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Abstract 
Electrical impedance spectroscopy (EIS) measurements on cells is a 

proven method to assess stem cell proliferation and differentiation. 

Cell regenerative medicine (CRM) is an emerging field where the 

need to develop and deploy stem cell assessment techniques is 

paramount as experimental treatments reach pre-clinical and 

clinical stages. However, EIS measurements on cells is a method 

requiring extensive post-processing and analysis. As a contribution 

to address this concern, we developed three machine learning 

models for three different stem cell lines able to classify the 

measured data as proliferation or differentiation laying the stone 

for future studies on using machine learning to profile EIS 

measurements on stem cells spectra. 
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Introduction 

Cell regenerative medicine (CRM) is a field that started to 

emerge in recent years. Advancements in growth and 

manipulation of stem cells allows us to envision the 

possibility of replacing damaged tissues with synthetic 

solutions based on cells grown artificially [1]. The success of 

the development of these technologies depends at a basic 

level on two fundamental cell behaviors: proliferation and 

differentiation as stem cells need to replicate and then to be 

matured. However, relevant challenges are yet to be solved. 

Poor cell retention and survival, teratoma of pluripotent 

stem cells in vivo and limited cell fate and survival non-

invasive assessment in vivo prevent the management of cell 

regenerative techniques [2]. Even something as fundamental 

as assessing cell survival remains elusive in vivo [3]. For these 

reasons, it is paramount to develop and study technologies 

that allow for non-invasive cell behavior assessment [4]. 

One important cell behavior in cell regenerative 

medicine is proliferation, that is, the ability for the cell to 

replicate itself in its current form to an identical copy of 

itself, which is the fundamental process to be able to grow 

synthetic cell based tissues. To this purpose, it is important 

to develop non-invasive assays of cell proliferation events to 

evaluate whether or not cells are growing. In addition to 

proliferation, cells can undergo the process of 

differentiation, which is when the stem cells mature in 

different cell types, either artificially or naturally during 

development. It should also be noticed that there are 

different types of stem cells, for example pluripotent stem 

cells can be differentiated into any cell type while more 

specific stem cell lines such as neural stem cell will 

differentiate into different types of neurons and glial cells. It 

is also fundamental to develop techniques to assess this 

process to ensure cells differentiate into the targeted cells 

and not into teratoma or other abnormal structures [5]. 

Neurodegenerative disorders occur as a result of pro-

gressive loss of structure, function or death of neurons in the 

central nervous system. Many of these disorders such as 

Parkinson’s, Huntington’s or Epilepsy have a high prevalence 

and are associated with impairments and disabilities with 

high emotional, financial and social burden for not only the 
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patients but also the community. These diseases are 

incurable thus requiring the development of treatments [6]. 

An increasing trend in the research for CRM treatments for 

neurodegenerative diseases is the development of 

implantable stem cell based medical devices. The basic 

premise of these treatments is to replace dysfunctional 

neuronal structures with implanted replacements as 

previously described urging to solve the aforementioned 

challenges [7]. 

While the integration of cell fate imaging in clinical trials 

may help overcome these obstacles, live bioimpedance 

monitoring may be the ideal candidate to surveil those 

treatments [4]. Moreover, a panoply of monitoring and 

control strategies will be fundamental in overcoming these 

problems to enable the success of cell-based regenerative 

medicine [2]. Many studies based on electrical impedance 

measurements of live biological cells allowed the technique 

to become widely accepted as a label free, non-invasive and 

quantitative analytical method to determine cell status. 

Electrical impedance has been shown to be successful not 

only to proliferation [8] but also apoptosis [9], migration 

[10], degeneration [11], morphological changes [12] and also 

(neuronal) differentiation [13]. 

However, electrical impedance measurements can be 

quite complex. While single frequency measurements are 

sufficient to provide information about cell proliferation[14], 

complex behaviors such as differentiation are frequency 

dependent [13]. Electrical impedance spectroscopy (EIS) 

measurements use a multi-frequency AC signal to take an 

array of impedance measurements resulting in a 2D 

spectrum. The specificities of each spectrum are not immedi-

ately visible (see Figure 1) and often require extensive post-

processing [13]. Even for traditional bioimpedance measure-

ments, parametrization of the data to electrically equivalent 

circuits is often a challenge on its own, and while some single 

cell measurements are success stories of this approach [14], 

the scalability of these methods as we delve into complex 

collective and highly non-linear biological processes such as 

stem cell differentiation, it becomes nearly impossible to 

establish variables much less to model the entire system. On 

the other hand, with the possible exception of textbook 

applications, the machine learning methods rapidly become 

very complex resulting in black-box models where the 

interpretation of the relation between variables is often 

labelled as speculative even if effective [15].  

Passive electrical properties in cell cultures reflect the 

combination of structures and liquids that form the cell like 

cell membranes and cytoplasm culture but also the 

apparatus like scaffolds and electrodes. Ionic conduction in 

the cell culture medium and biological liquids contribute to 

the resistivity, while membrane structures contribute to the 

capacitive properties. While it can be argued that in cell 

proliferation measurements the relationship between the 

biological processes and changes in the passive electrical 

properties are fairly linear, reaching a saturation level not 

changing in direction as the process evolves, such is not the 

case in cell differentiation. Cell differentiation is a complex 

phenomenon where stem cells dramatically change shape 

and space distribution. Through simultaneous processes of 

migration, proliferation and transient reshaping from stem 

cell to mature cell geometry, stem cells mature into neurons 

or astrocytes for instance, changing from fairly aggregated 

ellipsoids to dendritic shapes and networks. This can be seen 

as a highly non-linear system characterized by conflicting 

events that simultaneously compete such as proliferation 

(impedance increase) or the increase in the total area of cell 

membrane (increasing electrical capacitance) created by the 

dendritic geometry competing with decreased cell density as 

neurons are sparser when compared to the precursor stem 

cells (less cells and therefore less total membrane and also 

big morphological changes). As with tissue [16], this leads to 

the possibility that the value of electrical parameters 

changes at different rates and overlap at different time 

durations of the underlying biological processes, making the 

ability to discern the state of the cell culture dependent on 

memory and the historical development of the parameters 

as not every cell will not undergo the same process at the 

same time. This represents a big challenge even for the 

application of machine learning as the differentiation 

phenomenon is non-linear both in time and also regarding 

the subjacent processes that compose it. 

However, this change ultimately results in different 

impedance spectra, an increased granularity is required by 

coupling EIS with a time series analysis. One big obstacle to 

this approach is that even the most established methodolo-

gies require extensive manual measurement and post 

processing analysis. As an example, a system based on a chip 

with 54 electrodes with a resolution of 51 points through a 

spectrum of 500 Hz to 5 MHz will result 2754 data points per 

chip for a single measurement! To address this issue, a 

popular method to reduce the information of the system, 

reducing it to the changes it experiences from measurement 

to measurement is to use relative impedance over the 

maximum change of an averaged spectrum for each daily 

measurement. While this is an intelligent way of both dealing 

with electrode contributions and also reducing the size of 

the samples, we argue that machine learning methods offer 

a viable mechanism to automate some of the post 

processing methods since it can be used to perform 

automatic feature extraction and enabling new insights over 

the processes subjacent to cell differentiation by allowing 

increased granularity through post processing automation. 

Also, as CRM becomes an established field, clinical 

monitoring will take precedence over scientific interpret-

tation [16], making the prediction performance more 

important than drawing inference from the data. The overall 

aim can typically be to assess cell state or levels of
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Figure 1: Relative impedance spectra for the three cell lines for proliferation (green) and differentiation (blue) on Day 20.

pathological changes related to situations where there is a 

need for improvement of the cultured cells. Recent studies 

from our group demonstrated promising results using a 

recurrent neural network (RNN) with long short-term 

memory (LSTM). Through hours long measurements, they 

obtained high classification accuracies using repeated 

measurements in tissue related studies suggesting that this 

type of machine learning approach may be useful in a wider 

sense for impedance time series problems [16,17]. 

In this study however, we investigate the use of these 

same methods for the analysis of EIS measurements on 

neural precursor cells (NPC) proliferation and differentiation 

characteristic profiles, with the aim of assessing the 

potential in distinguishing both biological events under 

conditions where conventional methods would be 

inadequate. By profiling differentiation and proliferation, we 

expect to be able to be able to identify trends subjacent to 

differentiation and proliferation during different stages. 

With this work, we expect to lay the stone for a pioneering 

framework that may advance the possibilities in fully utilizing 

the information within EIS measurements on differentiating 

stem cell cultures. 

 

Materials and methods 

Since this work is a pioneering proof of concept relying on 

data obtained from previous experiments with measures 

that lack the necessary time resolution for an in depth work, 

we limited the scope to a simple but useful application: 

distinguish cell proliferation from the differentiation 

processes. The cell measurements were conducted at the 

Division of Molecular Biological-Biochemical Processing 

Technology, Center for Biotechnology and Biomedicine 

(BBZ), University of Leipzig, Germany. The overall setup 

follows the methodology developed by this group [13].  

As a proof of concept, we tried to constrain the data 

variables as much as possible without compromising the 

quality of the study. With this in mind, we chose to follow 

the original methodology [13] behind the work done using 

this setup and used relative impedance spectra as the source 

of our data. The basic setup consists of a Sciospec ISX-5 

impedance analyzer (ScioSpec GmbH, Germany) and 20 

different single well microelectrode array (MEA) chips of 54 

electrodes with a common reference sharing the same 

design. Measurements were done from 500 Hz to 5 MHz 

across 51 frequencies (approximately at 10 per decade). To 

ensure variability, three different cell lines of pluripotent 

stem cells were used and for each one of them, a different 

model was trained. Each model was trained using only the 

data from two MEAs, one for proliferation and another for 

differentiation for day 20. The three cell models were tested 

on a total of 20 different MEAs (4 differentiation chips and 2 

proliferation chips for the first two cell lines, and 3 

differentiation chips and 5 proliferation chips for the third) 

performed on day 20 but also on day 10. While the focus of 

this work is to be able to distinguish proliferation from 

differentiation, we also expect to draw some conclusions 

about the robustness of the model trained only using the 

information of a single day on catching the trend of the 

process at a much earlier stage on day 10. 

 

Cell lines and cell culture 

Experiments were performed with hiPS cell lines 4603c27, 

IMR90c01 and IMR90-4. IMR90c01 and 4603c27 were 

obtained from the Institute for Stem cell Therapy and 

Exploration of Monogenic diseases (I-Stem), while IMR90-4 

was obtained from WiCell Research Institute, Inc. 

The hiPS cells were cultured in self-prepared mTeSR1 

(mTeSR1self), according to the published protocol by Ludwig 

et al. [18], at 37 °C, 5 % CO2 and 95 % relative humidity. 

Before cell seeding, plastic ware was coated with growth 

factor-reduced Matrigel (Corning, cat.-nr. 356231) at a 

concentration of 0.12 mg/ml in DMEM/F12 for 2 h at room 

temperature or overnight at 4 °C. A medium change was 

performed every other day. Passaging of hiPSCs was 

performed in colonies with 0.5 mM EDTA solution. 

The three hiPS cell lines were differentiated into stable 

neural precursor cell (NPC) lines using a protocol by Li et al. 

[19]. For this, hiPSCs were seeded as single cells in neural 

induction medium (NIM) and cultured for 7 days with 

medium change every second and later every day. See 

Supplemental Material for media composition. On Day 7, the 

generated NPCs were passaged with 0.05 % Trypsin-EDTA  
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Figure 2: 1w54e-Microelectrode array with 54 measurement electrodes in a single well format.  

Arrangement of electrodes with diameter and horizontal and vertical spacing shown in mm. 

and cultivated in neural proliferation medium (NPM) for ten 

passages to generate stable neural precursor cell lines. 

10 µM ROCK-Inhibitor was added during the first six 

passages.  

For the final differentiation from NPCs to mature 

neurons, cells were cultivated in astrocyte-conditioned 

medium for up to 35 days. For long-term cultivation, 

Matrigel was used at a higher concentration of 0.18 mg/ml. 

 

Generation of astrocyte-conditioned medium (Astro-NDM) 

Primary murine astrocytes were isolated from cortices of 

neonatal rats (postnatal day 1). The preparation was done in 

accordance with animal welfare laws. Astrocytes were 

expanded in astrocyte proliferation medium (see 

Supplemental material for media composition). Media were 

changed every 2-4 days with thorough washing to remove 

neurons and other less adherent cells. 

At confluence, astrocyte proliferation medium was 

changed to neuronal differentiation medium (NDM). NDM 

was kept on the astrocytes for 4 days to generate astrocyte-

conditioned medium (Astro-NDM). The Astro-NDM was 

sterile-filtered and stored at -20 °C. 

 

Microelectrode arrays (MEA) 

For impedance spectroscopy, microelectrode arrays (MEAs) 

with 54 measurement electrodes and a single connected 

reference electrode, all made from gold, were used. The 

electrode arrangement is shown in Figure 2. All MEAs were 

produced in a clean room facility with standard lift-off 

techniques by the Division of Molecular Biological-

Biochemical Processing Technology, Center for Biotech-

nology and Biomedicine (BBZ), University of Leipzig, 

Germany. 

 

Electrical impedance spectroscopy (EIS) 

Impedance spectra were recorded during the final 

differentiation from NPCs to mature neurons with a hybrid 

instrument for impedance spectroscopy and field potential 

recording (ScioSpec ISX-5, ScioSpec GmbH, Germany). NPCs 

generated with each hiPS cell line were seeded on MEAs at a 

density of 1 Mio cells/cm2 and differentiated with astrocyte-

conditioned medium (Astro-NDM). As a control, NPCs were 

also seeded at a density of 0.25 Mio cells/cm2 and cultivated 

in neural proliferation medium (NPM) for comparison of 

neuronal differentiation and proliferation. Impedance 

spectra were recorded every fifth day for up to 35 days in the 

frequency range from 500 Hz to 5 MHz (51 frequency points, 

logarithmic) at a voltage of 20 mV.  

For analysis, relative impedance (|Z|rel) was calculated 

from the impedance of the cell-covered (|Z|cell) and cell-free 

electrode (|Z|blank) based on the following equation: 

 

|𝑍|𝑟𝑒𝑙 [%] =  
|𝑍|𝑐𝑒𝑙𝑙 − |𝑍|𝑏𝑙𝑎𝑛𝑘

|𝑍|𝑏𝑙𝑎𝑛𝑘
 ∙ 100 % 

 

Very low relative impedance values from electrodes not or 

only partially covered with cells, as well as extremely high 

relative impedance values from damaged electrodes were 

excluded from analysis. 

 

Training of artificial neural networks 

Cell proliferation and differentiation electrical impedance 

spectra can be interpreted as bidimensional sets of 

information. Changes in the spectrum as time goes by 

represents one dimension of the problem while frequency, 

which in this case is expected to reflect the spatial changes 

in the system, represents another. While it would be 

interesting to use machine learning methods to assess the 

time dependencies of the underlying biological processes 

especially in the case of differentiation, constraints on 

available data prompted a different route for this study. The 

space (frequency) and time domains of this system are not 

independent as spatial changes occur as a dependency on 

time as the system evolves and the changes in the spectra 

are not drastic, but smooth reshapes. In the domain of 

biology, we can recall the words of Leibniz, Natura non facit 

saltus. As we profile both proliferation and differentiation, 
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Training 4603c27   IMR90c01   IMR90-4   

Day 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 

20 1553 1514 1 0 1517 1519 1 0.02 1552 1510 0.91 0.35 

Testing                         

Day 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 

20 1520 1564 0.88 0.56 1555 2021 0.78 0.64 2020 1516 0.87 0.50 

 2012 1564 0.87 0.77 2042 2021 0.74 0.56 2022 1516 0.96 0.45 

 2041 1564 0.94 0.22 2050 2021 0.82 0.57 2055 1516 0.95 0.42 

 2044 1564 0.97 0.15 2053 2021 0.72 0.60 2020 1556 0.81 0.53 

 1520 2047 0.86 0.55 1555 2048 0.77 0.77 2022 1556 0.93 0.47 

 2012 2047 0.85 0.79 2042 2048 0.73 0.73 2055 1556 0.91 0.44 

 2041 2047 0.93 0.16 2050 2048 0.81 0.80 2020 2010 0.86 0.52 

 2044 2047 0.97 0.82 2053 2048 0.71 0.71 2022 2010 0.97 0.46 

         2055 2010 0.96 0.43 

         2020 2013 0.83 0.55 

         2022 2013 0.93 0.48 

         2055 2013 0.92 0.46 

         2020 2014 0.84 0.58 

         2022 2014 0.95 0.51 

         2055 2014 0.93 0.48 

Average     0.91 0.50     0.76 0.67     0.91 0.47 

 

Table 1: Accuracy and loss data for both training and testing (day 20) for day 20 cell models.  

Maximum (green) and minimum (red) values signalled for each cell model. 

 

we expect to be able to profile the underlying features of 

each spectra that allow a classification on one or the other. 

By testing these models at an earlier stage of the biological 

process, we will test the ability of the model capturing the 

aforementioned features by applying them at an earlier 

stage. While an accuracy drop is expected, if the model is 

overfitted, this drop should be accentuated but if it still 

performs favorably, then we might speculate that we are 

successful at catching relevant features. 

This double nature of the problem motivates us to 

procure a contextual solution. As we wish to profile the 

spectra, we interpret them as a sequence classification 

problem where the spectra are interpreted as sequences and 

classification is between proliferation and differentiation. 

For this kind of problem, recurrent neural networks are often 

the typical solution [20]. Artificial neural networks are a set 

of algorithms, which are modelled after the human brain. 

The input data is passed through the nodes that contain 

activation functions before they are passed on to the next 

layer nodes where we eventually use the output from the 

output nodes. For this case, we used Long short-term 

memory (LSTM) artificial recurrent neural networks. A 

special feature of LSTM is their ability to carry short term 

information across the layers which provides the contextual 

ability we need. This type of neural network is often used to 

classify sequences through space or time or linguistic 

processing with the weakness of easily incurring in 

overfitting, by far the biggest problem with these 

implementations [21]. 

To address overfitting concerns, two methods were 

used. A fully connected hidden layer is added using Ridge 

regularization. This particular choice of regularizer is known 

in the machine learning literature as weight decay because 

in sequential learning algorithms, it encourages weight 

values to decay towards zero, unless supported by the data 

[22]. While the hidden layer used Ridge regression for weight 

decay, ensuring the neural network to become an ensemble 

of weak classifiers, random Dropout was implemented 

meaning randomly selected classifiers were dropped during 

training to be recovered again during testing of the model 

resulting in higher accuracy during testing and reducing 

overfitting [23]. 

To translate the probabilistic nature of the model into 

either proliferation or differentiation classes, a Softmax 

activation function after a dense layer was used (mimicking 

the binary classes into a distribution) as the model outcome 

should express the underlying features likelihood to be one 

or the other. By assigning decimal probabilities to the 

categories, they must add to 1.0 providing an additional 

constraint to the method resulting in faster convergence. 
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Training  4603c27       IMR90c01        IMR90-4     

Day ID (Diff.) 
ID 
(Prol.) 

Accuracy Loss ID (Diff.) 
ID 
(Prol.) 

Accuracy Loss 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 

20 1553 1514 1 0 1517 1519 1 0.02 1552 1510 0.91 0.35 

Testing                         

Day ID (Diff.) 
ID 
(Prol.) 

Accuracy Loss ID (Diff.) 
ID 
(Prol.) 

Accuracy Loss 
ID 
(Diff.) 

ID 
(Prol.) 

Accuracy Loss 

10 1520 1564 0.78 0.65 1555 2021 0.66 0.60 2020 1516 0.87 0.60 

 2012 1564 0.74 0.56 2042 2021 0.57 0.77 2022 1516 0.80 0.62 

 2041 1564 0.81 0.57 2050 2021 0.64 0.90 2055 1516 0.90 0.55 

 2044 1564 0.72 0.60 2053 2021 0.64 0.57 2020 1556 0.88 0.59 

 1520 2047 0.77 0.70 1555 2048 0.67 0.63 2022 1556 0.81 0.62 

 2012 2047 0.73 0.62 2042 2048 0.57 0.79 2055 1556 0.92 0.55 

 2041 2047 0.80 0.62 2050 2048 0.65 0.92 2020 2010 0.89 0.59 

 2044 2047 0.70 0.65 2053 2048 0.65 0.60 2022 2010 0.82 0.61 

         2055 2010 0.93 0.54 

         2020 2013 0.86 0.60 

         2022 2013 0.79 0.62 

         2055 2013 0.89 0.56 

         2020 2014 0.87 0.63 

         2022 2014 0.80 0.65 

         2055 2014 0.91 0.58 

Average     0.76 0.62     0.63 0.72     0.86 0.59 

 

Table 2: Accuracy and loss data for both training and testing (day10) for day 20 cell models.  

Maximum (green) and minimum (red) values signalled for each cell model. 
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Results 

The training accuracy of 100% with minimal loss for two of 

the three cell lines show the algorithm was able to learn the 

differences between a proliferation and a differentiation 

spectrum while the third cell line shows 90%. Loss at near 

zero for the two first cell lines against 30% for the third 

should be noticed. During the test for the same day of the 

training data, day 20, the results are very good. With a 

maximum accuracy of 97%, 82%, 97%, minimum of 85%, 

71%, 81% with an average value of 91%, 76%, 91% for each 

of the cell lines, the model validates the data we are using as 

it shows high similarity between similar cell cultures. By 

analyzing the expected accuracy drop as we apply the model 

to a different day, the average accuracy drops by 15%, 13%, 

5% to 76%, 63%, 86% for each cell line. 

 

Discussion 

As we performed this study, two major conclusions were 

reached. Machine learning methods are a powerful tool to 

process EIS measurements on cells, having shown the ability 

to distinguish both proliferation and differentiation 

behaviors which could have countless applications on stem 

cell implant therapies. 

While the focus of this work is to be able to distinguish 

proliferation from differentiation, we also expect to draw 

some conclusions about the robustness of the model trained 

only using the information of a single day (day 20) by 

catching the features of the process at a much earlier stage 

at day 10.  The accuracy drop of 15% and 13% for the first 

two cell lines as we apply the model to a different day could 

suggest the models were capable of extracting underlying 

features of differentiation and proliferation and that we 

probably avoided excessive overfitting. However, the third 

cell line model distinguishes itself with a drop of 5%. At the 

same time with a training loss of almost 30% versus the very 

low training loss for the two previous models, it might 

indicate in one hand that the two first cell lines spectra are 

more distinguishable (see Figure 1) but may also point for 

some overfitting on these cases. As the third cell line model 

holds itself better through time changes, it is suggested that 

the underlying features extraction was successful here but 

considering the limitations of the available data, this 
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hypothesis requires further research. It is relevant to point 

that, as the model profiles the spectra by using memory 

mechanisms, this same result points strongly to the coupling 

effects between the shape of the spectrum and its evolution 

through time, which suggests that valuable insights might be 

obtained by addressing the temporal behavior of the system. 

By studying the difference between differentiation and 

proliferation using the aforementioned machine learning 

methods, as differentiation is an umbrella process composed 

by many subprocesses, we speculated that an underlying 

proliferation process might be shown at an earlier stage of 

the cell culture by a model trained at a later stage by the 

systematic accuracy drop as the ability of the model to 

distinguish both processes decreases. While the results point 

towards this, the third cell line drop at only 5% is not enough 

to draw this conclusion without more data.  

While still in its infancy, this proof of concept suggests 

that machine learning methods might be used to identify the 

underlying biological processes beneath stem cell 

differentiation. A possible approach would be to model each 

basic behavior (migration, reuptake, proliferation, reshape) 

and by using high time resolution EIS measurements, to 

determine the dominant process during each stage of 

differentiation or less ambitiously, to perform a time series 

analysis with the methods used in this work. 
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Supplemental material: Cell culture media 

Indirect neuronal differentiation – Generation of neural precursor cells (NPCs) 

Component   Concentration 

 NIM         NPM 

Advanced DMEM/F12 : Neurobasal™ 1:1   1:1 

B-27™ Supplement   2 % (v/v) 2 % (v/v) 

N-2 Supplement 1 % (v/v) 1 % (v/v) 

GlutaMax™   1 % (v/v)   1 % (v/v) 

LIF   10 ng/ml 10 ng/ml 

CHIR99021  4 µM 3 µM 

SB431542  3 µM 2 µM 

Compound E 0.1 µM - 

BSA 0.0005 % (w/v) 0.0005 % (w/v) 

 

Preparation of Astrocyte-conditioned medium (Astro-NDM) 

 

Component  Concentration 

Astrocyte proliferation medium  

Neurobasal™  

FBS 10 % (v/v) 

GlutaMax™ 1.5 % (v/v) 

Pen/Strep 0.2 % (v/v) 

Gentamicin 0.04 % (v/v) 

  

Astro-NDM   

DMEM/F12  

Apotransferrin  0.0095 % (w/v) 

Ascorbic acid 300 µM 

cAMP 300 nM 

Glucose monohydrate 33.3 mM 

GlutaMax™ 1 % (v/v) 

Heparin 0.0004 % (v/v) 

HEPES 5 mM 

Insulin, human 0.0025 % (w/v) 

NaHCO3 3 mM 

Sodium selenite 30 nM 

Progesterone 20 nM 

Putrescine 60 nM 

Pen/Strep 0.2 % (v/v) 

Gentamicin 0.04 % (v/v) 

 

 


