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Abstract 

The very dense floodplain vegetation on the artificially confined floodplains results in decreased flood conveyance, thus increase in 

flood levels and flood hazard. Therefore, proper floodplain management is needed, which must be supported by vegetation assessment 

studies. The aims of the paper are to introduce the method and the results of riparian vegetation classification of a floodplain area along 

the Lower Tisza (Hungary) based on automatized acquisition of airborne LiDAR survey. In the study area 15x15 m large training plots 

(voxels) were selected, and the statistical parameters of their LiDAR point clouds were determined. Applying an automatized parameter 

selection and 10-fold cross-validation he most suitable decision tree was selected, and following a series of classification steps the 

training plots were classified. Based on the decision tree all the pixels of the entire study area were analysed and their vegetation types 

were determined. The classification was validated by field survey. On the studied floodplain area the accuracy of the classification was 

83%. 
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INTRODUCTION  

During the last one and half century several 

environmental effects (e.g. climate change, land cover 

alterations) affected the floodplains and river channels 

altering their characteristics. However, these semi-natural 

effects were exceeded by the consequences of various 

river engineering works: the channel and floodplain 

regulations works altered the hydrological processes, and 

as one of the consequences the riparian vegetation 

changed too. 

The riparian vegetation highly influences the 

channel-floodplain connections. For example, the 

vegetation along a river stabilises the banks (Abernethy 

and Rutherfurd, 1998), or decreases the overbank flow 

velocities (Kiss et al., 2019a). Along the river-banks the 

density of vegetation primarily influences the 

development of natural levees (Nagy et al., 2018), whilst 

in the distal floodplain areas the vegetation influences 

the flood flow directions and velocities (Rátky and 

Farkas, 2003; Zellei and Sziebert, 2003; Brooks, 2005; 

Corenblit et al., 2007; Geerling et al., 2008), thus the 

vertical aggradation pattern (Steiger et al., 2001; Kiss 

and Sándor, 2009).  

These processes are related to the roughness 

controlling function of the vegetation, which influences 

the flood stages too (Jalonen et al., 2015; Kiss et al., 

2019a). The highest peak flood level on record was set in 

1970 along the Tisza River, Hungary, however along the 

Lower Tisza this record was overprinted in 2000 and also 

in 2006 by higher stages of 80 cm (Kiss et al., 2019b), 

while the discharge of these record floods were lower than 

in 1970 (Kovács and Váriné Szöllősi, 2003). These 

hydrological changes draw attention to flood conductivity 

decline of the floodplain: nowadays only 13% of the flood 

discharge is drained on the floodplain while it was 23% in 

1970 (Kovács and Váriné Szöllősi, 2003). It could be 

partly related to the very dense floodplain vegetation, 

therefore proper floodplain management is needed, which 

must be supported by vegetation assessment studies. Their 

first step should be the identification of riparian 

vegetation types; therefore, our aim is to apply the latest 

methods for this identification using automatized 

acquisition of LiDAR survey data. 

Lately several researches relied on the statistical 

analysis of point-clouds of LiDAR surveys to identify 

vegetation characteristics and types. Most of these 

researches were made in the field of forestry or ecology. 

For example, Hudak et al. (2008) identified various tree 

species in forest patches based on various statistical 

parameters of the LiDAR points representing the canopy. 

Heurich and Thoma (2008) did similar research, but they 

measured some dendrological parameters too (e.g. tree 

height, canopy width) based on LiDAR data. Naesset et 

al. (2004) combined airborne and terrestrial LiDAR data 

to calculate the main parameters (i.e. number of stems, 

volume of harvestable wood) of forest units. Jung et al. 

(2011) calculated not only the parameters of trees (i.e. tree 

height, lower canopy height, canopy volume, stem 

diameter), but also the temporal changes between two 

survey campaigns including both LiDAR technologies. 

Though these researches slightly differ in the 

identification of vegetation types and in defining their 

parameters, it could be concluded, that some high-
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resolution parameters could be applied just on small areas 

or on individual level, while the measurements on larger 

areas have limited resolution and less accuracy.  

During the last years the LiDAR based vegetation 

analysis has been applied also in hydrological studies. For 

example, Vetter et al. (2011) determined the vegetation 

roughness based on the spatial connection of voxels (3D 

pixels) and the rate of reflections, using an airborne 

LiDAR survey with very high point density (>25 

point/m2).  The resulted vegetation density values were 

applied in a 2D hydraulic model, and the derived 

hydrological data were compared to modelled data based 

on classical land-use category maps. Vetter et al. (2011) 

concluded, that the LiDAR based modelling gave much 

more reliable results, as the hydrological data were closer 

to the actually measured ones. Similarly, Manners et al. 

(2011) determined the role of Tamarix bushes in 

vegetation roughness using terrestrial LiDAR survey. 

During the late 20th century forest became the 

dominant land cover type along the Tisza River and 

invasive species became widespread in the undergrowth, 

thus the vegetation roughness of the floodplain 

drastically increased, as it was indicated by point-based 

classical vegetation surveys (Kiss et al., 2019a). As the 

high vegetation roughness fundamentally decreases the 

overbank flow velocities and increases flood peak levels, 

high-resolution and up-to-date data would be needed for 

precise flood modelling. However, no such a dataset 

exists.  

Therefore, our aims are to introduce the method 

and the results of riparian vegetation classification, 

based on automatized acquisition of airborne LiDAR 

survey. Within this article our goals are to describe the 

detailed methodology of the automatized classification, 

to classify the vegetation on a study area located along 

the Lower Tisza River, and to evaluate the feasibility of 

the method. 

STUDY AREA 

The research was conducted on a 3 km2-large floodplain 

area of the Lower Tisza (197-194 fkm) between the 

settlements of Algyő and Szeged (Fig. 1). The floodplain 

is artificially confined by artificial embankments to 800 

m; and the river channel is 130 m wide in average. At 

Algyő gauging station the greatest flood-stage was at 

84.65 m asl, while the lowest stage was measured at 71.55 

m asl, thus the absolute change in water level is ca. 13 m. 

The flooding of the floodplain starts when the water is at 

80 m asl, and up to 5-6 m deep water column develops 

over the floodplain at the time of record floods. The slope 

of the water is very low (2.9 cm/km), therefore the 

overbank flow velocity is also low (max. 0.1-0.2 m/s).  

In the mid-19th century the river regulation works (e.g. 

artificial cut-offs, building artificial levees) resulted in 

considerable land-use changes of the floodplain (Kiss et 

al. 2019a). At the beginning of the 20th century the former 

wetlands were replaced by meadows, pastures and plough 

fields, while the proportion of forests remained low. 

However, as the result of intensive afforestation in the 

1970-80s the proportion of forests increased above 70% 

in the 1980s, and nowadays it is above 80%. These land-

cover changes resulted in fourfold increase in vegetation 

roughness (from 0.02 to 0.08), which is even higher (0.13) 

if the dense stands of invasive species in forest and on 

fallow lands are considered. Among the invasive species 

the Amorpha fruticosa is the most abundant (11%), which 

creates impenetrable shrubbery. According to our latest 

 
Fig. 1 The study area is located along the Lower Tisza, north of the city of Szeged 
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results its thickets decrease the flood flow velocity to one 

third, creating 20-30 cm increase in flood levels at our 

study area (Kiss et al., 2019a).  

DATA  SOURCE 

The analysed point cloud is based on a LiDAR (full-

waveform) survey was made at the early spring of 2015 

during low stage of the Tisza River. There were no leaves 

on the trees, thus the canopy structure of the individual 

trees is nicely visible on the survey. Simultaneously to the 

LiDAR survey an ortho-photo was also made with 10 cm 

resolution. The study area is represented by 22.5 million 

reflected points on the airborne LiDAR survey, which are 

stored in eight .las files. The lowest points represent the 

bank of the river at the actual water-surface (at 75.1 m 

asl), while the highest indicate the topmost points of the 

30-35 m high trees. The water surfaces (e.g. open water, 

wetlands) do not reflect the LiDAR beams, therefore, 

these areas were excluded from the analysis. After this 

exclusion the point-density of the study area is 9 point/m2, 

thus it could be considered as suitable for the analysis, as 

according to Laes et al. (2008) the analysis of forests 

requires at least 4 point/m2 point-density. Only 3% of the 

study area does not fulfil this requirement, thus the quality 

of the survey was good for further analysis. The digital 

elevation model (DEM) made of the LiDAR data has 0.5 

m resolution. 

METHOD S 

For the analysis the Fusion 3.8 and ArcMap10.6.1 

software were used, while the algorithm of the vegetation 

classification (decision tree) was written in Python using 

the scikit-learn (0.22.1) library (see Pedregosa et al., 

2011). The decision tree were generated with 

DecesionTreeClassifier class-based on the Gini impurity 

(Grabmeier and Lambe 2007) which is in the sklearn.tree 

module. To find the most ideal and relevant parameters 

for the decision tree algorithm, the GridsearchCV class 

was applied using K-fold cross validation method. The 

detailed description of the decision tree can be found in 

the Results 5.1. chapter. Based on the results of the 

decision tree the vegetation types of all pixels in the study 

area were determined automatically, and finally the 

results were checked and validated based on a field 

survey.   

Data preparation 

As the DEM was in a .flt format, it had to be converted to 

.dtm, thus it could be used in the Fusion software for 

further calculations. As a first step the DEM was exported 

in ArcMap software to .ascii format using the 

RastertoAscii tool, then in Fusion it was converted to .dtm 

applying the ASCII2DTM tool. 

In the next step the quality assessment of the 

LiDAR point-clouds stored in .las files had to be done, 

analysing the extreme values and the number of 

reflections. The quality check was made in Fusion 

software applying the Catalog tool. As a result, the 

software made a quality report of each .las file, 

including the number of points, their minimum and 

maximum heights, and the point-density (point/voxel). 

Using the FilterData tool the extreme values were 

deleted from the file. 

Determine the spatial resolution 

To select the most suitable spatial resolution is crucial 

point of the research. If it is too high, the point cloud will 

be over dissected, and the typical parameters of a given 

vegetation type could not be distinguished. However, if 

the spatial resolution is too low, the spatial differences 

could disappear and there will be a greater chance to have 

mixed classes. Laes et al. (2008) suggested, that the 

spatial resolution should be fitted to the mean canopy 

width. Therefore, in the study area 15x15 m spatial 

resolution was selected, thus the point-cloud was split into 

voxels with 15x15 m cell-size, and the height of the voxels 

was determined by the highest point of the vegetation.  

Calculation of statistical parameters (metrics) 

In the following step the statistical parameters of the 

LiDAR point-clouds representing the vegetation were 

calculated applying 15 m resolution for the voxels. The 

calculation was made by Fusion software using its 

GridMetrics tool. The input data included the filtered and 

quality-checked point-cloud and the DEM in .dtm format. 

In the programme a heightbreak could be set, thus the 

program could recalculate some statistical parameters of 

the voxels split into two parts by a given elevation (for 

example the proportion of reflected points above a given 

height). In our case we had selected 6.0 m as a height 

brake, and the voxel parameters for the forests were 

calculated above this value. This value was selected 

because (i) the bushes (especially invasives) are never 

taller than 6 m, and we wanted to classify the vegetation 

regardless of the rate of invasives in the underwood; and 

(ii) this is the limit of the overbank flood height. The 

calculated statistical parameters of each voxel were stored 

in .csv files. The programme provided 74 parameters for 

each voxel. Not all these parameters are introduced in this 

paper (following McGaughey 2018), only those, which 

were used to classify the vegetation types of the study area 

applying the decision tree. 

The canopy relief ratio (CRR) was calculated as the 

ratio of the difference between the mean and minimum 

heights and the maximum and minimum height of the 

points of a given voxel [(mean-min)/(max-min)]. Thus, 

the greater the difference is between the mean and 

maximum values, the CRR is lower. This parameter refers 

to the spreading of the canopy: in case of large and wide 

canopy the mean and maximum values have relatively 

small differences. At the study area the old white poplars 

have huge canopy with 0.2-0.3 CRR values, whereas the 

young planted black poplars have slender canopy with 

0.03-0.04 CRR values. The open surfaces (e.g. short 

grasslands) have the highest CRR values (0.4-0.5), as 

their mean and the maximum height values are almost 

similar. 

The standard deviation of the height values of a 

voxel (Elev_std) refers to the diversity of the points, thus 

to the vertical dissection and density of the canopy: the 

flat and at a given elevation dense canopy is reflected by 

almost homogenous point-cloud at a given elevation of 
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the voxel, thus it is characterised by low standard 

deviation. For example, in the study area the open 

surfaces, where almost every point represents the land or 

the grass, the standard deviation is 0.03 m, while in case 

of the riparian willow stands the standard deviation is 

higher by two orders (3-4 m). The greatest standard 

deviation (8-10 m) was measured at the Populus alba 

stands which has variegated canopy. 

The 99th percentile value for a voxel (Elev_P99) 

refers to that elevation, where the height values reach the 

99% from the ground, thus it refers almost to the 

maximum height of the voxel. For its calculation the 

height values of the point-cloud of a voxel are ordered, 

and that value is selected which represents the 99% of the 

dataset. For example, on the study area this value is much 

lower for the willow stands (~15 m) than for the white 

poplar trees (~25 m).   

The 95th percentile value for a voxel (Elev_P95) 

refers to that elevation, where the height values reach the 

95% from the ground. It is calculated similarly as the 

previous parameter (Elev_P99). This parameter is useful 

during the calculations, because it is a good indication of 

the maximum height of the vegetation, however it does 

not contain points with survey errors. 

Skewness of the heights for the points in the voxel 

(Elev_skewness) provides some indication of how 

asymmetric the distribution of the values is. In case of 

symmetric (standard normal) distribution the skewness 

is zero. The skewness is influenced by abundant and 

extreme values: if they are at low values, then the 

skewness will be negative, while in case of higher 

values it will be positive. In the study area high (4-6) 

and positive skewness characterises the young poplar 

plantations, and the lonely and slim trees: in their case 

the canopy is not perfectly closed, therefore high 

proportions of the reflected points are from the ground 

or from the top of the canopy. In case of grasslands the 

skewness is low (0.1-0.4), as no extreme values are 

present, the reflected points originate from almost a flat 

surface. 

Selection of training-plots and definitions of vegetation 

types 

Before the training plots were selected, the main 

vegetation types had to be determined at the study area. 

The following categories were identified based on our 

preliminary field survey and the Forestry WebMap of 

Hungary (https://erdoterkep.nebih.gov.hu) (1): open 

surface, Amorpha thicket, young poplar plantation, poplar 

plantation, riparian willow forest, and riparian poplar 

forest with Populus alba. 

Based on our field-survey and the available ortho-

photo we had selected 15x15 cell-sized pixels with 

homogenous vegetation as training plots. They were 

selected for each vegetation types, at least 40-50 cells 

per type. During the selection of training plots we 

aimed to select homogenous pixels, thus the pixel 

should not be affected by side effects of other 

vegetation types. The selection of the training plots was 

supported by the ortho-photo providing idea on the 

character of the cell, while the point-cloud of the voxel 

gave idea about the height conditions of the vegetation 

and the shape of the canopy (Fig. 2). 

 

Fig. 2 Various vegetation types represented by the vertical view of the LiDAR point-cloud, and its appearance on the ortho-photo 

https://erdoterkep.nebih.gov.hu/
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Grasslands and open surfaces are mostly located on 

the artificial levees. The LiDAR survey was made in early 

spring when the grass was very short and dead, therefore 

the reflected points actually represent the land surface, 

therefore here the height of the vegetation is almost 0 m. 

The dense Amorpha thickets have height points at 1-6 m, 

the top of the canopy is almost flat, and great proportion 

of the LiDAR point-cloud is at the upper part of the 

canopy. The riparian willow forests are high (16-20 m), 

and on the ortho-photo the almost bunding willow-

branches have brownish-orange colour. The poplar 

plantations are planted in rows, thus the skewness of their 

point-cloud is high, as lots of points are reflected from the 

ground and also from the top of the canopy. On the 

LiDAR point-clouds their canopy structure is quite 

specific, as their branches are thin, most of the points are 

around the stem, and on the ortho-photo the top of these 

plantations is quite homogenous. Within the poplar 

plantations we distinguished the group of young poplar 

plantations. Their trees are shorter (>5.6 m), and more 

points are reflected from the ground due to their 

undeveloped canopy. This forest type also includes lonely 

trees with sparse bushes. The riparian poplar forest 

patches are characterised by tall and easily distinguishable 

Populus alba trees. The white poplar has greyish-white 

branches on the ortho-photo, and it has very special 

canopy structure both on the ortho-photo and the LiDAR 

point-cloud (Fig. 2).  

Creating the decision tree 

The statistical parameters of the training plots were 

saved in a .csv file. In this file the names of vegetation 

types and all of the statistical parameters were given. 

The next step was the parametrisation of the decision 

tree algorithm.  The decision tree classifies the elements 

– in our case the attributes of the voxels – based on the 

series of classification steps, aiming to have the most 

homogenous classes. The selection of attributes and the 

thresholds between the classes are based on a calculation 

algorithm. In our case the threshold values were based 

on the Gini impurity, because it could be run faster than 

the entropy based calculations, besides, there is no 

qualitative difference between the accuracy of these 

classifications. The Gini impurity refers to the 

probability of the classification of an element to a wrong 

class (Grabmeier and Lambe, 2007). If its value is zero, 

it means that the given selection criteria perfectly 

divided a class from the main population, while 1.0 

refers to a totally diverse class. 

The setting of the parameters of the decision tree 

was made automatically applying the GridsearchCV 

module, considering the (i) maximum depth of the 

decision tree referring to the number of decision levels; 

(ii) the minimum element number of the leaves; and (iii) 

the minimum element number for split. To precisely 

determine the above mentioned settings of the decision 

tree, each setting was set to an interval (e.g. decision tree 

depth: 1-10; minimum element number of leaves: 2-10; 

minimum split: 2-20), and finally best setting 

combination was selected, which resulted in the most 

precise decision tree.  

To check the accuracy of the decision tree algorithm, 

a cross-validation method was applied, which is very 

common at automatized learning technologies. We had 

selected the method of 10-fold cross-validation. As a first 

step the dataset (training plot voxels) were divided to 10 

groups, and one of them was selected for validation by the 

algorithm. The cross-validation lasts for 10 iterations, 

until every group will be used exactly once as a training 

set (Bengio and Grandvalet 2004). To estimate the 

accuracy, the average of 10 results were needed. The 

advantage of this kind of cross-validation is that each 

point (voxel) of the dataset will be used for automatic 

learning and for validation too, however its disadvantage 

is that it is a quite long process, as in our case the 

automatic learning was repeated 10 times.  

The accuracy of the final classification based on the 

decision tree is expressed in percentage, referring to the 

rate of well-classified elements, though this value does 

not refer to the efficiency of the classification. During 

the application of the decision tree two kind of 

methodological mistakes could be made. In the first case 

the classification process and the applied thresholds do 

not determine the classes homogenously, thus the 

decision tree will have low accuracy and it is underfit, 

however if there are lots of data and several parameters, 

this case is quite rare. Much more often the decision tree 

will be overfit, thus the selection criteria will be too 

specific and valid just for some elements of the dataset. 

In this case the accuracy is very high (>95%), however 

the decision tree could not be applied on other datasets 

(Schaffer 1993). 

The aim of the automatized parameter selection and 

of the 10-fold cross-validation was to find the most 

suitable decision tree, which eliminates the errors of the 

overfitting. During the cross-validation runs it became 

obvious, that the decision tree is greatly influenced by 

its depth. Our results suggest, that if the depth of the 

decision tree is greater than 4, the accuracy won’t be 

considerable better, however the risk of overfitting 

increases (Fig. 3). Therefore, the depth of decision tree 

was determined to be 4. The minimum element number 

and minimum split number was determined to be 2. In 

this way the accuracy of the created decision tree based 

on the 10-fold cross-validation was 92%. 

 

 

Fig. 3 Relationship between the depth of the decision tree and 

the accuracy of the classification 
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Fitting the decision tree to the entire study area and its 

validation 

The decision tree was created based on training plots. In 

the next step, based on the decision tree all the 11656 

pixels of the study area were analysed and their vegetation 

types were determined. The result and precision of the 

automatized classification were determined by field-

survey. For the field validation aerial photos made by DJI 

Phantom III Pro drone were taken on 72 cells. The survey 

was made at 30-60 m height from orthogonal position 

(applying 90º camera axis). On these low-aerial photos the 

vegetation types of the cells were identified by expert 

judgement. The geo-coordinates of the photos were 

extracted; thus the identified vegetation types could be 

compared to the automatized classification of the same 

cell. The results of the comparison were evaluated 

applying a confusion matrix. The titles of columns and 

rows in the matrix refer to the vegetation categories. In the 

main diagonal line, the numbers refer to the proportion of 

precisely classified cells, while the other cells refer to the 

proportion of false vegetation classes. 

RESULTS  

The decision tree  

The decision tree automatically selected the parameters of 

the voxels (see 4.5. chapter) for the identification of 

vegetation types (see 4.3. chapter). First, the young poplar 

plantations were selected based on CRR≤0.039 criteria. 

This parameter well sunders the young and short poplar 

trees with undeveloped canopy from the higher trees with 

more complex canopy and from the grassland/open 

surfaces. The next step followed the false (no-)branch of 

the decision tree (CRR≥0.039). Here, based on the 

standard deviation of the voxel’s point-cloud the 

Amorpha thickets and the grassland/open surfaces were 

identified. The two vegetation classes could be divided 

based on their height (Elev_P99). To identify the 

grassland/open surfaces the voxels had to be fulfil the 

following criteria: CRR≥0.039 and Elev_std≤1.783, and 

Elev_P99≤2.119. The Amorpha thickets were identified 

by CRR≥0.039 and Elev_std≤1.783, and 

Elev_P99>2.119. The Gini impurity (0.0) of these three 

categories reflects that they were identified with the 

greatest accuracy (Fig. 4.). 

On the false (no-)branch of the standard deviation 

(Elev_std≥1.783) of the decision tree the older poplar 

plantations, the riparian poplar forests and riparian willow 

forests remained. On the floodplain the riparian poplar 

forests are characterised by tall Populus alba trees, thus 

they could be selected based on their height conditions 

(Elev_P95>17.987). However, this selection criterion is 

not totally clear, as some voxels with tall planted poplars 

also fall into this class. The natural and planted poplar 

forest could be divided based on the CRR parameter: the 

poplar plantations have less complex canopy than of the 

natural poplars, therefore the plantations have smaller 

CRR values, thus their selection criterion is CRR≤0.103. 

The riparian poplar forests were selected following 

Elev_std>1.783 and Elev_P95>17.987 and CRR>0.103. 

Some of the poplar plantation’s cells (with older and 

higher trees) also fall into this class, only their CRR values 

differed (Elev_std≥1.783 and Elev_P95>17.987 and 

0.039<CRR≤0.103). Based on the tests the tall (≤18 m) 

and old poplar plantations were clearly separated (Gini 

impurity = 0.0) from the riparian poplar forests with 

Populus alba (Fig. 4.). 

 

Fig. 4 Decision tree built up based on training plots of the study area. This decision tree was applied to classify the vegetation types 

on the entire study area 
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On the true branch of the Elev≤17.987 criteria the 

riparian willow forests and the less-old and shorter poplar 

plantations remained. The planted poplars are slim with 

column-like canopy, and the reflected points from the 

ground between the tree-rows result in asymmetric 

distribution of the height points. As the skewness reflects 

well the asymmetric distribution of the values, the criteria 

of Elev_skewness> 2.376 were applied to identify the two 

vegetation classes. The identification of the poplar 

plantations followed the criteria of CRR>0.039 and 

Elev_std>1.783 and Elev_P95≤17.987 and 

Elev_skewness>2.376. The parameters of the riparian 

willow forests are almost the same as of poplar 

plantations, only their skewness is different: CRR>0.039 

and Elev_std>1.783 and Elev_P95≤17.987 and 

Elev_skewness≤2.376. However, at the study site these 

vegetation types could be mixed even within a 15x15 m 

cell, which influences the accuracy of the classification, 

however, the identification of the classes was still 

effective (Gini impurity < 0.16). 

Vegetation types of the study area based on the 

automatized classification 

The decision tree created on training plots were applied 

on the entire, 3 km2-large study area. The vegetation types 

of 11656 voxels were identified, and the land-cover map 

of the area was created (Fig. 5.).  

In the study area the most abundant land-cover 

category (Fig. 6.) is riparian willow forest (30%, 80 ha). 

Willow patches appear mostly in deeper lying areas, like 

in front of the artificial levees and on the edges of clay-

pits. The grasslands/open surfaces (24%, 63 ha) mainly 

cover the artificial levees, but in this category also some 

plough-fields are and clay-pits, where the dead 

herbaceous vegetation covers the surface like a mat. 

Planted poplar forests (15%, 40 ha) appear in great units. 

From the point-of view of flood conductivity the 

proportion of Amorpha thickets (10%, 25 ha) is crucial. 

They usually appear along the edges of other vegetation 

types and on the fallow lands. In the study area the 

smallest area is occupied by young poplar plantations 

(9%, 23 ha), but this category contains those patches as 

well, where young trees are mixed with bushes, but they 

do not create dense stands.  

Validation of the results 

The accuracy of the automatized classification was 

determined by comparing its results to field-surveys on 72 

randomly selected cells. The results are summarised in a 

confusion matrix (Table 1.). 

The accuracy of the automatized vegetation 

classification based on the decision tree algorithm was 

83%. The open surfaces were classified with the lowest 

accuracy (75%). Some open surfaces were classified by 

 

Fig. 5 Ortho-photo of the study area (A) and the automatized vegetation type map of the same area based on the classes of the 

decision tree (B) 
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Fig. 6 Proportion of the different vegetation types in the study 

area 

the algorithm as Amorpha ticket (8% of the cases) or as 

young poplar plantation (17%). Most of these mis-

identifications occurred at the boundary between the 

grass-covered artificial levee and the arboreous 

vegetation, where many sprouts and low branches 

stretches over the grassland. The identification accuracy 

of the riparian willow forests is 85 %, in reality, the mis-

identified patches belong to poplar plantations (5%), 

Amorpha thickets (5%) or riparian poplar forests (5%). 

This error has multiple sources: (i) between the LiDAR 

and the field surveys some forests were cleared and the 

clearances were colonised by Amorpha; (ii) these 

vegetation types could be mixed on a 15x15 m-sized cell; 

(iii) depending on the age of the forest patch the various 

vegetation types could have similar height and even 

similar canopy size. The Amorpha thickets were the most 

accurately (92%) classified by the algorithm. Only 8% of 

them were mis-classified, and got to the class of riparian 

willow forest. However, this error is not considerable, as 

it was detected on cells where the willow forest was 

highly invaded by Amorpha. The identification accuracy 

of riparian poplar forest was 83%, as some of their patches 

were identified as planted poplar (8%) and as young 

poplar plantation (8%). These mis-identifications were in 

 
Table 1 Confusion matrix summarizing the validation results. Green colour indicates % of well -classified voxels (%), red 

colours refer to percent of unwell-classified voxels 

 Based on decision tree 

 
 

open  

surface 
riparian willow Amorpha thicket 

riparian poplar 

forest 

young poplar 

plantation 
poplar plantation 

B
a

s
e
d

 o
n
 f

ie
ld

 w
o

rk
 

open  

surface 
0.75 0.00 0.08 0.00 0.17 0.00 

riparian willow 0.00 0.84 0.05 0.05 0.00 0.05 

Amorpha thicket 0.00 0.08 0.92 0.00 0.00 0.00 

riparian poplar 
forest 

0.00 0.00 0.00 0.83 0.08 0.08 

young poplar 

plantation 
0.00 0.00 0.17 0.00 0.83 0.00 

poplar plantation 0.00 0.00 0.00 0.18 0.00 0.82 

  
Fig. 7 Vegetation types based on drone photos. A: open surface, B: Amorpha thicket, C: young poplar plantation, D: poplar 

plantation, E: riparian willow forest, and F: riparian poplar forest with Populus alba 
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those cells, where the natural poplars were mixed to planted 

poplars. The young poplar plantations were identified by 

83% accuracy too, as some of the cells were identified by the 

algorithm as Amorpha thickets. It could be explained by the 

fact, that very young plantations have similar height and 

density conditions as the thickets, besides, if the plantation is 

not managed properly, Amorpha could invade them very 

quickly. The accuracy of poplar plantations was 82%, as the 

greatest errors occurred when the algorithm classified them 

as riparian poplar forests. It could be explained by the similar 

height of old plantations and younger Populus alba trees.  

CONCLUSION 

The applied automatized machine learning-based 

classification is suitable to identify various vegetation 

types based on airborne LiDAR survey data. Not only 

land-cover types (e.g. forest), but various vegetation and 

forest types could be identified using the method, which 

has acceptable accuracy. For example, on the studied 

floodplain area the accuracy of the classification was 83% 

(based on 72 observation).  

The data acquisition of LiDAR surveys combined to 

automatized machine learning enables us to precisely, 

effectively and quickly map the vegetation even on large, 

remote or impenetrable areas. In case of repeated surveys, 

the algorithm easily could be trained to the new dataset, 

thus the temporal changes in vegetation could be quickly 

and automatically detected, which is a great advantage for 

both researchers, stakeholders and decision makers.  

The application of the resulted vegetation type map is 

quite wide. For example, it could be used by hydrologists, 

as up-to-date vegetation maps are needed during the 

planning and maintenance of flood-conductivity zones, or 

during the modelling of floods, when up-to-date data are 

needed on vegetation roughness to determine the Manning 

coefficient. In forestry these LiDAR-based vegetation maps 

could be used too, as the statistical parameters of forests 

could be calculated, and forest clearance plans could be 

supported.  
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