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Statistical feature embedding for heart sound classification
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Cardiovascular Disease (CVD) is considered as one of the principal causes of death in the world. Over recent years, this
field of study has attracted researchers’ attention to investigate heart sounds’ patterns for disease diagnostics. In this study,
an approach is proposed for normal/abnormal heart sound classification on the Physionet challenge 2016 dataset. For the
first time, a fixed length feature vector; called i-vector; is extracted from each heart sound using Mel Frequency Cepstral
Coefficient (MFCC) features. Afterwards, Principal Component Analysis (PCA) transform and Variational Autoencoder
(VAE) are applied on the i-vector to achieve dimension reduction. Eventually, the reduced size vector is fed to Gaussian
Mixture Models (GMMs) and Support Vector Machine (SVM) for classification purpose. Experimental results demonstrate
the proposed method could achieve a performance improvement of 16% based on Modified Accuracy (MAcc) compared with
the baseline system on the Physionet2016 dataset.

K e y w o r d s: heart sound classification, i-vector, Gaussian mixture models, support vector machine, principal compo-
nent analysis, variational autoencoders

1 Introduction

Cardiovascular disease (CVD) is one of the most com-
mon causes of death around the world and the leading
cause of disability. Based on the information provided by
the World Heart Association, 2017, 17.7 million people die
every year due to CVD, equal to 31% of all global deaths.
The most prevalent CVDs are heart attacks and strokes.
In 2013, all 194 members of the World Health Organiza-
tion agreed to implement the Global Action Plan for the
Prevention and Control of Non-communicable Diseases, a
plan for 2013 to 2020, to be prepared against CVDs. Im-
plementation of nine global and voluntary goals in this
plan led to a significant drop in the number of premature
deaths due to non-communicable diseases.

Accordingly, in recent years, researchers have showed
a considerable interest in detecting heart diseases based
on heart sounds [1]. Most approaches in this context
rely on sound segmentation and feature extraction. Ex-
tracted features are then fed to machine learning meth-
ods to simulate the system performance on real-world
datasets. In addition, various studies are conducted for
normal/abnormal heart sound classification using seg-
mentation methods. Approaches in this field can be
categorized into three groups; Segmentation-based ap-
proaches, Wavelet Transform Analysis based approaches
and Advanced Audio Feature Extraction based meth-
ods. The first category focuses on using variable window
of short time Fourier transform (S-transform), Hilbert
transform, etc, in order to segment each audio and then
employ different classifiers to detect normal/abnormal

behavior of heart sounds [2,3,4,5]. The second category is
based on the wavelet transformation. Wavelet features are
then fed to the well-known approaches such as SVM [6,7].
Finally, recent approaches are concerned with using fea-
ture extraction methods. To determine each test sample
class, varied classification approaches such as Convolu-
tional Neural Network (CNN), Artificial Neural Network
(ANN), etc, were adopted [8,9,10,11].

Although approaches in this field have made remark-
able progress, still they are not able to yield the desired
performance. One reason for this issue is the paucity of
systems that extract appropriate audio signal features
for heart sound classification task. Hence, representing
proper features is the most essential step toward improv-
ing the performance, although it is not achievable without
using a suitable classifier. In this study, we proposed the
i-vector as representative features for normal/abnormal
heart sounds classification task. Although the i-vector was
originally used in speaker recognition applications [12], it
is currently used in various fields such as language iden-
tification [13,14], accent identification [15], gender recog-
nition, age estimation, emotion recognition [16,17], audio
scene classification [18], spoofing detection in automatic
speaker verification systems [19], etc. In our approach,
MFCC features are extracted from heart sound records
and then the i-vector method is employed to extract fixed
length features based on individuals’ heart sound char-
acteristics. The underlying motivation for using i-vector
in this context is that human heart sounds can be con-
sidered as the physiological traits of a person [20] and
only irregular events such as accidents, illnesses, genetic
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defects, or aging can alter or destroy these traits [20].
As a result, heart sounds are prone to being introduced
by representative features like i-vectors. In the classifica-
tion stage, GMMs and SVM are employed which are per-
suaded for modeling i-vector with mixture nature. Fur-
thermore, feature reduction techniques such as PCA and
VAE are also applied to achieve a compact and informa-
tive representation of the extracted i-vectors which lead
to having discriminative features. So our contributions
are summarized as follow:

• While i-vector is employed predominantly in various
speech-related tasks, it is less known to the biosignal
processing fields. In this work, the i-vector that is gen-
erally used for speaker recognition is adopted to the
heart sounds classification task.

• PCA and VAE are employed to reduce the size of i-
vector and also extract the most significant features
that lead to a more discriminative representation for
next stage which is the classification.

• Finally, Physionet 2016 pertinent studies are listed in
[21] and the best results belong to a work proposed
by Potes et al , [22]. The proposed approach outper-
forms the previous studies in terms of Specificity (Sp),
Sensitivity (Se) and accuracy.

In the following, first the related works are presented,
then the proposed framework is described. The experi-
mental setup and then the experimental results are dis-
cussed and analyzed.

2 Related studies

A review of current approaches is introduced in [23].
Each presented approach is systematically reviewed and
existing methods are analyzed based on their perfor-
mance. In the following section, a brief discussion about
approaches in this field will be presented, which we cate-
gorize them into three subcategories.

2.1 Segmentation based approaches

Approaches in this category use audio segments to
classify normal/abnormal heart sounds. In a study by [2],
an approach was proposed for automatic segmentation,
using Hilbert transform. Features for this study included
envelops near the peaks of S1, S2, the transmission points
T12 from S1 to S2, and vice versa. Database for this study
consisted of 7730s of heart sound from pathological pa-
tients, 600s from normal subjects, and finally 1496.8 s
from Michigan MHSDB database. The average accuracy
for sound with mixed S1, and S2 was 96.69%, and it was
reported 97.37% for those with separated S1 and S2 CNN
based segmentation is proposed in [24], which is com-
mon in image processing tasks, to segment heart sounds
into their main components. The same concept is used
in [25] which incorporates CNN to extract short segment
features from 1-dimensional, eg raw heart sound signal,
and 2-dimensional, eg time-frequency representation of
heart sound to segment these signals. Another envelope

extraction method was employed for heart sound segmen-
tation is called Cardiac Sound Characteristic Waveform
(CSCW). The work presented in [3] used this method for
only a small set of heart sounds, including 9 sound record-
ings and 99.0% accuracy was reported. No train-test split
was performed for evaluation in this study. The work in
[4] achieved an accuracy of 92.4% for S1 and 93.5% for
S2 segmentation by engaging homomorphic filtering and
Hidden Markov Model (HMM), on the PASCAL database
[5].

2.2 Wavelet analysis based approaches

Wavelet-based approaches employ the wavelet trans-
form to extract simple features, and then these extracted
features are subsequently used for classification. In [26]
the Shannon energy envelops for the local spectrum are
calculated by a new method, which uses S-transform for
every sound produced by the heart sound signals. Sensi-
tivity and Positive Predictivity (P+) were evaluated on
80 heart sound recordings (including 40 normal and 40
pathological), and their values were reported over 95%.
The work investigated in [27] also adopted the same ap-
proach with wavelet analysis on the same database and
accuracy was reported 90.9% for S1 segmentation and
this value was 93.3% for S2 segmentation. The work in
[6] also conducted a study to classify normal and patho-
logical cases using Least Square Support Vector Machine
(LSSVM) engaging wavelet to extract features. They eval-
uated their method on a dataset with heart sound of 64
patients (32 cases for train and 32 cases for test set) and
reported 86.72% for accuracy. In a work [7] with the same
classifier, wavelet packets and extracted features are en-
gaged like sample entropy and energy fraction as input.
The dataset used for this task consisted of 40 normal in-
dividuals and 67 pathological patients and they resulted
in 97.17% accuracy, 93.48% sensitivity and 98.55% speci-
ficity. Another study [28], also used LSSVM as classifier
while using the tunable-Q wavelet transform as input fea-
tures. Evaluation in this study showed 98.8% sensitivity
and 99.3% specificity on a dataset comprising 4628 cy-
cles from 163 heart sound recordings, with the unknown
number of patients.

2.3 Advanced feature extraction and classification

methods

Other studies were also developed using advanced au-
dio signal feature extraction methods and classification
using machine learning classifiers such as ANN, SVM,
HMM, and K-Nearest Neighbor (KNN). For the distinc-
tion between spectral energy between normal and patho-
logical recordings, the work introduced in [29] extracted
five frequency bands and their spectral energy was given
as input to ANN. Results on a dataset with 50 recorded
sounds reveal 95% sensitivity and 93.33% specificity.

Fractional Fourier transform is proposed for feature
extraction in [30] and the extracted features are subse-
quently classified by a stacked autoencoder which yields
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Table 1. Summary of the previous heart sound works, methods, database and results, [2]

Author Database Method Se% Sp% P+% Acc%

Moukademet al (2013) - Segmentation 96/97 - 95

Sunet al (2014) - Segmentation - - - 96.69

Yanet al (2010) - Segmentation - - - 99

Sedighianet al (2014) PASCAL Segmentation - - - 92.4/93.5

Castroet al (2013) PASCAL Segmentation - - - 90.9/93.3

Schmidtet al (2010) - Segmentation 98.8 - 98.6

Sepehriet al (2008)
36 normal and Frequency 95 93.3 - -
54 pathological + ANN

Uguz(2012)
40 normal, 40 pulmonary Time-frequency

90.48 97.44
- 95

and 40 mitral steno + ANN -

Ariet al (2010)
64 patients (normal Wavelet - - -

86.72
and pathological) + SVM -

Zhenget al (2015)
40 normal and Wavelet

98.8 99.3
- 98.9

67 pathological SVM -

Gharehbaghiet al (2015)
30 normal, 26 innocent Frequency

86.4 89.3
- -

and 30 AS +SVM -

Saracoglu(2012)
40 normal, 40 pulmonary DFT and PCA

95 98.8
-

97.5
and 40 mitral stenosis + HMM -

Quiceno-Manriqueet al (2010)
16 normal and Time-frequency - - - 98
6 pathological +KNN -

Avendano-Valenciaet al (2010)
16 normal and Time-frequency

99.56 98.54
-

99
6 pathological +KNN -

Puriet al (2016) Physionet 2016
mRMR

77.49 78.91
- -

+SVM - -

Zabihiet al (2016) Physionet 2016
Time-frequency

85.9 86.91
-

84.9
+ANN -

Jinghuiet al (2019) Physionet 2016
FFT*

89.30 97.0
-

93.15
+Autoencoder -

Poteset al (2016) Physionet 2016
Time-frequency

94.24 77.8
- -

+AdaBoost+CNN - -

Rubinet al (2016) Physionet 2016
MFCC

75 100
- 88

+CNN -

* Fractional Fourier transform

an accuracy of 93.15% with 89.30% sensitivity and speci-

ficity 97%. A study on the expected duration of heart
sound using HMM and Hidden Semi-Markov Model

(HSMM) was introduced in [31]. In this study, positions
of S1 and S2 sounds were initially labeled in 113 record-
ings. Afterwards, they calculated Gaussian distributions

for the expected duration of each four states including
S1, systole, S2, and diastole, using the average duration

of mentioned sound and also autocorrelation analysis of
systolic and diastolic duration. Homomorphic envelope
plus three other frequency features (in 25-50, 50-100 and

100-150 Hz ranges) were among features they used for
this study. Then they calculated Gaussian distributions

for training HMM states and emission probabilities. Fi-
nally, for the decoding process, the backward and forward
Viterbi algorithm was engaged. Sensitivity and Speci-

ficity were reported 98.8% and 98.6%, respectively. This
work also proposed HSMM alongside logistic regression

(for emission probability estimation) to accurately seg-

ment noisy, and real-world heart sound recording [32].
This work also used Viterbi algorithm to decode state se-
quences. For evaluation, they used a database of 10172s
of heart sounds recorded from 112 patients. F1 score for
this study is reported to be 95.63%, improving over the
previous state of the art study with 86.28% on the same
test set.

In a study by [33], a discrete wavelet transform as well
as a fuzzy logic was used for a three-class problem; in-
cluding normal, pulmonary stenosis, and mitral stenosis.
An ANN was employed to classify a dataset of 120 sub-
jects with 50/50 split for train and test set. Reported re-
sults were 100% for sensitivity, 95.24% for specificity, and
98.33% for average accuracy. Moreover, they used time-
frequency as input for ANN in [8]. This work reported
90.4% sensitivity, 97.44% specificity, and 95% accuracy on
the same dataset for the same problem (three-class clas-
sification including normal, pulmonary and mitral steno-
sis heart valve diseases). HMM was used by [10] to fit
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Fig. 1. Block diagram of the proposed system

on the frequency spectrum from the heart cycle and used
four HMMs for evaluating the posterior probability of the
features given to model for classification. For better re-
sults, they used PCA as reduction procedure and results
reported 95% sensitivity, 98.8% specificity, and 97.5% ac-
curacy on a dataset with 60 samples. The KNN was used
in [11] on the features from various time-frequency rep-
resentation. Features were extracted from a subset of 22
persons including 16 normal participants and 6 pathologi-
cal patients. Accuracy was reported 98% for this problem
where the likelihood of over-training was used as param-
eters for KNN. The work investigated in [11] also chose
KNN for clustering the samples into normal and patho-
logical. This study also employed two approaches for di-
mensionality reduction of extracted time-frequency fea-
tures; linear decomposition and tiling partition of men-
tioned features plane. Results were achieved on total of
45 recordings; including 19 pathological and 26 normal,
and an average accuracy of 99% was reported with 11-fold
cross-validation

Table 1 summarizes the research studies cited in this
section.

3 Proposed framework

In this study, the proposed framework aims at using
the i-vector for normal/abnormal heart sound classifi-
cation. First, MFCC feature vectors are extracted from
heart sound records. Then, In order to extract i-vector, a
large GMM (eg2048 components), called Universal Back-
ground Model (UBM) is trained using extracted MFCC
features from all heart sound records (ie both normal and
abnormal) in the training set. Subsequent to UBM train-
ing, zero and first-order statistics of the training features
are extracted, accordingly. Then, these statistics are used
to train the i-vector extractor through several iterations
of the EM algorithm which will be explained in Section
3.2.3. After training the i-vector extractor, i-vectors are
extracted from all records in the training set. At this

stage, a fixed length i-vector is extracted for each record
and then is fed into PCA or VAE in order to reduce its
size and the intra-class variation as well. Eventually, there
is a representative i-vector for each record, which will be
used for classification Fig. 1 briefly illustrates our pro-
posed system.

3.1 Mel-frequency cepstral coefficients

MFCCs were employed over the years as one of the
most salient features for speaker recognition [34]. The
MFCC attempts to model human hearing perceptions
by focusing on low frequencies (0-1KHz) [35]. In better
words, the differences of critical bandwidth in the human
ear are the basis of what we know as MFCCs. In addition,
Mel frequency scale is applied to extract critical features
of speech, especially its pitch.

3.1.1 M F C C e x t r a c t i o n

In the following section, we will explain how the MFCC
feature is extracted. Initially, the given signal s[n] is pre-
emphasized. The concept of ”pre-emphasis” means the
reinforcement of high-frequency components passed by a
high-pass filter [34]. The output of the filter is as follows

p[n] = s[n]− 0.97s[n− 1]. (1)

In the next step, named as framing, the pre-emphasized
signal is dividing into same length short-time frames
(eg 25 ms) in order to achieve stationarity. Subsequently,
the Hamming windows is applied as

h[n] = p[n]×

{

0.54− 0.46 cos

(
2πn

N − 1

)}

0 < n < N − 1,

(2)

where N is the number of samples in each frame. Heart
sounds are sampled by 2 KHz frequency ratio, each frame
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has length of 25 ms , and number of samples is 50. To
analyze h[n] in the frequency domain, an N-point Fast
Fourier Transform (FFT) is applied to convert it into the
frequency domain according to

H [k] =

N−1∑

n=0

h[n]e
−j

2kπn

N . (3)

A logarithmic power spectrum is obtained by log energy
computation block, on a Mel-scale using a filter bank that
consists of L filters.

X [l] = log

(
klu∑

k=kll

|H [k]|Wl (k)

)

l = 0, 1, . . . , L− 1,

(4)
where Hl(k) is the absolute value of complex Fourier
transform, Wl(k) is the l th triangular filter, kll and
klu are the lower limit and upper limit of the l th filter,
respectively. In our experiment, the number of filters in
the filter bank; L , was set to 20. The given frequency f
in hertz can be converted to Mel-scale as follow

F (Mel) = 2595× log 10 (1 + f/700) . (5)

Eventually, the MFCCs coefficients are obtained by ap-
plying Discrete Cosine Transform (DCT) to the X [l]

C[m] =

L∑

l=1

X [l] cos

[
πm (l − 0.5)

L

]

m = 1, . . . ,M − 1.

(6)

where m is the index of obtained MFCC components and
M is the number of MFCC features, which was set to 12.
The steps for extracting the MFCC features are depicted
in Fig. 2.

3.2 i-vector

The aim of this paper is to propose a framework for the
heart sound classification using i-vector. This method can
be considered as a technique to map a sequence of feature
vectors for a given sample into a low-dimensional vector
space, referred to as the total variability space, based on a
factor analysis technique. In other words, it is a technique
to extract a compact fixed-length representation given a
sequence of feature vectors with arbitrary length. Then,
the extracted compact feature vector can be either used
for vector distance-based similarity measuring or as input
to any further feature transform or modelling.

There are determined steps to extract i-vector from a
heart sound record. First, MFCC feature vectors should

be extracted from the input signal and then the Baum-
Welch statistics should be extracted from the features,
and finally i-vector is computed using these statistics. In
the following subsections, we go through these steps in
details.

3.2.1 U n i v e r s a l b a c k g r o u n d m o d e l
t r a i n i n g

The first step in implementing i-vector extraction
pipeline is to create a global model, which is called UBM,
used to map the features to a high-dimensional space
to give a better representation. GMMs have been fre-
quently used for building an UBM, especially in the text-
independent speaker verification task [12,36]. GMMs esti-
mate the distribution of extracted MFCC features using
of a finite number of Gaussian distributions. Here, the
GMM models, which should be sufficiently large enough
to cover all of the feature space, are trained using MFCC
features extracted from all heart sound records in the
training set.

3.2.2 E x t r a c t i o n o f B a u m-W e l c h
s t a t i s t i c s

Here, for each MFCC feature sequence, the zero and
first-order Baum-Welch statistics are extracted using
UBM which is modeled by a GMM. [37,38].

Suppose Xi as the whole feature vectors collected to
train ith heart sound; then the zero and first-order statis-
tics for the cth component of UBM named Nc and Fc

are calculated as follows

Nc (Xi) =
∑

t

γc
i,t (7)

Fc (Xi) =
∑

t

γc
i,t (Xi,t −mc) , (8)

where Xi,t is the tth MFCC feature vector for heart
sound ith, mc indicates mean of cth component, and
finally γc

i,t shows the posterior probability of Xi,t by the

cth component described as below

γc
i,t = Pr (c|Xi,t) =

wcN (Xi,t|mc,Σc)
∑C

j=1 wjN (Xi,t|mj ,Σj)
. (9)

3.2.3 i-v e c t o r e x t r a c t i o n

Suppose M is a mean-supervector which represents
the feature vectors of a heart sound record. Supervec-
tor of each record is a DC -dimensional vector obtained
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by concatenating D -dimensional mean vectors of the its
GMM. In this vein, GMM for each record is obtained by
MAP adaptation. The supervector of ith record is mod-
elled as follows [12]

Mi = m+ Twi, (10)

where m is an independent mean-supervector (m =

[mt
1,m

t
2, ...,m

t
C ]

t ) extracted from the UBM, T is a low-
rank matrix, and wi represents a random latent variable
with a standard normal distribution for ith record. Mi

is assumed to has a Gaussian distribution with mean m
and covariance matrix TT T , where T T is regarded as
transpose of T . The i-vector is the MAP point estima-
tion of the variable wi which is equal to the mean of the
posterior probability of wi given the ith record.

In (10), m and T should be estimated as parameters.
The mean-supervector, m , is obtained by concatenating
the means of the UBM components [38]. To obtain T ,
expectation maximization (EM) is applied. Assume the
UBM has C components (in this work, is set to 2048),
and dimensions of feature vectors are D , the matrix

∑

is described as

Σ =






Σ1 0 ... 0
0 Σ2 ... 0
. . ... 0
0 0 ... ΣC




 , (11)

where Σc is the covariance matrix of the cth compo-
nent of the UBM. Let Xi be all feature vectors of ith

record and P (Xi|Mi,Σ) indicates the likelihood of Xi

computed with the GMM specified by the supervector
Mi and the super-covariance matrix Σ. Then the EM
optimization can be performed by iterating the following
two steps. First, the current value of matrix T is used
to estimate the vector that maximize the likelihood as
follows

wi = argmax
w

P (Xi|m+ Tw,Σ). (12)

Then, T is updated by maximizing the following relation

∏

i

P (Xi|m+ Twi,Σ). (13)

By taking the logarithm of (13), log-likelihood of each
record can be computed as

log (P (Xi|m+ Twi,Σ)) =
∑

c

Nc log
1

(2π)
D/2

|Σc|
1/2

−
1

2

∑

t

(Xi,t − Tcwi −mc)
t
Σ−1

c (Xi,t − Tcwi −mc),

(14)
where c iterates over all components of the UBM and
t iterates over all feature vectors and Tc is a subma-
trix of T related to the cth component. Let the zero
and the first-order statistics have been calculated by (7)

and (8), respectively. The the posterior covariance ma-
trix, Cov(wi, wi), mean E[wi] , and the second moment

E[wiw
t
i ] are computed for wi as

Cov (wi, wi) =
(
I +

∑

c

Nc (Xi)T
t
cΣ

−1
c Tc

)−1
(15)

E [wi] = Cov (wi, wi)
∑

c

T t
cΣ

−1
c Fc (Xi) (16)

E
[
wiw

t
i

]
= Cov (wi, wi) + E [wi]E [wi]

t
. (17)

Ultimately, by maximizing (13), the updated value of T
can be calculated as

Tc =

(
∑

i

Fc(Xi)E[wi]
t

)(
∑

i

Nc(Xi)E[wiw
t
i ]

)−1

.

(18)

As said before, i-vector is the mean of the posterior
probability of wi given ith input record where wi is a
random hidden variable with a standard normal distribu-
tion. To extract i-vector, the MAP point for w is esti-
mated and it formula is described as (16).

3.3 Techniques for reducing the feature dimension and

the effects of intra-class variations

There are several techniques for reducing the feature
dimension and the effects of intra-class variations. In the
i-vector based applications, various techniques such as
nuisance attribute projection (NAP) [12,38,39,40] within-
class covariance normalization (WCCN) [12,41,42] prin-
cipal component analysis (PCA) [42], and linear discrim-
inant analysis (LDA) [43] are extensively employed. In
this work, PCA and an emerging technique called Varia-
tional Autoencoders (VAE) [44] are employed which will
be explained in the following subsections.

3.3.1 P r i n c i p a l c o m p o n e n t a n a l y s i s

In this method, important information is extracted
from the data as new orthogonal variables, which are re-
ferred to as the principal components [45]. To achieve this
objective, assume a given n × p zero mean data matrix
X where n and p indicate the number of feature vec-
tors and feature size, respectively. Accordingly, to define
the PCA transformation consider vector x(i) of X which
is mapped by a set of p-dimensional vectors of weights
w(k) = (w1, . . . , wp)(k) to a new vector of principal com-

ponent t(i) = (t1, . . . , tl)(i) , as follows

tk(i)
= x(i) w(k); i = 1, . . . , n k = 1, . . . , l, (19)

where vector t (consists t1, . . . , tl ) inherits the maximum
variance from x by weight vector w constrained to be a
unit vector [46].
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3.3.2 V a r i a t i o n a l a u t o e n c o d e r

As one of the most prominent approaches to extract
valuable information is VAE which is among the gener-
ative models. This model attempts to reconstruct data
from input data. In this regard, Consider x as the input
for a VAE which seeks to encode the inputs into latent
variables z , and then reconstructed input x′ will be pro-
duced from the latent variables. To this end, the training
process aims to minimize the cost function (Mean Square
Error (MSE) between input and output). In the opti-
mal situation, the input and output are the same. The
architecture of VAEs comprise hidden layers [44] with
odd numbers and d nodes. The weights are shared be-
tween top and bottom layers, which both have D nodes.
Schematic of a VAE is depicted in Fig. 3.

AS shown in Fig. 3, encoded variable z can be used
as enhanced features for the better description of input
x . To obtain the vector z , a probability function on x ,
called p(x), is defined, seeking to maximize likelihood
of the mentioned probability; log p(x) [47]. E(z∼q(z|x))

shows the expectation of random variable z over prob-
ability function q(z|x). Since we have no information
about p(z|x); an approximation of p(z|x), called q(z|x),
is computed. Thus, based on Bayes rule we have [47]

log p(x) = E(z∼q(z|x)) [log p(x)] =

E(z∼q(z|x))

[

log
p(x|z)p(z)

p(z|x)

]

,
(20)

here, we multiply and divide the term by q(z|x) as an
approximation for p(z|x)

E(z∼q(z|x))

[

log
p(x|z)p(z)q(z|x)

p(z|x)q(z|x)

]

. (21)

So, it can be concluded that

E(z∼q(z|x)) [log p(x|z)] +

E(z∼q(z|x))

[

log
p(z)

q(z|x)

]

+ E(z∼q(z|x))

[

log
q(z|x)

p(z|x)

]

.

(22)

Finally

E(z∼q(z|x)) [log p(x|z)]− E(z∼q(z|x))

[

log
q(z|x)

p(z)

]

︸ ︷︷ ︸

A

+

E(z∼q(z|x))

[

log
q(z|x))

p(z|x)

]

︸ ︷︷ ︸

B

,

(23)
the term B is intractable, and has a value greater than
zero. As a result, the term A is attempted to be mini-
mized as a tractable lower bound. The log-likelihood mea-
sure is a good indicator to show how much samples from
q(z|x) can describe data x .

It is noteworthy that VAEs are a good solution for
different problems such as missing data imputation and
so forth [44].

3.4 Gaussian mixture models

In this study, GMMs are engaged as a classifier for
the extracted features from heart sound records. GMMs
are among models with the probabilistic nature, which
are suitable for general distributions consisted of sub-
populations [48]. GMMs use an iterative process to de-
termine which data point belongs to each sub-population,
without any knowledge about data point labels. Hence,
GMMs are considered as unsupervised learning models.

The GMM is introduced with two types of parameters:
the weights of the Gaussian mixture components and the
means and the variance of the Gaussian mixture compo-
nents. The Probability Distribution Function (PDF) of
a K components GMM, with mean µk and covariance
matrix Σk for the kth component is defined as

p(x) =

K∑

i=1

φi
√

(2π)K |Σi|
×

× exp

(

−
1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
(24)

Σk
i=1φi = 1, (25)
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where x is a feature vector and φi is the weight of the
mixture component ith .

If the number of components is defined, Expectation
Maximization (EM) is a method that is often used to esti-
mate the parameters of the mixture model. In frequentist
probability theory, models are usually learned using max-
imum likelihood estimation techniques. The maximum
probability estimate is engaged to maximize the prob-
ability or similarity of the observed data with respect to
the model parameters [49].

The maximization of EM is a numerical method for es-
timating the maximum probability. Maximization of EM
is a repetitive algorithm and has the property that the
most similarity of data with each subsequent replication
increases significantly, which means that it achieves to
the maximum point or the local maximum point [49].

The maximizing likelihood estimation of Gaussian
mixture models includes two steps. The first step is known
as ”expectation”, which includes calculating the expec-
tation and assigning the kth component (Ck ) for each
xi ∈ X data point with the parameters of the model φk ,
µk and Σk . The second step is known as ”maximization”,
which includes maximizing the expectation calculated in
the previous step relative to the model parameters. This
step involves updating the values of φk , µk and Σk The
entire process is repeated as long as the algorithm con-
verges, giving maximum likelihood estimation. More de-
tails are available at [49].

3.5 Support vector machine

We also employed SVM as a different classifier to com-
pare the obtained results with those of the GMMs. Sub-
sequently, a brief overview of this classifier is presented
below. In this method, a hyperline is used to dis criminate
between samples by returning a solution to a two-class
classification problem

y(x) = wTφ(x) + b, (26)

where, w is an unknown weight matrix to learn. φ(x)
denotes a fixed feature-space transformation and b is the
bias parameter. Consider N training data x1, ..., xN with
target values t1, ..., tN (tn ∈ {−1, 1}). Each data is clas-
sified based on sign of y(x). Therefore, both tn and y(xn)
should have the same sign, and tny(xn) > 0. There will
be multiple solutions for each SVM problem, but the one
with the smallest generalization error is desirable. ”Mar-
gin” is the term to describe the smallest distance between
the decision boundary and any of the samples. The solu-
tion with the maximum value of the margin is chosen as
the best solution. Considering margin definition, the dis-
tance from a point xn to the decision surface is calculated
by

tny(xn)

||w||
=

tn(w
Tφ(xn) + b)

||w||
. (27)

We seek to optimize the parameters w and b to maximize
the distance. This can be achieved by

argmax
w,b

{
1

||w||
min
n

[tn(w
T φ(xn) + b)]}. (28)

This problem can be converted to a less complex problem
for easier solving. Since the scale has no effect on the
solution there is freedom to consider the relation in (28)
as follows

tn(w
T φ(xn) + b) = 1. (29)

The optimization problem in (28) requires to maximize

||w||−1 , equal to minimizing ||w||2 . So we also have to
solve the following optimization problem

argmin
w,b

1

2
||w||2. (30)

To solve (30), Lagrange multipliers an ≥ 0 is in-
troduced for each constraint. So the Lagrange equation
would be

L(w, b, a) =
1

2
||w||2−

N∑

n=1

an{tn(w
Tφ(xn)+b)−1}. (31)

Then derivatives of L(w, b, a) are set to zero with
respect to w and b . Then

w =
N∑

n=1

antnφ(xn) (32)

N∑

n=1

antn = 0. (33)

Considering (32), equation (26) can be rewritten as fol-
lows

y(x) = (

N∑

n=1

antnφ(xn)φ(x)) + b. (34)

The form of (34) allows the model to be reformulated
with kernels. Thus, a solution for problems with infinite
feature space can be obtained by

y(x) = (

N∑

n=1

antnk(xn, x)) + b, (35)

where k(xn, x) is a positive definite kernel.

For this work Radial Basis Function (RBF) was used
as kernel for SVM. The formulaiton of this kernel is given
below

K(x, x′) = exp(−
||x− x′||2

2σ2
). (36)

4 Experimental setup

4.1 Dataset

The 2016 Physionet/CinC challenge is introduced
to provide a standard database containing normal and
abnormal heart sound [1]. The presented dataset in
this challenge is a heart sound recording set of sub-
jects/patients, collected from a variety of environmen-
tal conditions (including noisy conditions with low sig-
nal quality) as described in [1]. Therefore, the major-
ity of heart sounds have incurred different noises during
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recordings such as speech, stethoscope motion, breath-
ing and intestinal activity [1]. These noises complicate
the classification of normal and abnormal heart sounds.
Accordingly, the organizers allowed the participants to
classify some of the recordings as ’unsure’ [1] and it in-
dicates the difficulty level of the challenge. This dataset
consists of three subsets: training, validation, and test.
For training purposes, six labeled databases (names with
the prefix a to f ) contain 3153 sound recordings from
764 subjects/patients, with the duration of 5-120 s) The
validation subset is comprised of 150 normal and 151
abnormal heart sound (with file names prefixed alpha-
betically, a through e) and the test data includes 1277
heart sound trials generated from 308 subjects/patients.
It has to be noted that 301 selected recordings from train
set were used as a test set for validation

The Challenge test set consisted of six databases la-
beled from b to e , g , and i with 1277 heart sound record-
ings from 308 participants. The statistics of each subset
are summarized and illustrated in Tab. 2. More details
about the dataset and the 2016 Physionet/CinC challenge
can be found in [1].

In this study, the results were reported based on
the publicly available part of the Physionet/CinC 2016
dataset. Details of the dataset are presented in Tab. 2.

4.2 Evaluation metrics

In this task, the metric of evaluation is based on Modi-
fied Accuracy (MAcc) introduced by Physionet 2016 chal-
lenge. For MAcc computation, data is categorized into
three categories; normal, abnormal or unsure, with two
references in each category. The modified sensitivity (Se)
and specificity (Sp) can be computed according to:

Se =
wa1 ×Aa1

Aa1 +Aq1 +An1
+

wa2 × (Aa2 +Aq2)

Aa2 +Aq2 +An2
(37)

Sp =
wn1 ×Na1

Na1 +Nq1 +Nn1
+

wn2 × (Na2 +Nq2)

Na2 +Nq2 +Nn2
, (38)

where wa1 and wa2 are the percentages of the abnor-
mal recordings of the signal with good quality and poor
quality respectively, and wn1 and wn2 are of the nor-
mal recordings of the signal with good quality and poor
quality respectively. For all 3153 training set recordings,
values for weight parameters of wa1 , wa2 , wn1 , and
wn2 are equal to 0.8602, 0.1398, 0.9252 and 0.0748 re-
spectively, in the train set. These parameters were also
calculated for validation set and were reported 0.78881,

0.2119, 0.9467 and 0.0533 respectively. The Score” for this
challenge is computed using the following equation

MAcc = (Sp + Se)/2. (39)

4.3 Scoring and decision making

To assign a score to a given heart sound based on the
GMM classifier we proceed as follows. First, an i-vector
is extracted from the training set and is projected to
the new space using the PCA or VAE. Afterwars, they
are fed to two GMMs (one GMM for the normal heart
sound and the other for the abnormal heart sound) with
different components to learn the model by EM iterations
(training GMMs). In the next step, the score for each trial
is obtained by computing log likelihood ratio:

LLR(S) = logP (S|θnormal)− logP (S|θabnormal), (40)

where S is an i-vector corresponding to the test record,
while θnormal and θabnormal denote the GMMs for nor-
mal and abnormal heart sounds, respectively. Once the
score is found, a simple global threshold is applied in
order to make the final decision of normal/abnormal
heart sounds classification. If the score is higher than the
threshold, the test heart sound is labeled as normal and
otherwise, it is labeled as abnormal. In this study, a global
threshold able to plot the detection error trade-off (DET)
and detection accuracy trade-off (DAT) curves was used.

5 Experimental results

In this section, first we briefly introduce the baseline
system and in the following, we carried out various ex-
periments using the physionet 2016 dataset to verify the
performance of proposed framework. In Section 5.2, we
investigate the effects of GMM components and i-vector
dimensionality. Ultimately, the effects of using different
size of training set is examined in Section 5.3.

5.1 Baseline system

In this research study, the proposed approach in [50]
is considered as the baseline system. The Physionet 2016
dataset is used in the baseline system in the same man-
ner that we used in the proposed system. The pro-
posed method in the baseline system is based on Mel-
Spectrogram, MFCC and sub-band envelopes features
and different configurations of CNN classifier. Accord-
ingly, 103228 frames were extracted from the Physionet

Table 2. Statistics of the 2016 Physionet/CinC dataset, [1]

Subset #Patients #Records #Proportion of recordings #The weight parameters

Abnormal Normal Unsure wa1 wa2 wn1 wn2

Training 746 3153 18.1 73.03 8.8 0.8602 0.1398 0.9252 0.0748

Eval. - 301 - - - 0.7888 0.2119 0.9467 0.0533

Test 308 1277 12.1 77.1 10.9 - - - -
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2016 dataset. To report the results, they repeated their
experiments in five iterations and reported the average
of the obtained results. The attained results in terms of
sensitivity, specificity and mean accuracy denoted 0.845,
0.785 and 0.815, respectively.

5.2 Effects of the number of the GMM components and

i-vectors dimensionality

The first part of our experiments was performed to in-
vestigate the effects of the number of GMM components,
the effects of i-vectors dimension numbers without apply-
ing VAE or PCA and finally, effects of i-vector dimension
reduction using PCA or VAE on the proposed system.
Fig. 4 and Fig. 5 represent the MAccs on the test set

using the mentioned approaches. It is worth mentioning

that we did not label any data as unsure”, and the label

normal” or abnormal” is assigned to all test data

In Fig. 4 and 5 the number of components used in

GMMs is specified separately in each plot. Fig. 4 and

Fig. 5 show i-vector generally performs better after the

application of VAE or PCA. The best results are achieved

by higher dimensions of i-vector and after the application

of VAE. Fig. 4 denotes the results of i-vector and its PCA.

It can be seen that the values obtained after employing

PCA are not as good as those obtained by employing

VAE.

Discussion: The higher performance of VAE is due

to the fact that it aims to minimize the cost function
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Table 3. The effect of using different size of training set on the performance of the proposed system with GMM and SVM-RBF

Size of training set System
GMM Classifier SVM Classifier

Se% Sp% MAcc% Se% Sp% MAcc%

Raw i-vector 86.00 34.44 60.22 87.25 37.84 62.54

20% i-vector + PCA 95.33 52.32 73.82 74.66 48.72 61.69

i-vector + VAE 40.00 88.74 64.37 58.93 71.00 64.96

Raw i-vector 60.00 74.83 70.41 68.77 79.23 74.00

40% i-vector + PCA 60.00 83.44 71.72 70.20 54.87 62.53

i-vector + VAE %65.33 72.85 69.09 63.24 40.34 51.79

Raw i-vector 65.33 94.7 80.10 68.57 95.24 81.90

60% i-vector + PCA 82.00 83.44 82.70 85.55 86.83 86.19

i-vector + VAE 64.67 99.34 82.00 69.70 85.44 77.57

Raw i-vector 89.33 87.42 88.75 85.62 83.06 84.34

80% i-vector + PCA 88.00 92.05 90.02 87.34 89.20 88.27

i-vector + VAE 93.33 98.01 95.67 90.12 92.15 91.13

Raw i-vector 88.74 95.33 92.03 88.10 91.18 89.64

100% i-vector + PCA 91.30 98.67 95.00 89.44 93.71 91.57

i-vector + VAE 96.02 98.86 97.34 92.28 94.95 93.61

which is defined as MSE between input features and out-
put (reconstructed features). PCA merely seeks to ex-
tract important information, whereas VAE attempts to
extract features with the capability to produce original
data. As a result, VAE can extract valuable information
which is able to produce original data as much as it can
and that is why MAcc is reducing over time. On the other
hand, increase in dimension of raw i-vector might add use-
less sparse features to the feature vectors and this phe-
nomenon leads to classification error and accuracy reduc-
tion. Generally, the best MAcc values are obtained by the
GMMs trained by 128 components. In the proposed sys-
tem, the GMMs are not well trained with 64 components.
Conversely, engaging 256 components cause over-fitting,
due to the low amount of training set

5.3 Effects of i-vector dimension on performance

In Fig. 6 The red point-line represents the best val-
ues achieved by different dimensions of i-vectors with-
out applying PCA or VAE. Moreover, the blue and green
point-lines of Fig. 6] represent the best values obtained by
different dimensions of i-vectors and applying PCA and
VAE, respectively. According to the Fig. 6, after employ-
ing VAE or PCA, the MAcc values subsequently increase.
However, this pattern is not true for raw i-vectors which
yield different MAcc results

Discussion: A higher-dimensional i-vector includes
more detailed information. On the other hand, this in-
formation may include useless details and common in-
formation, especially for higher dimension of i-vector (in
this case 1024 dimensional i-vector). Therefore, PCA and
VAE methods are adopted to make this information more

effective. Applying PCA and VAE can significantly im-
prove the result values compared with applying raw i-
vectors. In addition, it can be seen that although GMM
works better for higher dimensions, SVM has better im-
provement rate than GMM. This happens owing to the
fact that SVM is a method which works based on feature
space transformation; therefore, any change in the dimen-
sions of features can be more effective than GMM, which
is more data-based classifier. It will be demonstrated in
Section 5.4 that GMM displays a better improvement rate
when the data is increased, while SVM has a smooth im-
provement curve.

5.4 Effect of training the system using different size of

training set

The section is concerned with evaluating the effect of
different sizes of the training set on the proposed method.
To satisfy the conditions, the training data was divided
into 5 folds (each fold include 20% of the training set) ran-
domly. In the next step, the training set was raised fold
by fold each time and the impacts on MAcc improvement
was observed. Table 3 shows the influence of applying the
different sizes of the training set to our system, with a
fixed number of GMM components. This observation re-
vealed better results in the first part of our experiments.
The reported values in this table are based on the best
results obtained from the different size of raw i-vectors
and applying PCA and VAE to them. (In each case, re-
sults are reported using the parameters configuration for
best results) As summarized in Table 3, the classifica-
tion performance improved by an increase in the amount
of training data. The results suggest that increasing the
size of training data over 80%, leads to less improvement,
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in comparison with the cases where the size of the train-
ing set is smaller. According to Table 3, the performance
of proposed system is similar to the baseline system when
only 60% of the training set is used for training the pro-
posed system.

In addition, the performance of SVM is better than
the GMM for lower amount of data. However, for more
amount of training data, GMM system works better than
SVM. Fig. 7 depicts the impact of varying training set
size on the MAcc values of the proposed system

Discussion: As shown in these figures, the MAcc im-
proves while the training set size is gradually increas-
ing. Obviously, the number of the samples is crucial in
improving the results, since it improves the generaliza-
tion. Moreover, it helps the system to adapt to new sam-
ples. Nevertheless, the principal discussion is about the
comparison of three different approaches we engaged to
examine whether feature reduction is applicable or not.
First, as it can be seen, using the larger dataset for raw
i-vector demonstrates lower improvement compared with
using PCA. Obviously, the dimension reduction in large
scale and small dataset yields better performance than
raw i-vector. The most critical point here is that VAE has
the best performance. The main reason is that VAE, as
one of Deep Neural Networks (DNNs), requires more data
to generalize results. Therefore, as data increases, the re-
sults for VAE improve over time. Hence, it yields the best

results among all approaches. It is also worthy of note
that GMM has a better improvement rate than SVM.
The explanation behind this change is lies in the mech-
anism of each classifier. GMM uses data distribution to
perform classification, while SVM is mostly dependent on
feature space rather than data. Thus, increasing data re-
sults in more accurate data distribution and consequently,
better impact on GMM performance. In addition, per-
formance of SVM has a smooth and low improvement,
because adding data in SVM results in better transfor-
mation through kernel function, not better feature space,
necessarily.

5.5 Best results analysis

Table. 4 presents the results obtained by the baseline
system and the best results obtained by our proposed sys-
tems in this study. Accordingly, the best MAcc is achieved
by our proposed system which is 97.34% when i-vector,
VAE and GMMs are employed. This result outperforms
the accuracy of the baseline system by 15.84%

Discussion: In the baseline system represented in
[50], extracted features are mostly based on frequency and
sub-band features; such as MFCC, Mel-Spectrogram, etc.
These features are suitable for robust speech or sound de-
tection. However, in other applications like heart sounds
classification, it is essential to extract an identical features
for our purpose. This is due to specific characteristic of

Table 4. Best results for our proposed approaches and baseline system

System Se% Sp% MAcc%

baseline 84.5 78.5 81.5

i-vector + GMM 88.74 95.33 92.03

i-vector + PCA + GMM 93.37 98.6 95.98

i-vector + VAE + GMM 96.02 98.86 97.34

i-vector + SVM 88.10 91.18 89.64

i-vector + PCA + SVM 89.44 93.71 91.57

i-vector + VAE + SVM 92.28 94.95 93.61
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heart sound, that is unique for every individual. As a re-
sult, i-vector can be better features for heart sound iden-
tification. Hence, it can improve classification error and
accuracy better than approaches based on robust feature
extraction. In addition, GMM has superiority over SVM,
since GMM gives a better description of samples in terms
of feature space since this classifier obtains this goal with
no change in feature space. On the other hand, SVM uses
a kernel to map the current feature space to a better one
and that can cause a problem, since it may be solved in
the current feature space and changing the feature space
can increase complexity.

6 Conclusions

This research study proposes a novel method for auto-
matic heart sound classification based on i-vector MFCC
features embedding. In this method, MFCC features are
extracted from heart sounds, and then i-vectors are ob-
tained based on these features. The achieved i-vectors rep-
resent the characteristics of the participants heart sound,
given that a heart sound is unique for each individual.
This method is based on fix-sized i-vector and therefore
insensitive to the length of the input sounds. In addition,
the i-vector of a heart sound is a more suitable feature
to describe the characteristics of heart sound than other
variable length features, since the whole sound is consid-
ered for i-vector producing. i-vectors are fed to PCA or
VAE in order to produce an apt discrimination. Finally,
these features are given to GMMs and SVM classifiers
for final labeling. The experiments on a public dataset
demonstrate the effectiveness of the proposed method.
The combination of MFCC and i-vector is stable and can
reflect the key point features to discriminate two types of
the subject accurately. The proposed method also works
well with limited amount of data. In conclusion, the pro-
posed method outperforms the state-of-the-art approach.
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