The ACL Fixation

Ion Bogdan Codorean1, Ștefania Tănase1, Vlad Predescu2, Octav Russu3, Radu Prejbeanu4, Tiberiu Bățagă3, Eduard Marcel Cernat1

1 Department of Orthopedics and Traumatology, Central Military Hospital, Bucharest, Romania
2 “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
3 University of Medicine and Pharmacy, Tîrgu Mureș, Romania
4 “Victor Babeș” University of Medicine and Pharmacy, Timișoara, Romania

ABSTRACT

ACL rupture frequently occurs due to a pivotal movement between the tibia and femur. In lack of reconstruction surgery of the ligament, osteoarthritis appears. The ACL graft can be fitted through different systems: compression, expansion and suspension. Although different in technique, the clinical end-results show little differences.

Keywords: ACL fixation, surgical reconstruction, fixation types, different techniques

INTRODUCTION, HISTORY AND DESIGN

Various factors need to be taken into consideration for anterior cruciate ligament (ACL) restoration surgery to be successful, such as patient and graft selection, fixation technique, surgical procedure (approach, tunnel positioning, graft tensioning), and the recuperation plan following surgery. The fixation method is the factor that seems to influence the mechanical features of the graft in the initial period after surgery, therefore it is a key aspect in the physiotherapy protocol. The main reason of ACL restoration surgery failure seems to be the tunnel placement.

The first ACL reconstruction surgery is attributed to Hay Groves in 1917. In 1930 Ivor Palmer wrote the first monographs on the subject, in which early suturing of the ligament was advocated. Modern treatment began with the work of Macintosh and Erickson, who advocated reconstruction rather than repair of the ACL with patellar tendon. In the 1980s Macintosh pioneered the extra-articular reconstruction, while Erickson replaced it with intra-articular reconstruction. In the 1980s the graft used was from patellar tendon, but due to the improvement of graft preparation and fixation, in the 1990s the semitendinosus tendon graft became more popular. In 1984 Noyes et al. subjected various tissue grafts for ACL reconstruction in order to evaluate their potency and elongation features, and compared them to the mechanical features of the native, undamaged ACL. They presented an approximation of ACL loading in vivo, throughout usual move-
ments at 454 N and an ultimate failure load of 1750 N.3 The original biomechanical study of ACL graft fixation was conducted by Kurosaka \textit{et al.} in 1987. They showed that bone-patellar tendon-bone (BPTB) grafts stabilized with titanium interference screw were superior to staples and sutures tied across buttons from a mechanical point of view. They concluded that the weakest link in ACL surgical restorations is the placement of the fixation, which has, since then, influenced further research.4

Nowadays, several fixation systems are accessible for either soft-tissue or bone-tendon-bone (BTB) grafts; a number of studies compare the two grafts, and show significant differences between them, but with excellent clinical results with both methods.

Milano \textit{et al.} took into consideration three different units to better understand the femur-graft-tibia system: a femoral fixation-site unit, a tendon unit (the graft), and a tibial fixation-site unit.5 The graft will influence the use of different stabilizing devices at the femoral and tibial site. The three main fixation characteristics are: strength, slippage and stiffness. Strength, measured in newtons (N), is the characteristic of the graft fixation system to oppose the weight that leads to definitive displacement of the fixation system. The graft fixation device needs to be stiff enough to permit biological assimilation of the graft into the osseous tunnels while restoring the displacement of a given load. The slippage or stretch characteristic concerns modifying the position of the first graft stabilization point at a precise quantity of submaximal load sequences. There are three main types of ACL fixation devices: compression, suspension and expansion (Table 1). ACL fixation methods can also be divided into many ways (Table 2).

\textbf{BIOLOGY}

Based on histological studies, the graft passes through 4 stages of assimilation.

During the initial phase, characterized by acute inflammation, a process of necrosis due to ischemia takes place. Subsequently, chronic inflammation sets in, and the next three stages come about: revascularization, cell proliferation and collagen remodeling. The molecular mechanisms that occur include the resorption of intraarticular bleeding, the elimination of debris within the synovial liquid, collagen deposition, the expression of growth factors, and will eventually lead to successful graft assimilation.

The healing process seems to begin with proliferation at the bone-tendon interface with the proliferation of fi-

\begin{table}[h]
\centering
\caption{ACL fixation devices and a personal opinion in its popularity}
\begin{tabular}{|l|l|l|}
\hline
Device & Fixation Type & Popularity \\
\hline
Interference screws & Direct – compression & + \\
Press-fit fixation & Direct – compression & – \\
Screw/screw-washer fixation & Direct – compression & + \\
Staples & Direct – compression & + \\
Buttons & Indirect – suspension & +/- \\
Cross-pins & Indirect – expansion & +/- \\
Aperture fixation & Direct – compression & –/+ \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Other classification of ACL fixation methods}
\begin{itemize}
\item Aperture or intratunnel fixation
 \begin{itemize}
 \item Interference screws
 \item Cross pins
 \end{itemize}
\item Extra-articular fixation
 \begin{itemize}
 \item Cortical fixation devices
 \item Femoral loops
 \item Tibial cortical fixation
 \end{itemize}
\item Anatomical (aperture or joint line fixation)
\item Non-anatomical (staples, buttons)
\item Semi-anatomical (transfixation devices, distal interference fixation)
\item Direct fixation (graft anchored to the tunnel without using additional material except the fixation device itself): interference screws/staples/spiked washers \rightarrow compress the graft against the bone
\item Indirect fixation (linkage material between graft and fixation device): cross-pin fixation/endobuttons/adjustable buttons \rightarrow suspend the graft within the bone tunnel
\end{itemize}
\end{table}
Interference screws can be used in all types of grafts. The main factors that influence screw fixation are: length, size and geometry of the screw, divergence of the screw, torque of screw insertion, bone mineral density (BMD) and screw material.5,11

BMD is perhaps the most significant variable that chooses the primary fixation force, rigidity and opposition to sliding during cyclical loading. BMD is lower in females compared to males, and decreases with age. BMD of the tunnel in the tibia is decreased compared to the femoral burrow, therefore a screw with a larger diameter is used for stabilization in the proximal tibia, and the anterior medial region of the tibia is adequate.

Screw length does not show to influence the initial fixation properties, but longer ones are better in hamstring graft.

Screw deviation of more than 15 degrees from tunnel orientation dramatically decreases the fixation strength of the construction.

Three main varieties of interference screws are available: metal, biodegradable and biocomposite.12,13 Metal screws were traditionally used for fixation in ACL restorations for several years, with high primary fixation strength while promoting early osseous integration. The disadvantages of using metal interference screws are: possible injury of bone-tendon connection while positioning the screw, posterior cortex damage, the presence of intra-articular hardware, postoperative MRI with distortion images, and the need to remove the hardware in revision surgery. Titanium screws get covered by bone tissue, while steel screws get enveloped by fibrous tissue.11,12 Due to the evolution in the field in bioengineering and biomaterials, biodegradable, biomimetic and biocompatible screws were developed. Two main types exist: slow-degradable and fast-degradable screws. Each polymer used has its own properties, such as: polyglycolic acid (PGA), polydioxanone, but better results were discovered by blending different copolymers, such as polyglycolic acid/polyactic acid (PGA/PLA), rising above the limits of one-type polymers. Biocomposite screws use a mixture of the polymers listed, as well as and osteoconductive materials, such as beta tricalcium phosphate or hydroxyapatite, useful in cell adhesion. These types of screws are destined to dissolve over time, but in contrast to biodegradable implants, the osteoconductive properties promote graft assimilation and formation of new osseous tissue.

The scientific literature mentions several downfalls of the use of biodegradable interference screws, such as intraoperative or early postoperative screw breakage, screw

\textbf{INTERFERENCE SCREWS}

Interference is the distance by which the diameter of the screw surpasses the gap between the graft and the tunnel.
migration, foreign body reaction with cyst or abscess formation, tunnel widening over time, and a higher cost compared to metal screws.13–17 Popular these days is the use of plastic implants made of polyetheretherketone (PEEK) and polyethylene terephthalate (PET). They do not resorb, are inert, are not responsible for allergic reactions, do not interfere with imaging studies, and in case of revision surgery, they can be overdrilled.5,18

BUTTONS

The button fixation device consists of a metal plate with suture loops. Different companies manufacture different products, such as EndoButton™ (Smith & Nephew, Figure 1A), Tight Rope™ (Arthrex), ToggleLoc (Biomet, Figure 1B), and many others. The hardware is placed through a tunnel drilled in the femur distally on the anterolateral cortical bone, which suspends the graft in the tunnel. In this type of stabilization method, resistance vectors at the bone-hardware interface are parallel with the cortex of the distal femoral bone, and opposite to pull-out forces. The interface of the fixation device depends on the design of each manufacturer.5,19,20

CROSS-PINS

In the case of cross-pin stabilization, the secure end is close to the joint, and the pin in the tunnel provides graft expansion. The system provides a very solid fixation, with no tunnel movement and no graft damage, the main disadvantage is the need of a long graft.19–22

STAPLES

This type of system provides a solid fixation either in the femur or tibia, usually used in non-anatomical “over the top” ACL reconstruction. The biggest risk is breakage during implantation, and it can be felt under the skin.23

COMPLICATIONS

Complications that occur during ACL restorations can be categorized into intraoperative (technical mistakes) and postoperative complications. The most important intraoperative complication is femoral and tibial tunnel placement, while postoperative complications are: arthrofibrosis, motion problems, infection and hemarthrosis.

An unsuccessful fixation involves loss and slippage, and is a concern for many surgeons. Femoral fixation using EndoButton™ has excellent biomechanical properties, is able to endure the forces that occur during normal daily activities, and is less susceptible to graft slippage while applying loads. Disruption of the femoral tunnel (back-wall blowout) can happen due to a miscalculation on part of the surgeon, or due to the use of interference screw fixation. When this occurs, the surgeon must be familiar with other fixation techniques, such as cross pins or two-incisions techniques to allow for fixation on the femoral cortex. The XtendoButton™ can be fitted on the EndoButton™ system when the femoral socket is drilled too deep, thus opening the femoral tunnel.24,25

Tunnel expansion and widening appear most frequently in the use of autogenous hamstring tendon versus autogenous patellar tendon use. MRI studies have shown that tunnel expansion is due to the accumulation of periligamentous tissue around the graft. Tunnel widening also occurs in certain patients in which biodegradable screw fixation has been employed.

CONCLUSIONS

The weakest link in the early postoperative period is the fixation system. The most important factor related to ACL
reconstruction failure is tunnel placement and anatomical reconstruction. Clinical outcomes for different devices are similar. Tibial fixation is at greater risk due to its low BMD compared to the femoral one, and we believe that a hybrid fixation at this level is a better choice.

CONFLICT OF INTEREST

Nothing to declare.

REFERENCES