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ABSTRACT

Increased levels of homocysteine (HCYS) represent a risk factor for a series of physiopatho-
logical conditions: mental retardation, cardiovascular and neurodegenerative diseases, Par-
kinson's and Alzheimer's disease, depression, osteoporosis, endothelial dysfunction and in-
hibition of cell proliferation. This paper aims to present the pathophysiological implications 
of HCYS and the correlation of hyperhomocysteinemia (H-HCYS) with critical condition in the 
intensive care unit (ICU). Hypovitaminosis B and folate deficiency is directly involved in the 
inhibition of HCYS metabolism and the accumulation of HCYS in the plasma and tissues. Criti-
cally ill patients are more prone to H-HCYS due to hypermetabolism and accelerated synthesis 
produced by reactive oxygen species (ROS). In conclusion it can be affirmed that the determi-
nation and monitoring of HCYS plasma levels may be of interest in optimizing the therapy for 
critically ill patients. Moreover, by controlling HCYS levels, and implicitly the essential cofactors 
that intervene in the specific biochemical pathways, such as vitamin B6, vitamin B12 and folic 
acid can provide a diversified and personalized treatment for each patient.
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INTRODUCTION

Homocysteine (HCYS) is a non-essential amino acid resulted from the break-
down of methionine.1 In the remethylation reaction of HCYS are involved a se-
ries of cofactors, such as pteroylglutamic acid (folic acid), cobalamin (vitamin 
B12) and pyridoxine (vitamin B6).2 HCYS normal plasma concentration is 5–14 
µmol/L.3

Therefore, low cofactor concentration leads to the inhibition of the metabolic 
cycle. HCYS accumulation in the body (hyperhomocysteinemia, H-HCYS) en-
tails multi-organ pathologies: neurological diseases — mental retardation,4 cere-
bral atrophy,5 seizures,6 depression,7 Alzheimer's disease,8 Parkinson's disease,9 
ophthalmic abnormalities,10 bone disease,11 and cardiovascular disease.12 This 
paper presents an update on the biochemical mechanisms and the pathophysi-
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ological implications of H-HCYS in patients with certain 
diseases, including polytrauma patients.

Biochemical properties of HCYS 

Structural aspects

From a chemical point of view, HCYS is a non-proteinogenic  
amino acid.12 It is structurally different from cysteine by a 
methylene group. According to the International Union of 
Pure and Applied Chemistry (IUPAC), HCYS is defined 
as 2-amino-4-sulfanylbutanoic acid,3,12 with the molecular 
formula C4H9NO2S (Figure 1).

HCYS metabolism 

HCYS is biosynthesized only in cells, from methionine.13 

Methionine is an essential amino acid, while cysteine is 
biosynthesized by transfering a sulfur atom from methio-
nine to the hydroxyl group of serine. Through the action 
of methionine-adenosyl-transferase on methionine, S-ad-
enosyl methionine is produced, which through the inter-
vention of methyl-transferase produces S-adenosyl-HCYS 
and a free methyl group (-CH3).6 Finally, adenosyl-homo-
cystienase converts S-adenosyl-HCYS to HCYS, releasing 
a molecule of adenosine.14,15

HCYS excess is captured by the kidneys and liver, where 
it is metabolized.16 HCYS is filtered at the glomerulus 
and absorbed by tubular uptake. The following enzymes: 
cystathione-β-synthase, cystathione-γ-lyase, cysteine ami-
notransferase, 3-mercaptopyruvate-sulfur-transferase are 
contained in the kidneys and convert HCYS to methionine 
through remethylation.14–17 The liver also contains the en-
zymes necessary for HCYS catabolism. In this regard, liver 
and kidney disorders lead to H-HCYS. Another important 
factor in the accumulation of homocysteine in the plasma 
is protein-energy malnutrition.16,17

The biochemical reactions that regulate the levels of 
HCYS are remethylation and transsulfuration.17 On the 
remethylation way, a methyl group is transferred via 

methylcobalamin/betaine. The methyl group is generated 
by the active form of folic acid (5-methyltetrahydrofo-
late) or by S-adenosylmethionine. After remethylation, 
methionine can be reused for the production of S-adeno-
sylmethionine, which plays an important role in several 
biochemical reactions: DNA methylation, synthesis of 
carnitine, coenzyme A and melatonin synthesis.18 HCYS 
remethy-lation uses two enzymes: methionine-synthase 
and betaine-homocysteine-S-methyl-transferase. The ac-
tion of these enzymes is regulated by two factors: vitamin 
B12, cofactor for methionine-synthase, and betaine, co-
factor for betaine-homocysteine-S-methyl-transferase. 
Methionine thus formed is successively activated by the 
action of adenosine triphosphate (ATP) and adenosyl-
transferase, forming S-adenosylmethionine. The latter, 
through a transmethy-lation reaction, generates a meth-
yl group, and through the action of S-adenosylmethio-
nine-decarboxylase it is decarboxylated contributing to 
polyamine synthesis. On the transsulfuration pathway 
HCYS is converted to cysteine and taurine by the action 
of the following enzymes: cystathione-β-synthase and 
cystathione-γ-lyase. These enzymes have as cofactor the 
active form of vitamin B6 (pyridoxal-5-phosphate). The 
decarboxylation reaction of cysteine produces cyste-
amine. Cysteamine is a precursor in the biosynthesis of 
coenzyme A or taurine (Figure 2).

Also, in the case of urgently required energy, the me-
tabolism of HCYS can be transferred to the formation of 
α-keto-butyrate, and finally obtaining succinyl-CoA. 

Pathophysiological effects of 

hyperhomocysteinemia (H-HCYS)

H-HCYS and neurological disorders 

Studies have shown that a high level of HCYS is associated 
with a high incidence of atherosclerosis. Cerebral small 
vessel disease19 is associated with a number of diseases: 
hypertension, macro- and microvascular disease, endo-
thelial dysfunction20 and leakage of the blood-brain bar-
rier.5 Kloppenborg et al. reported that patients with two or 
more atherosclerotic lesions have abnormal HCYS. Also, 
increased HCYS concentration is directly proportional to 
the degree of white matter lesions5 and lacunar infarcts.21

Other neurological disorders that present an increased 
HCYS plasmatic concentration are Alzheimer's dis-
ease,8,22,23 Parkinson's disease,9,24 dementia, cognitive de-
cline,6 schizophrenia,25 depression and migraine.14,26 An-
other condition related to high levels of HCYS reported 
by many studies is ophthalmic vascular disease. Allam et 

FIGURE 1.  The chemical structure of HCYS
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al. conducted a study on egyptian patients diagnosed with 
Behcet's disease which had high plasma levels of HCYS, 
that led to the conclusion that, in these patients, the ac-
cumulation of HCYS is directly implicated in eye injuries, 
such as retinal atrophy, vitreousum hemorrhage, retinal 
detachment and vasculopathic complications.10

The main neurotoxic effects are caused by cytosolic 
calcium accumulation, which activates several neurode-
generative kinases, as a consequence to hydrogen preoxid 
production which can degrade DNA and potentiate neuro-
nal beta-amyloid protein synthesis.19 Vitamin B and folate 
deficiency, which are directly involved in the metabolism 
of methionine as cofactors, also have neurodegenerative 
effects.19,27,28 Folate deficiency in neuroblastoma cells,14 in-
ducing free oxygen radicals simultaneously with H-HCYS, 
lead to memory loss up to 66%.29 Patients with Alzheimer's 
and Parkinson's disease have high levels of HCYS and low 
levels of vitamin B and folate.22,23 Patients diagnosed with 
schizophrenia have also been reported to have very high 

levels of HCYS together with folate deficiency and normal 
levels of vitamin B.25,30

Neuronal death and neuronal DNA structural changes 
are caused by DNA hypomethylation,31 due to the signifi-
cant decrease of two enzymes: methyl-transferase and S-
adenosyl-homocysteinase.32 H-HCYS poses a risk for cere-
bral venous thrombosis, as it is an independent factor for 
atherothrombotic disease.5,33,34 Numerous studies dem-
onstrated that there is a direct proportionality between 
HCYS accumulation in the plasma, vitamin B deficiency 
and cerebral venous thrombosis.35 Studies by Nagaraja et 
al. on indian patients showed that the correlation between 
cerebral venous thrombosis and H-HCYS, as well as folate 
deficiency is statistically significant (OR = 10.8).26

H-HCYS and cardiovascular diseases 

HCYS accumulation in the plasma can be correlated with 
cardiovascular disease36,37 caused by endothelial dysfunc-

FIGURE 2.  The biochemical pathway of homocysteine. Methionine is converted into S-adenosylmethionine through the action of me-

thionine adenosyltransferase. Subsequently, it is being demethylated to S-adenosylhomocysteine. Through the action of adenosylhomo-

cysteine homocystienase is produced. Homocysteine is converted by the action of cystathionine-β-synthase enzyme and of vitamin B6 

into glutathione. Another way of remethylation of homocysteine into methionine is represented by the folate pathway through the action 

of methionine synthase and vitamin B12. Also, in the liver and kidneys, homocysteine is remethylated in methionine through betaine-

homocysteine methyltransferase.
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tion, low density lipoprotein oxidation and monocyte 
adhesion.33 All these physiological and biochemical dys-
functions cause peripheral artery disease,38 myocardial in-
farction and coronary atherosclerotic disease.20 H-HCYS 
is associated with peripheral arthery disease especially in 
men, as opposed to women, due to hormonal differences.33,39  
In menopausal women, however, HCYS rises above the 
normal range and can reach or exceed the serum levels of 
male subjects.

Coronary artery disease has a high mortality all over 
the world, its incidence being affected by numerous en-
do-genous and exogenous factors like: stress, nutrition, 
hormonal and metabolic dysfunction, xenobiotics, and 
not least genetic determinism. Some studies describe the 
relationship between hypovitaminosis B and folic acid de-
ficiency related to H-HCYS and cardiovascular disease.3,40

Schaffer et al. demonstrated in a prospective cohort 
study on 3,056 patients that the level of HCYS is propor-
tional to the incidence of coronary artery disease.3 They 
confirmed the strong relationship between H-HCYS and 
coronary artery disease, the correlation between the two 
variables being statistically significant.3 H-HCYS is fre-
quently associated with certain pathologies of the cardio-
vascular system such as endothelial dysfunction,3 reduc-
tion of nitric oxide (NO) bioactivity34 and pro-atherogenic 
mechanism within the blood vessel. Stoiser et al. show 
that endothelial cell damage has been associated with the 
presence of laminin (high molecular weight glycoprotein). 
Through the action of HCYS on the fibronectin-fibrillin-1 
complex structural and functional modifications of the cell 
are being produced.41 The population of interest was divid-
ed into three subgroups according to HCYS tertiles, sub-
group 1 with a value lower than 13.3 nmol/mL, subgroup 
2 with a value between 13.3 nmol/mL and 18.2 nmol/mL, 
and subgroup 3 with a value higher than 18.2 nmol/mL.3 
Another cardiovascular disorder reported in the literature 
as being caused by H-HCYS is spontaneous cervical artery 
dissection with an incidence of 2.6 from 100,000 cases.42

H-HCYS and bone disease 

Numerous studies in the literature point out the risk of 
osteoporosis and bone fractures as a result of increased 
HCYS associated with oxidative stress, the production 
of free radicals and the inhibition of metabolic regenera-
tion.43–45 It has been shown that H-HCYS inhibits the bio-
synthesis of bone tissue. This process relies on osteoclasts 
destroying old bone and osteoblasts participating in the 
biosynthesis of new tissue.43 The biomechanics are regu-
lated by a number of factors — hormones, cytokines, inter-

leukins, and are inhibited by free radicals, collagen linked 
to HCYS29 and the decrease of bone vasculature.46

Tyagi et al. reported in an experimental model a signifi-
cant link between bone loss and H-HCYS.46 Kuyumcu et 
al. conducted a cross-sectional study including a group of 
2,190 patients43 regarding the implications of endogenous 
antioxidants and the implications of H-HCYS regard-
ing bone density. Uric acid is blocking the action of free 
radicals through his antioxidant capacity. In the studied 
patients low seric level of uric acid were correlated with 
a low action of xanthine oxidase. Bilirubine is the main 
blocker of the lipoprotein oxidation redox cycle, also hav-
ing a high immunomodulatory capacity. Albumin has an 
antioxidant role, mainly given by its capacity of forming a 
complex with free radicals, thus inactivating their action. 
These three endogenous antioxidants are associated with 
a low incidence of osteoporosis, most likely due to their 
capacity of equilibrating the redox status. In the opposite 
sense, high levels of HCYS are correlated with a decrease 
of bone mineral density, and implicitly with an elevated 
level of osteoporosis.43 

 Herramann et al. confirmed that osteoporosis and 
metabolic bone quality are negatively affected by the ac-
cumulation of HCYS.29 Also, Enneman et al. confirm that 
arthritis is directly related to H-HCYS.31

The relationship between H-HCYS 
and critically ill patients 

Patients with prolonged stay in the ICU frequently develop 
sepsis47 which may progress to septic shock and multiple 
organ failure (MODS). Ploder et al. report high levels of 
HCYS in patients with multiple trauma or sepsis. Studies 
show that H-HCYS and thrombophilia are key factors in 
developing septic shock.48 HCYS influences clotting fac-
tors, partialy inhibiting the coagulation cascade, particu-
larly Factor V, and stimulates the excessive production of 
oxygen free radicals.49–51 Patients hospitalized in the ICU52 
are more prone to the negative effect of H-HCYS due to 
organ dysfunction and nutritional deficiencies.9,31

HCYS level becomes markedly increased after 4 days 
of hospitalization in the ICU (compared to day 0).47 This 
can be explained by the altered metabolic status and sys-
temic inflammatory response syndrome (SIRS), sepsis 
and multiple organ dysfunction syndrome. Renal impair-
ment also contributes to increasing levels of HCYS.53 Pa-
tients with multiple trauma often develop post-traumatic 
depression, which itself leads to increased plasma levels 
of HCYS,54 being frequently associated with reduced 
physiological and metabolic capacity. B vitamins and fo-
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late are key substrates in different metabolic cycles — the 
synthesis of methionine, depression-related serotonin, 
dopamine and norepinephrine.55 The literature dem-
onstrates that B hypovitaminosis and low folate induce 
clinical depression in most patients. Pascoe et al. dem-
onstrated that patients with prolonged stay in the ICU 
develop malnutrition due to hypercatabolism,56 result-
ing in the inhibition of several metabolic cycles that lead 
to clinical depression.57,58 All these disorders, combined 
with high levels of HCYS and serious deficiencies of B vi-
tamins and folate lead to decreased survival in patients 
with multiple trauma.

H-HCYS control in critically ill patients

At present, various pharmaceutical preparations that can 
reduce HCYS are being studied. Supplementation with 
B vitamins and folate is an important alternative,59 but it 
proved not to be sufficiently effective in reducing dysfunc-
tions induced by H-HCYS. Recently a remarkable com-
pound has been introduced that inhibits HCYS anethole 
dithiolethione.36 Another compound with promising ef-
fect is resveratrol (3,5,4 '-trihidroxystilbene).60 Koz et 
al. highlighted a number of beneficial effects: it prevents 
apoptosis, has antioxidant properties and decreases in-
flammation by inhibiting nuclear factor-kappa B (NF-
ΚB). The administration of resveratrol to laboratory mice 
decreased the level of HCYS and progressively improved 
tissue sections of the aorta. In addition, resveratrol is in-
volved in complex biochemical mechanisms, stabilizing 
DNA replication and recombination, thereby prevent-
ing the neurodegenerative actions of H-HCYS.60 Ohashi 
et al. demonstrated the inhibitory action of ginsenoside 
Rb1 upon HCYS, a ginseng compound.61 This compund 
is preventing the oxidative consequences, tissue damage 
and neurodegenerative effects.

Conclusions

HCYS induces degenerative changes in many organs and 
systems. HCYS accumulation produces a series of dys-
functions that lead to impaired health status and quality of 
life. Degenerative cardiovascular diseases, the first cause of 
mortality in the world, are potentiated by H-HCYS. The 
main mechanisms are: increased concentration of the re-
active oxygenated species, DNA damage, abnormal cell 
replication and impaired vascular endothelium. Cognitive 
diseases — Parkinson's and Alzheimer's disease, ischemic 
stroke and depression are also potentiated by H-HCYS. 
The survival rate of patients with multiple trauma is de-

creased further, due to increased levels of HCYS caused by 
malnutrition, SIRS, sepsis, MODS, which occur frequent-
ly in ICU patients. 

Current research on H-HCYS recommends resveratrol, 
ginsenoside Rb1 and anethole dithiolethione as promising 
substances having anti H-HCYS properties besides sup-
plementing with vitamin B and folate. Research is ongo-
ing and of great interest given the necessary social costs 
to treat degenerative diseases. In conclusion, H-HCYS 
studies are of great interest regarding the mechanisms of 
action, fighting therapies, as well as the introduction of a 
screening to determine HCYS in subjects with cognitive 
impairment and degenerative cardiovascular, bone and 
eye disorders, or those with genetic determinism for them.
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