent 
electrical circuit called the equivalent electrical impedance 
of a plant cell (ZPC), as shown in Figure 5b. 

 
If the plant cell contains a large vacuole, the model can 

be modified by incorporating the impedance properties 
exerted by the composition of the vacuole. The vacuole of a 
plant cell is a cell-like structure made up of vacuole sap 
surrounded by a vacuole membrane, which is called a 
tonoplast [73-74]. Thus, vacuole impedance can be 
modeled as a separate cell-like structure or a subcell inside 
the plant cell. The vacuole sap can be considered as the ICF 
of the vacuole, while the tonoplast can be considered as a 
membrane. Therefore, the RICF in the equivalent circuit 
model of a plant cell with vacuoles will be replaced by 
another subcellular impedance block [73-74] in which the 
RECF will be the RICF because the cytoplasm could be 
considered the extracellular fluid of the vacuole. The 

a b 
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equivalent circuit of biological cells can also be modeled 
with a number of other approaches [1, 75-76]. The Nyquist 
plot, Cole-Cole plot [77-80], impedance equivalent circuit 
[81-82], Cole parameter estimation [75, 83-84] of electrical 
bioimpedance can be suitably utilized for tissue charac-
terization [34, 85-86], body composition estimation [84] 
and disease detection [87]. It is worthwhile to note that the 
Cole-Cole plot is the Nyquist plot of complex permittivity 
[77-80] whereas the Cole plot is for complex impedance or 
admittance. 

 

 
 

             
          

Fig.5: Equivalent electrical circuit modeling of plant cells. (a) 
The anatomy of an isolated plant cell showing intracellular 
fluids (ICF), extracellular fluids (ECF), the cell membrane (CM) 
and cell wall (CW). (b) An equivalent electrical circuit model of 
an isolated plant cell without considering tonoplast capacitance. 
 

2.4 Impedance Data Generation and Collection 
 
A number of impedance data sets were generated and 
collected to evaluate the performance of LEBISDI. They 
are described in Section 2.5. Artificial impedance data were 
simulated and experimental impedance data were collected 
from various combinations of high-precision resistors and 
capacitors. Finally, after evaluating and calibrating 
LEBISDI, we collected impedance data from fruit and 
vegetable tissues using an impedance analyzer.  

 
The evaluation of the performance of LEBISDI 

therefore included three types of impedance data: (i) 
computer-simulated impedance data, (ii) data generated by 
EIS studies conducted on real electronic circuit components 
with an impedance analyzer and (iii) the data collected by 
EIS studies conducted on fruits and vegetables with an 

impedance analyzer. Data sets (i) and (ii) were used to 
evaluate LEBISDI, whereas data set (iii) was used to 
calculate the equivalent circuit parameter for studying the 
variation in bioimpedance parameters of different tissue 
compositions. 
 
2.4.1. PC-Based EIS Data Simulation in Matlab 

 
Different electronic circuit combinations were simulated 
(Fig. 6) and a number of impedance data sets were 
generated using a specially developed MATLAB-based 
electrical impedance data-generating program. The PC-
based impedance data generator mathematically calculates 
complex impedance and its phase angles at a number of 
frequency points within a particular frequency band (10 Hz 
to 2 MHz) for a number of circuit combinations called the 
simulated circuit model (SCM). Using the combinations of 
different circuit elements such as resistance (R), 
capacitance (C) and inductance (L), we could develop a 
capacitive circuit model (CCM) and an inductive circuit 
model (ICM). Figure 6 shows a few examples of the 
electronic circuit combinations studied; each has different 
values of resistance and capacitance connected in parallel 
and is tested to calculate the simulated impedance (ZS) 
within a specific frequency range.  

 

  
 
 

    
 

Fig.6: (a-d) Simulated circuit models developed with different 
electronic components and different circuit combinations of 
computer-simulated electrical impedance data. (e-f) Real circuit 
models developed with different circuit combinations of real 
electronic circuit components used for impedance data 
generation with an impedance analyzer. 

 

a 
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Real and imaginary parts of the simulated complex 
impedance obtained from all SCMs were calculated in the 
impedance data generator and stored in a .txt file in a 
desktop computer. 
 

For a CCM made of a resistor and a capacitor 
connected in parallel, the real part of the impedance (Rz) 
and the imaginary part of the impedance (Xz) are 
respectively calculated as 
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The modulus of the impedance and the phase angle (θ) are 
respectively calculated as 
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For the ICM of a resistor and inductor connected in parallel, 
the real part of the impedance (Rz) and the imaginary part 
of the impedance (Xz) are respectively calculated as 
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The modulus of the impedance and the phase angle (θ) are 
calculated using the formula as shown in the equations (13) 
and (14). 
 
2.4.2. EIS Data Collection from Real Electronic Circuits 
with an Impedance Analyzer 
 
Impedance data were also generated by conducting EIS 
studies on a real circuit model (RCM) developed with 
different circuit combinations of real electronic circuit 
components. A number of RCMs were developed with 
parallel and series-parallel combinations by high-precision 

resistors (1% tolerance) and capacitors (1% tolerance). EIS 
studies were conducted with a QuadTech7600 (QuadTech 
Inc., USA) impedance analyzer [88] using the four-probe 
technique [89-94]. The EIS study was conducted with 
circuit combinations by injecting a 1 mA constant 
sinusoidal current at different frequencies and the 
impedances and phase angles were measured at 100 
discrete frequency points within a frequency band of 10 Hz 
to 2 MHz.  
 
2.4.3. EIS Data Collection from Fruits and Vegetables with 
an Impedance Analyzer 
 
The impedance responses of fruits and vegetables were 
studied by a four-electrode-method-based EIS using a 
QuadTech7600 impedance analyzer with a 1 mA constant 
sinusoidal applied current. The impedance variations in 
cucumber (Cucumis sativus), carrot (Daucus carota), 
pumpkin (Cucurbita mixta), bottle gourd (Lagenaria 
vulgaris), banana cortex or pseudo stem of the banana tree 
(Musa acuminata), potato (Solanum tuberosum), tomato 
(Lycopersicon Esculentum L), bringle (Solanum 
melongena), mango (Mangifera indica), apple (Malus 
domestica) and orange (Citrus sinensis) were studied to 
measure the Zb and θb at 100 discrete frequency points 
within a frequency band of 10 Hz to 2 MHz.  
 

Nyquist plots were obtained from Rz and Xz which 
were calculated from Z and θ. QuadTech 7000-04 alligator 
clip leads (QuadTech Inc., USA), which are generally used 
to connect to large multiterminal devices, were used [88] as 
an interface between the surface electrodes and the 
impedance analyzer. The QuadTech 7000-04 comprises a 
BNC-to-BNC cable, four banana plug adapters and four 
alligator clips, which easily connect to metal conductors 
and electrodes. Figure 7a presents a schematic of the four-
probe-method-based impedance data collection, which 
shows the arrangement of the current and voltage electrodes 
used for the EIS studies we conducted on circuit 
combinations. Figure 7b presents an EIS data collection 
schematic of the four-electrode-method-based EIS studies 
conducted on fruit and vegetable samples with separate 
current and voltage electrodes. As shown in the Figure 7b, 
the current signal is injected through the outer driving 
electrodes (red rectangles) and the voltage data are 
measured across the inner sensing electrodes (blue 
rectangles).  

 
Circuit element studies were performed by directly 

connecting 7000-04 alligator clips with the circuit leads. 
EIS for fruit and vegetable samples required that the lead 
set was used with an ECG electrode-based four-electrode 
array (EE-FEA). Four QuadTech solid gel Ag/AgCl ECG 
electrodes were fixed on sticky insulating tape and the EE-
FEA was developed (Figure 8a). The voltage electrodes 
were placed between current electrodes, with a distance of 
50 mm between voltage electrodes (Figure 8a). In addition, 
the distance between the current-electrode and the voltage-
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electrode was maintained by separating the voltage 
electrodes from the current electrodes by 25 mm (Figure 
8a). Fruit and vegetable tissue health and temperature were 
varied in different EIS studies, whereas the amplitude (1mA 
r.m.s.) remained constant and the sinusoidal current varied 
from 10 Hz to 2 MHz (Figure 8b).  

 
Prior to EIS studies, all fruits and vegetables were 

properly cleaned and marked for electrode placement using 
a measuring tape, and the electrode array was pasted on the 
skin of the cleaned samples. The QuadTech7000-04 
alligator connectors of the impedance analyzer probe were 
connected to the electrodes by EE-FEA. During EIS 
studies, Z and θ were set as the primary and secondary 
parameters, respectively, in the impedance analyzer, and 
measured at 100 frequency points within 10 Hz to 2 MHz. 
To study the effect of storage time on vegetable 
bioimpedance, we conducted EIS studies every 3 days for 
22 days on the same samples with the same instrumental 
setup. To study variation in biological tissue impedance 
profiles due to boiling, we conducted EIS studies on fruits 
and vegetables before and after boiling. 

 
 

  
 

 
 

Fig.7: EIS data collection with the four-probe method using an 
impedance analyzer. (a) A schematic of the electronic circuit 
elements in the EIS data collection using the QuadTech7600 
impedance analyzer. (b) A schematic of EIS data collection 
from fruit and vegetable tissues. 
 

  

   
 

Fig.8: EIS studies on fruits and vegetables using the 
QuadTech7600 impedance analyzer and ECG electrodes. (a) 
The ECG electrode-based four-electrode array (EE-FEA) used 
for EIS studies on fruits and vegetables. (b) EIS studies on fruits 
and vegetables using the QuadTech7600 impedance analyzer. 

 
 

2.5 LabVIEW-Based Electrical Bioimpedance Spectro-
scopic Data Interpreter (LEBISDI) 

 
The LabVIEW-based electrical bioimpedance spectroscopic 
data interpreter (LEBISDI) has been developed to study the 
equivalent circuit parameters of biological tissues using the 
LabVIEW 2014 software. The NI LabVIEW is a highly 
productive software development environment that enables 
the user to obtain a graphical programing and 
unprecedented hardware integration facility. LabVIEW 
provides a rapid virtual instrumentation design facility 
required for the high-speed and highly sophisticated 
measurement and control system applications. The 
proposed LEBISDI has been developed with a circle-fitting 
algorithm and the R-X data are fit to a circular arc from 
which the center and radius of the circle are calculated. 
Using the coordinates of the circle’s center, the radius and 
the other impedance parameters (Zb, θb, Rz and Xz) are 
calculated. Figures 9a and b show LabVIEW-based 
graphical user interface (GUI) of the LEBISDI and the 
Nyquist plot loaded into the LEBISDI respectively. 

 
The impedance data is fed to the LEBISDI as a matrix 

[Mz]100×3 having three columns: f, Rz and Xz respectively. 
The impedance data matrix [Mz] is saved in a .txt file 
though the program and can be easily modified to work 
with .xls file also. All the 100 rows are the f, Rz and Xz data 
obtained for a particular frequency point fn. For each 
frequency data points (fn), the real (Rz(fn)) and imaginary 
(Xz(fn)) parts of the impedance data are calculated from Zn 
and θn obtained from the EIS and then are loaded through 
the GUI of the LEBISDI (Figure 9b) by pressing the 
“LOAD FILE” button. After that, the “FIT A CIRCLE” 
button of the LEBISDI GUI is pressed to fit the data along 
a circular path and the series resistance, parallel resistance, 
constant phase elements, XMax (the maximum value of Xz) 
and XMax frequency (i.e., the characteristic frequency (fc)) 
are calculated. 

 

a b 

a 

b 
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Fig.9: The LabVIEW-based GUI of the LEBISDI and 
impedance data loaded in LEBISDI. (a) GUI of LEBISDI and 
(b) the Nyquist plot obtained in LEBISDI after loading real and 
imaginary impedance data. 
 

Results 
 
3.1 LEBISDI Evaluation with Simulated Data 
 
The real and imaginary parts of the simulated impedance 
data sets were calculated and Nyquist plots were drawn 
(Figure 10) in the Matlab-based impedance data generator. 
The real and imaginary parts of impedance were also stored 
in a .txt file for use with the LEBISDI assessment. The R-X 
data corresponding to each frequency point were loaded in 
LEBISDI (Figure 11) from the .txt file and the Nyquist 
plots are obtained in the GUI.  

 
The Nyquist plots drawn from the real and imaginary 

parts of the simulated impedance were fitted in LEBISDI to 
calculate the values of the elements in the circuit 
combination used in the computer simulation. Impedance 
parameters calculated by LEBISDI were compared with the 
actual values of the circuit components used for impedance 
data simulation to assess the performance of LEBISDI. 
 

Figure 12 shows that the LEBISDI successfully fit the 
Nyquist plots obtained for all four of the simulated circuit 
models shown in Figure 6 and accurately calculated the 
electronic circuit parameters (Table 1). Results from 
LEBISDI show that the errors found in Rp identification for 

simulated circuit models 1, 2, 3 and 4 were 0.0027 %, 
0.0187 %, 0.0188 % and 0.0030 %, respectively, and 0.937 
%, 0.068 %, 0.068 % and 0.569 %, respectively, for Cp 
calculations (Table 1). Results also demonstrate that n 
(power in the CPE model) was equal to 1, indicating that 
there was no CPE in the designed models, which agrees 
with results for the simulated models. 

 
The impedance data obtained from the inductive circuit 

models are also analyzed with LEBISDI. The Nyquist plots 
obtained from the data simulator were loaded and fitted in 
LEBISDI and the impedance parameters used in the 
computer simulation, such as parallel resistance (Rp) and 
parallel inductance (Lp), were calculated. The results 
obtained from the simulated data analysis of the inductive 
circuit are presented in Figure 13 and Table 2. 

 

 
 

 

 
 

 
 

Fig.10: Nyquist plots obtained from computer simulations on 
CCM in the Matlab-based impedance data generator. 

a 

b 
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3.2. LEBISDI Evaluation with Data Collected from Real 
Circuit Components 
 
Next, we investigated the performance of LEBISDI with the 
impedance data generated by the RCM developed with 
different circuit combinations of real electronic circuit 
components. Nyquist plots obtained from the real circuit 
data collected by an impedance analyzer were fitted by 
LEBISDI (Figure 14) and the impedance parameters were 
calculated. Figure 14a shows the impedance plots of RCM 
1, which is a parallel combination of a 1 kΩ resistor and a 
0.1 μF capacitor. Table 3 shows the impedance parameters 
calculated by LEBISDI for RCM 1 and the error obtained in 
the fitting. The errors were 0.348 % and 0.01% for 
resistance and capacitance calculations, respectively (Table 
3).  
 

Impedance data were also collected from a parallel 
combination of a 2 kΩ resistor and a 0.1 μF capacitor called 
RCM 2. Figure 14b shows the impedance plots for RCM 2 
and Table 4 presents the impedance parameters calculated 
by LEBISDI for this circuit. The errors in the fitting process 
in LEBISDI were 0.335 % and 5.0 % for resistance and 
capacitance calculations, respectively (Table 4). 
 
 
 
 
 

3.3. LEBISDI Evaluation with Data Collected from Fruits 
and Vegetables  
 
Impedance data were also collected from fruits and 
vegetables. Figure 15 – 17 show the impedance plots of a 
cucumber, a carrot and a bottle gourd, respectively. 
Numerical results for these configurations are reported in 
Table 5. To investigate the effect of boiling on impedance, 
data were also collected from the fruits and vegetables 
before and after boiling. Figures 18a and b show the 
impedance plots of a green banana before and after boiling, 
respectively. Numerical results for these configurations are 
reported in Table 6. After boiling, impedance parameters 
were lower for both series and parallel resistance, likely 
because boiling destroyed the structure of the cells; the CPE 
angle was also reduced. We investigated the role of 
freshness on impedance variation by collecting data from 
naturally stored vegetables. Impedance was measured daily 
and the variation over time was analyzed by LEBISDI. 
Figure 19 shows the impedance plots of a cucumber 
collected every 3 days for 22 days, and Table 7 shows the 
impedance parameters calculated by LEBISDI of 
impedance in a cucumber throughout the 22-day storage 
period. Over time, the impedance parameters for parallel 
resistance gradually increased while the impedance 
parameters for series resistance and parallel capacitance 
gradually decreased, likely due to dehydration with storage 
time; the CPE angle also increased slightly with time. 
 

 
 

Fig.11: Nyquist plots of simulated impedance data loaded in the GUI of LEBISDI. 
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Fig.12: Nyquist plots of simulated (capacitive) impedance loaded in LEBISDI after fitting. 
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Fig.13: Nyquist plots of simulated (inductive) impedance data loaded in LEBISDI after fitting. 
 
 

Table 1: Impedance parameters and errors calculated by LEBISDI for the capacitive circuit models (CCM) studied. 
 

SCM Frequency (f) Rp(Ω) Cp(F) Error Rp Error Cp 
SCM 1 10-1kHz 0999.97 1.01E-06 0.0027 % 0.937 % 
SCM 2 10-2MHz 0999.81 9.99E-10 0.0187 % 0.068 % 
SCM 3 10-2MHz 9998.12 9.99E-08 0.0188 %  0.068 % 
SCM 4 10-10kHz 1000.03 9.94E-08 0.0030 % 0.569 % 

 
 
 

Table 2: Impedance parameters and errors calculated by LEBISDI for the inductive circuit models (ICM) studied. 
 

SCM Frequency (f) Rp(Ω) Lp(H) Error Rp Error Lp 
SCM 5 10-2MHz 499.98 09.85E-4 0.0032 % 1.496 % 
SCM 6 10-2MHz 999.97 19.70E-4 0.0031 %  1.497 % 

a b

c d
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Fig.14: Interpretation of the impedance data obtained from real electronic circuit combinations (RCMs) using LEBISDI. (a) Data interpretation for RCM 1, 
which was a parallel combination of a 1 kΩ resistor and a 0.1 μF capacitor. (b) Data interpretation for RCM 2, which was a parallel combination of a 2 kΩ 

resistor and a 0.1 μF capacitor. 
 
 

Table 3: Comparison of actual impedance data and the data obtained from LEBISDI  
for RCM 1 containing a 1 kΩ resistor and a 0.1 μF capacitor in parallel. 

 

Values  Resistor (Ω) Capacitor (μF) 
Original  1000.00  0.10 
Calculated  0996.52  0.10 
Error  0.348 %  0.0885% 

 
Table 4: Comparison of actual impedance data and the data obtained from LEBISDI for RCM 2  

containing a 2 kΩ resistor and a 0.1 μF capacitor in parallel. 
 

Values Resistor Capacitor 
Original  2000.00 Ω  0.10 μF  
Calculated  1993.27 Ω  0.10 μF 
Error  0.335 %  4.993% 

Table 5: Impedance data obtained from LEBISDI for a cucumber, a carrot and a bottle gourd. 
 

Parameters Cucumber Carrot Bottle Gourd 
r  19.17 Ω -11.68 Ω  57.38 Ω  
R  1437.05 Ω 1838.85 Ω  2115.34 Ω  
C  0.34 μF 0.08 μF  0.17 μF  
XMax  -463.13 Ω -583.07 Ω  -636.83 Ω  
fc  4204.70 Hz 14427 Hz  6086.60 Hz  
θCPE 19.26°  20.16°  20.93°  
n  0.79 0.78 0.77 

 
Table 6: Comparison of the impedance parameters obtained from the impedance data estimation in LEBISDI for a green banana before and after boiling. 

 

Parameters Unboiled Boiled 
r  -354.08 Ω  309.04 Ω  
R  9382.64 Ω  150.66 Ω  
C  0.048 μF  0.05 μF  
XMax  -2412.03 Ω  -46.00 Ω  
fc  6896.98 Hz  286206 Hz  
θCPE 28.26°  4.379°  
n  0.69  0.959 

a b
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Fig.15: Impedance data fitting and analysis in LEBISDI for a cucumber. (a) Before fitting: data loaded. (b) After fitting: data calculated. 
 

   
 

Fig.16: Impedance data fitting and analysis in LEBISDI for a carrot. (a) Before fitting: data loaded. (b) After fitting: data calculated. 
 

   
 

Fig.17: Impedance data fitting and analysis in LEBISDI for a bottle gourd. (a) Before fitting: data loaded. (b) After fitting: data calculated. 
 

   
 
Fig.18: Analysis of the variation in the impedance data obtained from the impedance parameter in LEBISDI for a green banana (a) before and (b) after boiling. 
 

 
 
 
 

a

a b

a b

b

a b
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Table 7: Comparison of impedance parameters calculated from the impedance data estimation in LEBISDI for cucumber sample studied over a 22-day period. 
 

Day r (Ω) R(Ω) C (μF) XMax (Ω) Fc (Hz) θCPE n 
1  19.17  1437.05  0.34  -463132  4204.70  19.26°  0.79 
4  12.43 1660.37  0.30  -529.34 4204.70  19.94°  0.78 
7  -0.26 1940.84  0.29  -617.50 3717.00  20.27°  0.78  
10  -6.14  2190.62  0.26  -698.48  3717.00  20.34°  0.78  
13  -14.74 2289.29  0.22  -723.66  4204.70  20.81°  0.77  
16  -29.27 2385.08  0.22  -735.05  4204.70  22.09°  0.75  
19  -37.05  2447.67  0.21 -735.37  4204.70 22.98°  0.75  
22  -45.29 2698.61  0.19 -819.45  4204.70 22.76°  0.75 

 

   
 

    
 

     
 

   
 

Fig.19: Impedance plots obtained for a cucumber over a 22-day storage period using a LEBISDI to show the variation in the impedance parameters for 
naturally stored vegetables: (a) day 1, (b) day 4, (c) day 7, (d) day 10, (e) day 13, (f) day 16, (g) day 19 and (h) day 22. 

a b
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Discussion 
 
LEBISDI software can be suitably used for analyzing the 
bioimpedance data for noninvasive biological tissue 
characterization. The present study is mainly associated 
with the vegetable tissues though the analysis of human 
tissue impedance data can be successfully conducted with 
the proposed software. As a future direction the proposed 
LEBISDI program can also be applied for human tissue 
characterization for health analysis and disease diagnosis. 
LEBISDI can also be potentially applied for multifrequency 
bioelectrical impedance analysis (BIA) based tissue 
composition assessment, electrical impedance-based tissue 
characterization and [95-96] or disease diagnosis [97-98] 
and EIS based tissue health characterization in biological, 
biomedical, medical and clinical applications [99-106].   
 
Conclusions 
 
Under alternating electrical excitation, biological tissues 
produce a complex bioelectrical impedance that varies over 
a wide band of frequencies. By identifying the frequency 
response of a tissue’s electrical impedance, we can identify 
the equivalent electrical circuit model, which depicts 
physiological properties of the tissues that can be used later 
for clinical investigations. We developed a LabVIEW-
based electrical bioimpedance spectroscopic data interpreter 
(LEBISDI) for tissue impedance analysis in medical, 
biomedical and biological applications by studying the 
equivalent circuit parameters of biological tissues from 
their Nyquist plots. The performance of LEBISDI was 
tested, calibrated and evaluated with simulated impedance 
data as well as with the impedance data collected from a 
number of high-precision resistor, capacitor and inductor 
circuit combinations using a standard impedance analyzer 
with a low amplitude sinusoidal current signal. To study the 
practical applicability of LEBISDI, we tested biological 
tissues with an impedance analyzer and the impedance data 
were interpreted by LEBISDI; their equivalent circuit 
parameters were also evaluated. Calibration studies show 
that LEBISDI accurately interpreted the simulated and 
practical electronic circuit combination data. Furthermore, 
experimental results show that LEBISDI successfully 
interpreted the bioimpedance data and estimated the 
capacitance and resistance of organic tissues. We also 
observed that LEBISDI efficiently calculated and analyzed 
variation in the bioimpedance parameters of different tissue 
compositions. Simulated data and experimental studies 
demonstrate that LEBISDI can be used to reveal the 
equivalent circuit parameters from the impedance data 
obtained from EIS studies. LEBISDI-based studies with a 
Warburg impedance element could be conducted and 
reported in future communications. As a future study, the 
proposed LEBISDI can also be used for electrical 
impedance-based human tissue characterization, tissue 
composition analysis, tissue anatomy and health studies and 
disease diagnosis. 
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