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Abstract 

Apnea is one of the deadliest diseases that can be prevented and 

cured if it is detected in time. In this paper, we propose a precise 

method for early detection of the obstructive sleep apnea (OSA) 

disease using the latest feature selection and extraction methods. 

The feature selection in this paper is based on the Dual tree 

complex wavelet (DT-CWT) coefficients of the ECG signals of several 

patients. The feature extraction from these coefficients is done 

using frequency and time techniques. The Feature selection is done 

using the spectral regression discriminant analysis (SRDA) algorithm 

and the classification is performed using the hybrid RBF network. A 

hybrid RBF neural network is introduced in this paper for detecting 

apnea that is much less computationally demanding than the 

previously presented SVM networks. Our findings showed a 3 

percent improvement in the detection and at least a 30 percent 

reduction in the computational complexity in comparison with 

methods that have been presented recently. 

 

Keywords: Electrocardiogram; Sleep Apnea; RBF network; 

Wavelet; DT-CWT; Feature extraction.  

 

 

Introduction 

Sleeping takes at least a third of the lifetime of every healthy 

human being and its quality affects the daily actions directly. 

Many people suffer from the respiration disorders during 

their sleep. The most alarming case of these disorders is the 

obstructive sleep apnea (OSA) [1]. The OSA can be described 

by the respiration cessation during sleep.  

 

Table 1. List of the used abbreviations. 

Abbreviations Descriptions 

OSA Obstructive sleep apnea 

ECG Electrocardiogram 

EDR ECG-Derived Respiration 

AHI Apnea-Hypopnea Index 

HMM Hidden Markov model 

RUSBoost Random under-sampling Boost 

Adaboost Adaptive boost 

DWT Discrete wavelet transform 

TQWT Tunable Q-factor wavelet transform 

LDA/QDA Linear/Quadratic Discriminant Analysis 

SFFS Sequential forward feature selection 

SRDA Spectral regression discriminant analysis 

DNN/CNN Deep/Convolutional neural network 

DT classifier Decision tree classifier 

RBF Radial basis function 

SVM Support vector machine 

RLS Recursive least squares 

GS Gram-Schmidt 

STLF Short-time load forecasting 

DT-CWT Dual-tree complex wavelet transform 

 

This problem can cause heart and brain strokes during sleep 

and many daytime problems. The improvement in detecting 

the OSA can improve the daily life of many patients and save 

the lives of many others. The OSA detection has been the 

investigation topic of many researchers [1-19]. As the ECG 
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signal acquisition is much faster and less computationally 

demanding, the OSA can be detected from analysis of short 

durations of the ECG signals and this helps the designing of 

the home setting of handled devices that can easily be used 

by the patients. The detection of the OSA with the single lead 

ECG signals can be performed using various strategies. The 

main measurement to distinguish between the Apnea and 

normal ECG signals is the Apnea-Hypopnea Index (AHI). AHI 

is defined by dividing the total number of apnea events by 

the total number of minutes of sleep time, multiplied by 60: 

 

𝐴𝐻𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝐴𝑝𝑛𝑒𝑎+𝐻𝑦𝑝𝑜𝑎𝑝𝑛𝑒𝑎)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒 (𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
× 60       (1) 

 

Using this index we can mark the apnea ECG signals when 

𝐴𝐻𝐼 > 5 and normal ECG when 𝐴𝐻𝐼 ≤ 5. Here, we address 

some of the methods that have been suggested in the 

literature for the OSA detection process: 

Reference [1] studies the usage of ECG signals in the 

detection of OSA. In this reference, the method is based on 

extracting 8 levels of wavelet features from ECG signals and 

then calculating 12 statistical and entropy-based features 

from these coefficients. The resulting features are then fed 

to a family of SVM classifiers (namely the least-square SVM 

or the Least-squares support vector machine (LS-SVM) and 

the library for support vector machine (LIB-SVM) which uses 

the linear kernels) and the results have been very satisfying. 

In reference [2] the authors have proposed the Hidden 

Markov model (HMM) for extracting the correlation feature 

from the ECG signals and the SVM is used to classify these 

features.  

In [3] the Tunable Q-factor wavelet transform (TQWT) is 

used instead of the ordinary wavelet transform and the 

statistical features are extracted from the coefficients of this 

transform. The RUSBoost classifier has been applied to these 

features.  

The authors of [4] have proposed the usage of several 

frequency-based features like the Cepstrum, filter bank and 

Detrended Fluctuation Analysis (DFA) for detecting the OSA. 

The Logistic Regression (LR), Linear Discriminant Analysis 

(LDA) and Quadratic Discriminant Analysis (QDA) have been 

used for classification.  

The contribution of [5] in OSA detection is the usage of 

Bootstrap classifier.   

The authors in [6] have used the TQWT features and the 

Adaboost classifier in their method.  

In [7] the proposed method is based on the time features 

of the ECG like the R-R interval and QRS properties and 5 

different classifiers have been used for classifying these 

features.  

In reference [8] have used the frequency features like the 

Spectogram and the statistical analysis to classify these 

features.  

In [9] the ECG-Derived Respiration (EDR) signals along 

with the RR intervals are extracted from the ECG and the 

multiple classifiers such as the KNN, SVM, NN and LD-QD 

have been used to evaluate the results.  

Reference [10] is based on cardiopulmonary coupling 

(CPC) and Respiratory event index (REI) features and 

statistical analysis for classification.  

Reference [11] is based on the feature extraction with 

TQWT and Random forest classifier. Recently several 

references have proposed the usage of deep neural 

networks (DNNs) and convolutional neural networks (CNNs) 

for the OSA classification. The presented results with these 

classifiers have been very high, however, the computational 

complexity of these classifiers makes their usage unpopular.  

Reference [12] has used the CNN to classify the R-R 

interval base features of the ECG signal.  

Also, reference [13] has proposed CNN classifier based on 

the Scalogram features to detect OSA.  

In [14] and [15] each has used a modified CNN to classify 

ECG time features.  

Reference [16] has proposed the filter bank based 

features and their entropies to classify ECG signals with KNN, 

SVM, Decision tree (DT) classifiers.  

Reference [17] is based on the Ensemble, Adaboost and 

Random forest classifiers.  

Reference [18] has used the PCA feature reduction to 

reduce the DWT extracted features from the ECG and give 

them to the SVM classifier to detect OSA.  

Reference [19] is based on wavelet packet 

decomposition (WPD), Entropy and R-R interval features and 

the random forest classifier.  

Finally, reference [20] has proposed the feature 

extraction from ECG signals and in this paper, based on this 

novelty, we proposed the Dual-tree complex wavelet 

transform (DT-CWT) extracted features from the ECG to 

detect the OSA.  

The DT-CWT is designed to compute the complex 

transform of a signal by two individual DWT decompositions. 

These transforms form two branches as tree a and tree b. If 

the filters in these branches are designed in a special 

manner, the output of one of the branches becomes the real 

coefficients of the DWT and the other branch produces the 

imaginary coefficients. By this transform, we get extra 

information in comparison with the conventional DWT. 

However, this extra information is achieved by extra 

computational demand that we can control by choosing the 

proper number of DT-CWT levels. 

To the best of our knowledge, this is the first time to use 

DT-CWT for apnea detection purposes. While the DT-CWT 

extracted features are more promising than those of the 

DWT, the main hindrance in the usage of the DT-CWT 

extracted features instead of DWT features, is the 

computational complexity of the DT-CWT. However, because 

we wanted to compare our results with [1] and in that 

reference, the features have been extracted from 8 levels of 

DWT, we show in this paper that the suitable features with 
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the DT-CWT can be achieved with only 3 levels of this 

transform and with this we compensate the double 

computations complexity in comparison with 8 levels of 

DWT.  The overall flowchart of the proposed method in this 

paper is given in Fig. 1: 

 

 
 

Fig. 1. The overall steps of the OSA detection with the help of ECG signals. 

 

We tried to use novel methods in all the parts of the 

proposed method. In the feature selection part, we used the 

powerful SRDA algorithm [23] and for the classification, we 

used the hybrid RBF network using the ‘K-means, RLS’ 

learning [21,22] that is more powerful than the SVM 

network. The rest of this paper designed as follows: 

In part II, we explain the feature extraction and selection 

techniques from our databases. Part III is dedicated to the 

explanation of the hybrid RBF classifier and its differences 

with the SVM network. Part IV presents our OSA detection 

results and part V consists of our concluding remarks and the 

suggestions for the future research. 

 

ECG signal processing  

The database that we implemented our proposed method on 

is the Physionet apnea ECG data set [24]. The age of subjects 

in this database is in the range of 27–63 years, and the 

weights of the subjects are between 35–135 kg. The AHI 

range in the extracted ECG signals is between 0 and 93.5. 

There are totally 70 records in this dataset that are clustered 

into two groups: train (called released-set) and test (called 

withheld-set). The released-set has 35 records with the 

indexes of a01-a20, b01-b05 and c01-c10, the withheld-set 

has 35 records with the indexes of x01-x35. 

 

 
Fig. 2. The proposed OSA detection method. 

Preprocessing  

Signal segmentation with the time duration of 60 s is the first 

stage of preprocessing. It has been shown in [25] that the 60 

seconds duration is the most suitable period for apnea 

classification. After this, we have the noise cancelation 

procedure where the baseline wandering and power line 

interference of the signals are canceled using a Chebyshev 

type II band-pass filter with the low and high cut-off 

frequencies of 0.5 Hz and 48 Hz, respectively. Fig. 3, shows 

only 3 seconds of a model record of the Physionet apnea 

database [24]. 

 

 
Fig. 3. The first 3 seconds of the apnea ECG from an example record. 

 

Segmentation  

After we performed filtering, the weight calculation 

approach is applied for deleting the noisy segments. In [1] a 

simple method is proposed for the automatic cancelation of 

the noisy parts. In this method, a weight (W) is calculated for 

each segment based on the similarity of its Autocorrelation 

Function (ACF) with other segments ACF, by taking into 

account the cosine pair-wise similarity as the metric. The 

similarity values are then given as: 

𝑑𝑠𝑡 =
(𝑋𝑠−𝑋̅𝑠)(𝑋𝑡−𝑋̅𝑡)

′

√(𝑋𝑠−𝑋̅𝑠)(𝑋𝑠−𝑋̅𝑠)
′√(𝑋𝑡−𝑋̅𝑡)(𝑋𝑡−𝑋̅𝑡)

′
  (2) 

 

where, 𝑑𝑠𝑡 is the correlation distance, and 𝑋𝑠 and 𝑋𝑡 are the 

ACF of two different segments. 𝑋̅𝑠 and 𝑋̅𝑡 are the mean value 

of the 𝑋𝑠 and 𝑋𝑡, respectively. The output of (1) is a vector 

showing the similarity of each segment. W of each segment 

is calculated with the normalized summation of all the 𝑑𝑠𝑡 

values. For our method, all the segments with a calculated 

weight lower than 0.8 were pointed out as the noisy 

segments. As the results of this paper are presented for the 

segment-by-segment (minute-by-minute) case rather than 

the subject-by-subject case, the selection of these segments 

is very important. 

 

Feature extraction and selection  

Feature extraction is a vital part of the computerized disease 

detection process. This section consists of three parts, in part 

A, we explain the DT-CWT feature extraction, in part B, we 

introduce the methods of statistical feature extraction from 
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the DT-CWT coefficients. In part C, the feature reduction or 

selection method which is the SRDA is explained. 

 

The Dual-Tree Complex Wavelet Transform (DT-CWT) 

In [20], the usage of DT-CWT in ECG feature extraction is 

proposed. The main deficiency of DWT based feature 

extraction in analyzing 1D ECG signals is the lack of shift 

invariance. It means that the amplitude of the wavelet 

coefficients varies substantially as the input signal is shifted 

a little. This happens because of the down sampling 

operation at each level. A better way of achieving shift 

invariance is to implement the undecimated form of the 

dyadic filter tree. However, this method has heavy 

computation demands and high redundancy in the output.  

The DT-CWT tackles this problem with a redundancy 

factor for 1D signal, which is significantly lower than the 

undecimated DWT. In [20], the authors have explained the 

shift invariance property of DT-CWT in detail. The DT-CWT 

implements two trees of real filters (Tree A and Tree B) as 

shown in Fig. 1. The two trees correspond to the real and 

complex part of the complex wavelet transform. The DTCWT 

of a signal 𝑥(𝑛) (ECG) is implemented using two critically 

sampled DWTs in parallel to the same data. The filters are 

designed so that the sub band signals of the upper DWT can 

be interpreted as the real part of a complex wavelet 

transform and sub band signals of the lower DWT can be 

interpreted as the imaginary part. When the transform is 

designed in this manner, the DT-DWT is approximately shift 

invariant, unlike the critically sampled DWT. The filters 

implemented in each stage are of length 10. The sets of filter 

coefficients (H) used in this transform are given in [20]. The 

selected transform coefficients are 𝑥1𝑎, 𝑥01𝑎, 𝑥001𝑎, 𝑥000𝑎, 

𝑥1𝑏, 𝑥01𝑏, 𝑥001𝑏 and 𝑥000𝑏.  

 
Fig. 4. The three level dual-tree complex wavelet transform. 

 

In Fig. 5 and 6 we depicted the sub band signals for three 

levels of the tree A and B respectively. It is important to 

mention that all of these signals are depicted for the same 

model record of the Fig. 3 of the Physionet database. It is 

important to mention that for the following figures from 

Fig.5 to 8, the horizontal axis depicts the number of signal 

samples and the vertical axis shows the amplitude of the 

signal. 

 
Fig. 5. The sub bands of the ECG signal for Tree A. 

 

 
Fig. 6. The sub bands of the ECG signal for Tree B. 

 

The absolute energy of the signal 𝑥000𝑎 is depicted in Fig. 7, 

and the absolute energy of 𝑥000𝑏 is depicted in Fig. 8. 
 

 
Fig. 7. The absolute energy of the sub band signal 𝑥000𝑎. 

 

 
Fig. 8. The absolute energy of the sub band signal 𝑥000𝑏. 
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The non-linear feature extraction from the DT-CWT 

coefficients  

After extracting the subbands of the DT-CWT from the 

selected ECG segments, we calculate some non-linear 

features based on the extracted transform coefficients. In [1] 

it has been shown that the ApEn, FE, IQR, RP and Poincare 

plot features make large differences among the two classes 

(Apnea and Normal). These features are collected in Table 2 

and as they are explained in [1], we do not present their 

theoretical calculations here. 

 
Table 2. List of non-linear features that are extracted from  

the DT-CWT coefficients in this paper. 

Features Description 

FE Fuzzy Entropy 

ApEn Approximate Entropy 

IQR Interquartile Range 

RP Recurrence Plot 

SD1, SD2, SD1/SD2 Poincare Plot 

 

Using these 7 feature extraction methods and with the 8 DT-

CWT coefficients that are explained in part III, we have 56 

features for each ECG to be fed to the classifier. However, 

we used the feature reduction to reduce these features as 

much as possible.  

 

Spectral regression discriminant analysis (SRDA) algorithm  

After the extraction of the final features from the DT-CWT 

coefficients, it is time to select the most suitable ones to 

reduce the volume of the features and the amount of 

computation that is needed for processing them. In [1], the 

sequential forward feature selection (SFFS) method has been 

proposed for this task that is based on the detection results. 

Here we propose a data based feature reduction method. 

SRDA is one of the most efficient methods for feature 

reduction. We implemented this technique in our proposed 

method. To start the SRDA algorithm, suppose we have a set 

of data points 𝒙1, … 𝒙𝑚 ∈ ℝ
𝑁 that belong to 𝑁𝑐 different 

classes and 𝑚𝑘 denotes the number of training samples of 

𝑘th class (∑ 𝑚𝑘 = 𝑚
𝑁𝑐
𝑘=1 ). The steps of SRDA can be 

summarized as [23]: 

 

① Let 

𝒚𝑘 = [0,… ,0⏟  
∑ 𝑚𝑖
𝑘−1
𝑖=1

, 1, … 1⏟  
𝑚𝑘

, 0, … ,0⏟  
∑ 𝑚𝑖
𝑁𝑐
𝑖=𝑘+1

]

𝑇

          𝑘 = 1,… , 𝑁𝑐    (3) 

 

and 𝒚0 = [1,1, … ,1]
𝑇represents the vector of ones. The 

Gram-Schmidt process [23] is utilized for orthogonalization 

of {𝒚𝑘}. Since 𝒚0 is in the subspace described by {𝒚𝑘}, the 

𝑁𝑐 − 1 vectors are obtained as: 

 

{𝒚̅𝑘}𝑘=1
𝑁𝑐    , (𝒚̅𝑖

𝑇𝒚0 = 0 𝑤ℎ𝑒𝑟𝑒 𝒚̅𝑖
𝑇𝒚̅𝑗 = 0, 𝑖 ≠ 𝑗 )      (4) 

 

② In this step, a new entry “l” is appended to each 𝒙𝑖  which 

will also be shown as 𝒙𝑖. Then, 𝑁𝑐 − 1 verctors {𝒂𝑘}𝑘=1
𝑁𝑐−1 ∈

 ℝ𝑁+1 are constructed, where 𝒂𝑘 is the solution of the 

regularized least squares problem given in (5): 

 

        𝒂𝑘 = arg min
𝒂

(∑ (𝒂𝑇𝒙𝑖 − 𝑦̅𝑖
𝑘)
2
+ 𝛼‖𝒂‖2𝑚

𝑖=l )          (5) 

 

where 𝑦̅𝑖
𝑘 is the 𝑖th element of 𝒚̅𝑘 and 𝛼 ≥ 0 is a parameter 

to control the amount of reduction. 

 

③ The 𝑁𝑐 − 1 verctors {𝒂𝑘} are the basis vectors of SRDA. 

Let 𝐴 = [𝒂1, … , 𝒂𝑁𝑐−1], which is a (𝑁 + 1) × (𝑁𝑐 − 1) 

transformation matrix. The 𝒙 can be embedded into z in the 

(𝑁𝑐 − 1) dimension subspace by: 

 

𝒛 = 𝐴𝑇 [
𝒙
1
]                                  (6) 

 

The SRDA method reduces the 56 features that are 

mentioned in part B, based on the value of 𝛼 which is 

between [0, 1]. 

 

The classifier and detector  

We compared the results of our proposed method with that 

of several classifiers in part IV. Explaining the operation of all 

these classifiers would increase the volume of the paper 

inordinately. Therefore, we addressed them accordingly in 

Table 3 for the interested researchers to find their explana-

tion in the references. Here we only explain the performance 

of our proposed classifying network: 

 

RBF Classifier with hybrid ‘K-means, RLS’ learning  

The SVMs are the most prevalently used classifiers in the 

field of the disease detection. The RBF networks, on the 

other hand, are not used as much as SVMs. The hybrid RBF 

network is the solution for this, because, they can rival the 

SVMs. The hybrid RBF [21,22] consists of three layers and the 

middle and the output layers work with the K-means and the 

RLS algorithms, respectively and for this reason, the hybrid 

adjective is attributed to them. 

In this part, we describe the RBF classifier with hybrid 

learning that is our proposed classifying tool in this paper. 

We call the proposed classifier as hybrid RBF because it has 

a hybrid learning procedure with two stages as follows: 

Stage 1: implements the K-means clustering algorithm to 

train the hidden layer in an unsupervised scheme. Usually, 

the number of clusters and the computational units in the 

hidden layer is notably smaller than the size of the train 

sample. 

Stage 2: implements the recursive least-squares (RLS) 

algorithm (or another adaptive algorithm) to determine the 

weight vector of the linear output layer. 
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Fig. 9. The proposed hybrid RBF classifier. 

 

The two-stage design procedure has some desirable 

features such as low computational complexity and fast 

convergence. 

The RBF network consists of 3 layers as in Fig. 9. Here we 

describe them briefly [21]: 

1. Input layer, which contains the source nodes that 

connected the network to its inputs. The inputs of the 

network for classification are the features vectors. 

2. The second layer, consisting of hidden units, 

implements a nonlinear transformation from the input space 

to hidden (feature) space. For most applications, the 

dimensionality of the only hidden layer of the network is 

high; this layer is trained in an unsupervised manner using 

stage 1 of the hybrid learning scheme. Each unit in the 

hidden layer is described mathematically by a radial basis 

function: 

              𝜑𝑗(𝒙) = 𝜑(‖𝒙 − 𝒙𝑗‖)         𝑗 = 1,2, … , 𝑁             (7) 

 

The 𝑗th input data point 𝒙𝑗  identifies the center of the radial 

basis function and the vector 𝒙 is the signal (pattern) applied 

to the input layer. Therefore, the links connecting the source 

nodes to the hidden units are direct connections with no 

weights. There are multiple radial basis functions for using in 

the hidden layer but we implement the Gaussian function for 

the sake of comparison between SVM and RBF in [1]. 

3. The output layer is linear and provides the response of 

the network to the activation pattern implemented to the 

input layer; this layer is trained in a supervised fashion using 

stage 2 of the hybrid scheme. There is no limitation on the 

size of the output layer, except that typically, the size of the 

output layer is much smaller than that of the hidden layer.  

Here we describe learning algorithms of RBF: 

K-means clustering  

K-means is a method that utilizes distances for clustering 

with two steps [21, 22]: 

Step 1: The total cluster variance is minimized with 

respect to the assigned set of cluster means {𝝁̂}𝑗=1
𝐾 , the 

following minimization must be performed: 
 

        𝑚𝑖𝑛
{𝝁̂}𝑗=1
𝐾
∑ ∑ ‖𝒙𝑖 − 𝝁̂𝑗‖

2
𝐶(𝑖)=𝑗

𝐾
𝑗=1       𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝐶     (8) 

  

Step 2: After computing the optimized cluster means 

{𝝁̂}𝑗=1
𝐾 , we optimize the encoder as follows: 

 

               𝐶(𝑖) = 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑗≤𝐾

‖𝒙𝑖 − 𝝁̂𝑗‖
2

         (9) 

 

The RLS algorithm in hybrid learning  

Adaptive algorithms have been designed to converge to 

certain weights. These weights in the RBF network are 

adjusted in the learning phase. The RLS algorithm is one of 

the most powerful adaptive algorithms. In this section, we 

explain the role of RLS in the output layer of the RBF network 

[21]. Let the 𝐾 × 1 vector: 

      𝜱(𝒙𝑖) = [

𝜑(𝒙𝑖 , 𝝁1)

𝜑(𝒙𝑖 , 𝝁2)
⋮

𝜑(𝒙𝑖 , 𝝁𝐾)

]      (10) 

 

represent the outputs of the 𝐾 units in the hidden layer. This 

vector is constructed to respond to the stimulus 𝒙𝑖 , 𝑖 =

1,2, … , 𝑁.Thus, insofar as the supervised training of the 

output layer is concerned, the training sample is defined by 

{𝜱(𝑖), 𝑑(𝑖)}𝑖=1
𝑁 ,  where 𝑑𝑖  is the desired response at the 

overall output of the RBF network for input 𝒙𝑖. This training 

is implemented by the RLS algorithm described as below 

[21]: 

Given the training sample {𝜱(𝑖), 𝑑(𝑖)}𝑖=1
𝑁 , do the 

following calculations for iterations 𝑛 = 1,2, … , 𝑁: 

 

 𝑷(𝑛) = 𝑷(𝑛 − 1) −
𝑷(𝑛−1)𝜱(𝑛)𝜱𝑻(𝑛)𝑷(𝑛−1)  

1+𝜱𝑻(𝑛)𝑷(𝑛−1)𝜱(𝑛)
       (11) 

                     𝒈(𝑛) = 𝑷(𝑛)𝜱(𝑛)                        (12) 

              𝛼(𝑛) = 𝑑(𝑛) − 𝒘̂𝑇(𝑛 − 1)𝜱(𝑛)       (13) 

            𝒘̂(𝑛) = 𝒘̂(𝑛 − 1) + 𝒈(𝑛)𝛼(𝑛)       (14) 

 

To initialize the algorithm, we have 𝒘̂(0) = 𝟎 and 

𝑷(0) = 𝜆−1𝑰     where 𝜆 is a small positive constant.  

In [22] a complete analysis was made to show the 

superiority of hybrid RBF to the SVM classifier both 

computationally and with respect to accuracy. Also, at least 

a 30% percent time saving is guaranteed using RBF in 

comparison with SVM [21]. This is important because we 

compared the results of our proposed method with that of 

the reference [1]. 

 

Ethical approval 

The conducted research is not related to either human or 

animal use. 

 

OSA detection results  

We mentioned that after feature extraction we get 56 

features from each ECG signal. One of the contributions of 

this paper is the usage of the SRDA feature reduction 

algorithm that gives the best results for the 0.1 ≤
𝛼

𝛼+1
≤ 0.4 
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[23]. Using these values the number of features for the ECG 

signals reduces to 5 to 10 features which are substantially 

lesser than the 18 features of the proposed method in [1]. 

Our OSA detection results are presented based on the 

accuracy, sensitivity and specificity of the proposed methods 

that are given as follows [26]: 

 

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑝+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (15) 

         𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (16) 

            𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒𝑐) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                    (17) 

 

where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denotes true positive, true 

negative, false positive and false negative, respectively. The 

comparison of the segment-by-segment (minute-by-minute) 

results of the proposed method and the results in several 

recent references are given in Table 3. 

As we can see the proposed method can detect the OSA 

with overcoming results in comparison with the conven-

tional classifiers and can closely rival the results of the 

computationally complex CNN classifiers. The main purpose 

of this paper was to improve the results in [1]. By comparing 

the results, we can see that an average of 31% improvement 

is achieved in all the performance metrics. 

 

Concluding remarks 

This paper aimed to propose the hybrid RBF classifier along 

with some novel ECG signal processing techniques to 

improve the OSA detection. The proposed methods are all 

selected in order to reduce the computational complexity 

and the time consumption of the detection process.  

For the feature selection, we used 3 levels of the Dual 

Tree Complex Wavelet Transform (DT-CWT) instead of 8 

levels of the DWT features. In addition, the computational 

complexity of the proposed spectral regression discriminant 

analysis (SRDA) feature selection algorithm and the hybrid 

RBF classifier can guarantee at least 30% of complexity 

reduction plus the improvement of the OSA detection 

accuracy. The result presented an average of 3% improve-

ment in detection and a 30% of time and complexity 

reduction when compared to the previously presented 

methods.  

In future works, we will consider the usage of more 

advanced feature extraction and reduction methods. Also, 

the usage of DNNs and CNNs based on the features that are 

extracted in this paper may cause the perfect OSA detection 

results.  

 

Conflict of interest 

Authors state no conflict of interest. 

 

 

 

TABLE 3. The comparison of the OSA detection results  

based on various methods. 

References Feature 

extraction/s

election 

method 

Classifier Results 

ACC% Sens% Spec% 

[1] Zarei 

2018 

DWT+SFFS SVM (RBF 

kernel) 

92.98 91.74 93.75 

[2] Song 

2016 

HMM HMM+SVM 86.2 82.6 88.4 

[3] Hassan 

2017 

TQWT RUSBoost 88.88 87.58 91.49 

[4] 

Gonzalez 

2017 

Cepstrum+ 

Filter bank 

QDA 84.76 81.45 86.82 

[5] Hassan 

2016 

Statistical 

and spectral 

Bootstrap 

aggregating 

85.97 84.14 86.83 

[6] Hassan 

2016 

Normal 

invers 

Gaussian 

modeling 

AdaBoost 87.33 81.99 90.72 

[7] Sharma 

2016 

QRS features LS-SVM (RBF 

kernel) 

83.8 79.5 88.4 

[8] 

Hilmisson 

2018 

Frequency 

features 

Statistical 

analysis 

93 100 81 

[9] 

Janbakhshi 

2018 

Time domain 

feaures+PSD 

SVM-KNN-

NN-LD-QD 

90.9 89.6 91.8 

[10] Ma 

2019 

Statistical 

features 

Statistical 

analysis 

87 89 79 

[11] Nishad 

2018 

Tunable-Q 

wavelet 

transform 

features 

Random 

Forest 

92.78 93.91 90.95 

[12] Wang 

2019 

RR-intervals CNN (LeNet-

5) 

92.3 90.9 100 

[13] Singh 

2019 

Time-

frequency 

Scalogram 

features 

CNN 

(AlexNet) 

86.22 90 100 

[14] 

Urtnasan 

2018 

RR-intervals CNN 96 96 96 

[15] Wang 

2018 

RR-intervals CNN 97.8 100 93 

[16] 

Sharma 

2019 

Fuzzy-

entropy 

(FUEN) and 

the Log of 

signal-

energy 

(LOEN) 

KNN-DT-

SVM 

90.87 92.43 88.33 

[17] Avci 

2015 

DWT+PCA Random 

forest 

92-98 - - 

[18] 

Rachim 

2014 

DWT+PCA SVM 94.3 92.65 92.2 

Proposed 

method 

DT-

CWT+SRDA 

Hybrid “k-

means, RLS” 

RBF 

95.62 96.37 96 
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