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Reconfigurable control of flexible joint
robot with actuator fault and uncertainty
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This paper presents the fault tolerant control (FTC) of a flexible joint robot using singular perturbation method in order
to compensate for the lost performance due to the occurrence of actuator fault and the uncertainty. This FTC is based on
Lyapunov redesign principle. The singular perturbation method is used to reduce the dynamic model of the flexible joint
robot in a fast and slow subsystem. The time scale reduction of the flexible joint model is carried out when their joint stiffness
is large enough and the singular perturbation parameter is set to zero. The fault-tolerant control structure in this paper is
based on two parts. The first term described the composite control for the system without defect and without uncertainty
which represents the sum between slow and fast controllers. While the second term of the fault tolerant command describes
additive control designed to compensate for the fault effect of the actuator on the uncertain system. The additive approach
is based on the Lyapunov theorem, which guarantees asymptotic stability despite the presence of actuator defects and the
parametric uncertainty. The theoretical results are applied on a robot manipulator with a single flexible joint.

K e y w o r d s: uncertain flexible joint robot manipulators, singular perturbation method, additive fault tolerant control,
actuator defect, Lyapunov theory

1 Introduction

In order to achieve good performance in the field of
robot control, the first researchers have focused on study-
ing the influence of motor dynamics. However, in 1985
Sweet and Good in [1] stressed that flexibility of the robot
joint must be taken into account in robot modeling and
control if high tracking performance is required. In 1987,
Spong proposed in [2] a simplified model for the flexible
articulation of the robot. After this, a large number of
theoretical and experimental investigations were carried
out on the control of robots with flexible joints: Singular
perturbation and integral variety, feedback linearization,
cascade system and integral backstepping control, PD
control, adaptive control, robust control, neural network
control, fuzzy control and some other commands [3–4].

The robot manipulators with flexible joints may be
considered low elasticity systems if their joint stiffness
is big enough. This characteristic allows us to transform
the model of the flexible joint into a system with two time
scales using the singular perturbation technique. The two
time scales include a fast time scale (FTS) and a slow time
scale (STS). The singular perturbation technique (SPT)
is widely applied in the system which can be divided into
a fast subsystem and a slow subsystem [5]. Thanks to the
advantage of model reduction, this technique is capable
of decomposing a higher order system into two systems
of lower order [6–8]. The main idea of using the SPT
technique in robots control is based on the addition of a

simple correction term to the control law for robots with
rigid bodies in order to attenuate the elastic oscillation
at the joint of the robot. However, this method can be
used only in robotic systems with weak joint flexibilities,
where the dynamics of flexible joints is much faster than
the dynamics of rigid bodies [9–10].

The singular perturbation model for the same sys-
tem is not unique which involves several kinds of con-
trol schemes. Spong presented in [11] a control design
that models elastic articulation forces as fast variables
and body variables as slow variables. Ge proposed in [12]
a new adaptive controller based on the SPT technique,

which uses only feedback from position and velocity. In
this control, engine tracking errors are modeled as fast
variables and body variables are modeled as slow vari-
ables. As a result, the dynamics of the slow time scale
and the resulting control laws are also different from those
given by Spong.

Like other systems, the manipulator robot with flexible
hinges can be infected by defects that can attack the com-
ponents of the system (controller, actuator, sensor, etc),
it is necessary to take into consideration the existence of
these defects and to act on the control law so as to com-
pensate for it and permitting the system to accomplish
its mission. This type of control is called fault tolerant

control (FTC). It covers all control strategies capable of
preserving to the best of certain performances fixed by
the operator such as stability, precision and speed; Not
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only in normal operation but also in faulty mode, to im-
prove and preserve the security and the ease of the pro-
cesses and operators [13–17]. In the literature, there are
two approaches to fault tolerant control. The first one is
passive. In this approach, robust control techniques are
used so that the closed system becomes insensitive to a
known set of defects [18, 19]. The defects are then con-
sidered in the initial design of the control system. The
controller is therefore robust to predefined faults [19]. The
second kind of fault tolerant control is the active approach
which reacts to the various defects by reconfiguring the
control law online so as to maintain the stability and the
performances of the system [19, 20]. In order to develop
fault-tolerant controllers for flexible joint manipulators
several approaches are presented in the literature. Koto-
saka et al in [21] presented an FTC scheme for a robot
manipulator that rearranges the trajectory in the event
of an actuator fault, when the actuator no longer func-
tions. Goel et al in [22] developed a method to minimize
the peak error of the final effectors velocity in the event
of a defect for manipulator robot. Lewis and Maciejewski
in [23] developed an FTC scheme for a manipulator robot
subjected to locked joint failures for the robot manipu-
lator can reach critical points in the faulty case. Ting et
al presented in [24] a sliding mode control and parame-
ter adaptation laws which minimize errors caused by the
fault. Izumikawa et al in [25] developed an FTC scheme
based on the gain change so that stability and system
performance are maintained in the event of a sensor fault
for flexible robot.

The researchers are also interested in the uncertainty
effect on the robotic system. The model uncertainties lead
to a wrong system model and affect the accuracy of the
system parameters like the mass and the inertia. That can
influence the system performance and stability. Yang and
Tan in [26] designed a sliding mode boundary controller
for a single flexible-link manipulator based on adaptive
radial basis function (RBF) neural network in presence
of the uncertainties and external disturbances. In [27] Xu
developed the adaptive sliding mode control based on the
neural networks for flexible-joint robot with compound
uncertainty. The model considered by authors is extracted
using singular perturbation (SP) theory. Liu and Huang
in [28] designed a robust adaptive controller based on sin-
gularly perturbed method, for flexible-joint manipulators
with unknown upper bounds of parameter uncertainties
and external disturbances. In [29] Asadi and Shandiz pre-
sented an adaptive tracking control for a class of flexible-
joint manipulators in the presence of parametric uncer-
tainties. Furthermore, some authors like [30] considered
the problem of input saturation for flexible manipulator
and designed and adaptive control scheme to overcome
the problem. In practice, the robotic system can present
at the same time uncertainties such as (parametric un-
certainties, dynamics modeling uncertainties, compound
uncertainty . . . ) and actuator faults like (arm collision,
because this defect is one of the common faults on which
a robot collides with an object or a human, and it may
leads to serious damage or injury [33]). To the best our

knowledge, there have been no studies to design FTC
schemes to control a flexible manipulator with actuator
fault and parametric uncertainty based on the singular
perturbation approach.

The contribution of this paper is to consider the flexi-
ble joint robot system with real parameter as a two time
scale system model to design a FTC in presence of ac-
tuator fault (collision defect) and uncertainty. The con-
trol scheme consists of two parts, a composite control
designed to deal with the nominal case of a flexible joint
robot (without failures and without uncertainty param-
eter) and an additive control that allows to compensate
for the uncertainty of the system and the effect of the
actuator failure; which makes the controller to guarantee
the stability of system not only in case of collision failure,
but also in case of parametric uncertainty.

2 Singularly perturbed model

of a flexible joint manipulator

The method of the Lagrange which takes into ac-
count the potential energy of the flexible transmissions,
allows leading to the dynamic model. In the following,
we present, firstly, the dynamic model of the robot, then
an order reduction using singular perturbation theory to
simplify the controller design.

2.1 Dynamic model of a flexible joint manipulator

The simplified dynamics of a multi-axis flexible joint
robot can be written as [25]

M(q)q̈ + C(q̈, q̇)q̇ +G(q) = K(θ − q) , (1)

Jθ̈ +K(θ − q) = u (2)

where q ∈ R
n and θ ∈ R

n represent the link angles
and motor angles respectively, M(q) ∈ R

n×n is a posi-
tively definite, symmetric inertia matrix of the robot links
(including the motor masses), C(q, q̇)q̇ ∈ R are the cen-
tripetal and Coriolis force, G(q) ∈ R is the gravity force
vector and K ∈ R

n×n is a diagonal matrix represent-
ing the joint stiffness. For notational simplicity we will
assume that all joint stiffness constants are the same.
J ∈ R

n×n is the matrix of the moments of the inertia
of the motors and u ∈ R

n is the exogenous input torque
vector.

2.2 Order reduction by SPT

For the use of the singular perturbation theory in case
of the flexible joint manipulator model, we follow the
approach proposed by [35]. The reduced flexible model
(1-2) can be put into a singularly perturbed form by
introducing the small parameter ε such that the stiffness
is expressed as K = K1/ε

2 , where K and K1 are in order

of O(1/ε2) and O(1) respectively. We define z = K(θ−q)
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where z represents the torque vector transmitted through
the elastic joints. Then (1) and (2) can be rewritten as

{

M(q)q̈ + C(q, q̇)q̇ +G(q) = z ,

ε2Jz̈ +K1z = K1(u − Jq̈) .
(3)

In order to write the complete system (3) in standard
singular perturbation form [32], it is necessary to solve
for q̈ in first equation of system (3) as

q̈ =
ϕ(z, q, q̇)

M(q)

with ϕ(z, q, q̇) = [z − C(q, q̇)q̇ −G(q)]

(4)

Using (4), we can further write the second equation of
system (3) as

ε2Jz̈ +K1z = K1

(

u− JM(q)−1ϕ(z, q, q̇)) (5)

The standard singular perturbation form results by com-
bining (4) and (5) with the choice of state variables:

x = [q q̇]⊤ , y = [z εż]⊤ so that

{

ẋ = f(x, y) , x ∈ R
2n ,

εẏ = g(x, y, u) , y ∈ R
2n, u ∈ R

n
(6)

where



















f(x, y, u) =

(

q̇

M(q)−1ϕ(z, q, q̇)

)

,

g(x, y, u) =

(

ż

K1(J
−1u− q̈ − J−1z

)

)

.

(7)

Note that the system (6) is singularly perturbed, where
[q q̇] and [z ż] represent respectively the fast variables
and the slow variables. Based on the results of the sin-
gular perturbation theory [32], the reduction procedure is
carried out neglecting the duration of variation of the fast
modes in front that of the dominant slow modes which
determine the dynamics of the system. The slow model is
obtained by considering that the fast variables in z have
reached their steady state, which is to assume that ε = 0
in (6), leading to

z = u− Jq̈ (8)

where
z = z|ε=0, q = q|ε=0, u = u|ε=0 . (9)

Substituting (8) into the first equation of (6) gives the
following slow subsystem as

q̈
(

M(q) + J
)

+C(q, q̇)q̇ +G(q) = u = us (10)

which is identical to the rigid robot model [36], where the
subscript s stands for slow variables. On the other hand,
setting (10) in (5) yields the expression

K1z = K1

(

u− JM(q)−1ϕ(z, q, q̇)
)

. (11)

The fast system will be analyzed with the boundary layer
theory of singular perturbation method. In order to de-
scribe the fast system, a new variable τ = t/ε is in-
troduced. Then, the boundary-layer system is written in
terms of the variable zf = z − z , where the subscript
f stands for fast variables. Here z is the torque of the
spring, z defined by (8), is constant in the fast time scale
τ and zf is the fast part.

Changing to the fast time scale τ , and z = z + zf
which will be substituted into (11) with z̈ = 0 and ε = 0,
gives the expression

J
d2zf
d τ2

+K1

(

z + zf
)

=

K1

(

u− JM(q)−1[(z + zf)− C(q, q̇)q̇ −G(q)]
)

. (12)

Using (8) and (10) (for z and us ) (12) reduces to

d2zf
dτ2

+K1

(

J−1 +M(q)−1
)

zf = J−1K1uf (13)

where uf = u − us is the control for the fast subsystem
which is responsible for the dynamic response and us for
the steady-state response.

In view of the singular perturbation theory, a com-
posite control structure can be considered. This control
scheme consists of two terms us and uf separately de-
signed [11]

u = us + uf . (14)

The synthesis of the control us of the slow subsys-
tem is based on the quasi-static approximation of the
system (10) and only affects the latter, while the control
of the subsystem uf is aimed at stabilizing the fast sub-
system (13). We typically search for us = u|s=0 = u and
uf |s→0 = 0. Thus, us can be chosen from the methods
for controlling rigid robots.

3 FTC scheme for flexible-joint robotic manipulators

Design a slow control us(t) = Rs(x) for the reduced
system (10) such that x = 0 is its unique asymptotically

stable equilibrium in Bx ⊂ Rn1 , and where a Lyapunov
function Ls(x) : Rn → R

+ exists, guaranteeing, for all
x ∈ Dx , [5]

∂Ls

∂x
[ρ1(x, z) + σ1(x, z)us] ≤ −pΨ2(x), p > 0,

where, σ1(x, z) =
(

M(qs) + J
)−1

,

ρ1(x, z) = σ1(x, z)
(

−C(qs, q̇s)q̇s)−G(qs))
)

(15)

and Ψ(x) is a positive definite function with Ψ(0) = 0.

Knowing that us(t) = Rs(x), a fast control uf(t) =
Rf (x, y) which satisfies Rf (x, T (x,Rs(x))) = 0 is de-
signed to stabilize asymptotically the fast dynamics, such
that the equilibrium y = z = T (x, us) of the closed-loop
boundary layer system (13) is supposed asymptotically
stable. For this subsystem, we consider a positive-definite
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Fig. 1. Functional diagram of the fault-tolerant control of a singu-
larly perturbed uncertain robotic system

Lyapunov function Lf(x, y) : R
n1×Rn2 → R

+ such that
for all (x, y) ∈ Dx ×Dy

∂Lf

∂zf
[ρ2(x, y) + σ2(x, y)(Rs +Rf )] ≤ −cφ2(zf ), c > 0

(16)

where ρ2(x, y) =
(

K1M(q)−1
[

ϕ(z, q, q̇)
]

− K1J
−1z

)

,

σ2(x, y) = J−1K1 , φ(x, y) is a continuous positive-
definite scalar function that satisfies φ(0) = 0 and
ϕ(z, q, q̇) is given in (4).

Since the control input to system (6) is the composite
control, it is necessary to ensure the asymptotic stability
property of the system. To show how this can be achieved,
we construct a weighted sum of the Lyapunov functions.
Define this function as [5]

H(x, zf ) = (1 − α)Ls(x) + αLf (x, zf ), 0 < α < 1, (17)

where, Ls and Lf are the Lyapunov functions of the slow
subsystem (10) and fast subsystem (13), respectively, and
α is a free parameter. The derivative of this composite
Lyapunov function along (6) gives

Ḣ =
α

ε

∂Lf(x, zf )

∂zf

[

ρ2(x, z) + σ2(x, zf )u
]

+ (1− α)
∂Ls(x)

∂x

[

ρ1(x, h(x1, us))

+ σ1(x, h(x,Rs(x)))us

]

+M(x, zf , u, us) . (18)

The terms in (18) represent respectively L̇f and L̇s along
the trajectories of the fast and slow subsystems respec-
tively. Based on the two equations (15) and (16), we can

conclude that the terms L̇f and L̇s in equation (18) are
negative-definite. While the effect of the interconnection
between the fast and slow dynamics is presented in the
third term M(x, zf , u, us) which takes the following form

M(x, zf , u, us) = (1− α)
∂Ls(x)

∂x

[

ρ1(x, zf ) + σ1(x, zf )u

− ρ1(x, T (x,Rs(x))) − σ1(x, T (x,Rs(x)))us

]

+ α
∂Lf (x, zf )

∂x

[

ρ1(x, zf ) + σ(x, zf )u
]

.

For this term to be negligible it is necessary that the
parameter of singular perturbation parameter ε remains
weak [31]. According to (15) and (16), we can reorganize
equation (18) in the following form

∂H(x, zf )

∂t
≤ −ν(x, zf ) (19)

where ν(x, zf ) = pΨ2(x) + α
ε
cφ2(zf ) is positive definite

and H(x, zf ) is a Lyapunov function. Therefore, within a
predetermined range of parameter ε , it can be concluded
that the system (6) is asymptotically stable at the origin
due to the application of composite control (14) [32–35].

After stabilization of the slow and fast subsystems in
Dx ×Dy and we can access states (x, y), we are looking
for a fault-tolerant control used to keep the singularly
perturbed system stable at the origin even in the presence
of actuator faults and parametric uncertainty.

The singularly perturbed system for flexible Joint
robots (6), when the actuator affected by an additive de-
fect and in the presence of uncertainty, the system can be
rewritten in the following form



















q̈ =
ϕ(z, q, q̇)

M(q)
+ ∆1(q, q̇) ,

εz̈ = K1J
−1

(

(u + F (t, x, y))

−JM(q)−1ϕ(z, q, q̇)− z
)

+∆2(q, q̇) .

(20)

Assumption 1. There exists a known positive con-
stant D(x, y) > ‖F (x, y)‖ , D(x, y) > ‖∆1(q, q̇)‖ and
D(x, y) > ‖∆2(q, q̇)‖ for all t ≥ 0. Thus, the fault toler-
ant control designed to stabilize the faulty system (20) is
presented as [5]

u = unom + uadd , (21)

unom and uadd are respectively the nominal composite
control designed to stabilize the faulty system and the
additive control designed to reduce the effect of fault and
uncertainty on the system. A block scheme representation
of the implementation of the fault tolerant control is given
in Fig. 1.

To ensure the asymptotic stability of the uncertain
system (20) with actuator fault by the control (21), we
consider a positive definite Lyapunov function

H(ε, x, zf) = (1 − α)Ls + εαLf . (22)

The derivative of this function is

∂H(ε, x, zf)

∂t
= α

∂Lf

∂zf

[

ρ2 + σ2(unom + uadd + F ) + ∆2

]

+ (1− α)
∂Ls

∂x

[

ρ1 + σ1(unom + uadd + F ) + ∆1

]

+ αε
∂Lf

∂x

[

ρ1 + σ1(unom + uadd + F ) + ∆1

]

. (23)
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The separation of the terms which depend on the nominal
and the additive controls makes (23) to be

∂H

∂t
= α

∂Lf

∂zf

(

ρ2 + σ2unom

)

+(1− α)
∂Ls

∂x

(

ρ1 + σ1unom

)

+ αε
∂Lf

∂x

(

ρ1 + σ1unom

)

+(1− α)
∂Ls

∂x
σ1

(

uadd + F
)

+ (1− α)
∂Ls

∂x
∆1 + α

∂Lf

∂zf
σ2

(

uadd + F
)

+α
∂Lf

∂zf
∆2

+ αε
∂Lf

∂x
σ1(uadd + F

)

+αε
∂Lf

∂x
∆1 . (24)

We take
∂Ls

∂x
= S⊤

1 ,
∂Lf

∂zf
= S⊤

2 ,
∂Lf

∂x
= S⊤

3 and,

considering (19), (24) becomes

∂H

∂t
≤ −ν + (1− α)S⊤

1 σ1(uadd + F )

+ αST
2 σ2(uadd + F ) + αεS⊤

3 (uadd + F )

+ (1− α)S⊤

2 ∆2 + αS⊤

2 ∆2 + αεS⊤

3 ∆1 . (25)

We can rewrite the inequality (25) in the following form

Ḣ ≤ −ν +
[

(1− α)S⊤

1 σ1 + αS⊤

2 σ2 + αεS⊤

3 σ1

]

F

+
[

(1 − α)S⊤

1 σ1 + αS⊤

2 σ2 + αεS⊤

3 σ1

]

uadd

+ (1− α)S⊤

1 ∆1 + αS⊤

2 ∆2 + αεS⊤

3 ∆1 . (26)

The use of singular perturbation technique by putting
the singular perturbation parameter ε to zero and using
Assumption 1, the following expression is obtained

Ḣ |ε=0 ≤ −ν +
[

αS⊤

2 σ2 + (1− α)S⊤

1 σ1

]

uadd

+D‖αS⊤

2 σ2 + (1− α)S⊤

1 σ1‖

+D
(

‖(1− α)S⊤

1 ‖+ ‖αS⊤

2 ‖
)

(27)

where ν(t, x, zf ) used in (19) is positive definite, the sec-
ond term uadd in the equation above designates the effect
of the additive control. Whereas the last terms designate,
respectively, the fault F (t, x, y) and the uncertainties ∆1

and ∆2 . To ensure asymptotic stability the derivative of
the Lyapunov function (27) must be negative, the addi-
tive control uadd takes then the following form

uadd = −D
(1− α)S⊤

1 σ1 + αS⊤
2 σ2

‖(1− α)S⊤
1 σ1 + αS⊤

2 σ2‖2
×

[

‖(1− α)S⊤

1 σ1+αS⊤

2σ2‖+‖(1− α)S⊤

1 ‖+‖αS⊤

2 ‖
]

. (28)

So, under the effect of the fault tolerant control (28), we
can conclude that the uncertain system in the presence of
fault (20) is asymptotically stable at the origin (x, y) =
(0, 0).

Using the equation (28), the system (20) is rewritten
in the following form



















q̈ =
ϕ(z, q, q̇)

M(q)
+ ∆1(q, q̇) ,

εz̈ = K1J
−1

(

(u+ uadd + F (t, x, y))

−JM(q)−1
(

ϕ(z, q, q̇)− z
)

+∆2(q, q̇) .

(29)

The discontinuity of this control causes the chattering

phenomenon that can excite the instability of the sys-

tem. To overcome this problem, we apply the idea of the

boundary layer method, using a continuous approach.

4 A design example

In this section, a simulations example is presented to

show the efficiency and the performance of the studied

reconfigurable control scheme. Toward this end, consider

the single link flexible joint manipulator, represented

schematically by Fig. 2. This robot can be expressed by

the following nonlinear differential equations [35]

{

Iq̈ +Mgl sin(q) = K(θ − q) ,

Jθ̈ +K(θ − q) = u
(30)

where, q and θ are the link and motor angles respectively,

I is the link inertia, J being the inertia of motor, K is

the spring stiffness, u is the input torque, and M and L

are the mass and length of link respectively.

u

J

q q

L

M, I

K

Fig. 2. Single-link flexible joint robot

The robot model with the flexible joint (30) can be

put in a singularly perturbed form by introducing the

parameter ε such that (3) [2, 25]















q̈ =
−MgL sin(q) + z

I
,

εż =
MgL sin(q)− z

q
I +

u− z

J
.

(31)

The slow model is obtained by assuming ε = 0 in (31).

It takes the following form

q̈ = (I + J)−1(us −MgL sin(q)) . (32)

We seek to find the slow control us so that the

reduced slow system (32) becomes asymptotically sta-

bilizing about the origin. By inspection, we find that
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Fig. 4. Evolution of states and composite control with actuator
fault and parametric uncertainty: (a) – q (-) and z (–) regulation
by the composite control, (b)– composite control. (c) – fault of

collision

us = MgL sin(q)−Ψ(x) stabilizes exponentially the ori-
gin, where Ψ(·) is a scalar function. In order to analyze
the stability of the slow subsystem, the following slow
Lyapunov function is introduced

Ls(q, q̇) =
1

2

[

q̇⊤q̇ + q⊤q
]

. (33)

The reduced fast subsystem for (31), in the fast time
scale, is defined as

d2zf
dτ2

=
MgL

I
sin(q)−

(1

I
+

1

J

)

zf +
1

J

(

us + uf

)

. (34)

The control of the fast subsystem uf is expressed as

uf = zf −Kv żf (35)

where, Kv is a constant. This approach can be easily
deducted, and guarantees the asymptotic stability of the
slow subsystem (34) in a closed loop. The following Lya-
punov function is proposed

Lf(zf , żF ) =
1

2
żf ż

⊤

f +
1

2
zf(I

−1 + J−1)z⊤f . (36)

In order to guarantee the stability of the singularly
perturbed system without defect, a composite control
structure with two terms can be considered. A slow con-
trol us to stabilize the slow subsystem (rigid robot model)
and a fast control uf designed to damp the elastic oscil-
lations at the joints. The composite control becomes

ucomp = us(q, q̇, t) + uf(zf , żf )

= MgL sin(q)−Ψ(x) + zf −Kv żf . (37)

The resulting closed-loop overall system, after substi-
tuting of (37) in (31) is











q̈ =
−MgL

I
sin(q) +

1

I
z ,

εz̈ =
MgL

I
sin(q)−

(1

I
+

1

J

)

z +
1

J
ucomp

(38)

where q ∈ R
n and z ∈ R

n represent the link angles and
elastic torque.

For the simulation, the parameters of the QUANSERs
flexible joint manipulator system are selected as fol-
lows [37]: g = 9.81m/s2 , M = 0.065 kg, L = 0.419 m,

I = 3.8 × 10−3 kg.m2 , J = 2.08 × 10−3 kg.m2 , K =
1.3N.m/rad.

The first simulation presented in Fig. 3 shows the per-
formance of the controls we have developed previously in
the fault-free case. It is clear that the composite ucomp

asymptotically stabilizes the origin of the flexible-joint
robotic system in (38). The initial conditions chosen for
the state variables are [q0 q̇0 z0 ż0] = [0.1 0.1 0.1 0.1].

In order to verify the effectiveness of the control (37),
two collision faults on the actuator Fa , see Fig. 4(c) are
injected. The first one is generated between the time in-
stants 6 s and 8 s (before reaching the steady state) and
the second one between the time instants 15 s and 18 s
(after reaching the steady state): A collision defect is one
of the common faults on which a robot collides with an
object or a human, and it may leads to serious damage
or injury. The generated parametric uncertainty is 10%
of the nominal value of the system parameters (38). Fig-
ure (4) shows that the composite control (37) becomes
incapable of ensuring the convergence of the flexible-joint
robotic system (38) in the presence of uncertainty and
defect (see Fig. 4(a)). Hence the need for fault-tolerant
control that eliminates the effect of fault and uncertainty
from the states.

Then, in order to reduce the effect of the actuator
fault and the uncertainty on the system, a fault tolerant
approach will be introduced, according to equations (21)
and (28), it takes the form

u = ucomp + uadd = MgL sin(q) −Ψ(x)+

zf −Kvżf −D
ζ(x, y)||δ(x, y)||

||ζ(x, y)||2
(39)



136 A. Elghoul, A. Tellili, M. N, Abdelkrim: RECONFIGURABLE CONTROL OF FLEXIBLE JOINT ROBOT WITH . . .

q  z,

0 5 10 3015
Time (s)

20

UCTD

0

0

5

2

(b)

(a)

Fig. 5. Evolution of states and composite control with actuator
fault and parametric uncertainty: (a) – q (-) and z (–) by the fault-

tolerant control, (b) – fault tolerant controller
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Fig. 6. Evolution of states: (a) – and fault tolerant control, (b) –
after the reduce of chattering phenomenon

where, ζ(·) and δ(·) are continuous scalar function. The
application of this control gives Fig. 5.

It can be seen from Fig. 5 that the control applied to
the uncertain robotic system with faulty makes it capable
of maintaining its performance even in the presence of un-
certainty and collision defect. However, the corresponding
controls are characterized by very fast switching causes
the chattering phenomenon that can excite the instability
of the system.

In order to reduce the chattering phenomenon, while
maintaining the fault tolerant control performance, the
saturation function will be used instead of the discontin-
uous function. The simulation results in Fig. 6(a) and (b)
represent, respectively, the states and the controller after
the attenuation of the chattering in the control law. We
can see the disappearance of the chattering phenomenon
and that the control which was applied to the faulty un-
certain system makes it capable of maintaining its per-
formance and states stay at the same equilibrium point.

5 Conclusion

In this paper we applied the singular perturbation con-
trol strategy for the case of uncertain flexible joint robot
to ensure the stability of the global system, not only when
the actuator is fault free but also in the presence of col-
lision defects. Firstly, the flexible joint robot system is
modeled using the singular perturbation method, it is di-
vided into a slow and a fast subsystems. The fault tolerant
control scheme has two main components. The composite
part, assumed as a classic nominal control of the global
system without considering the dynamic uncertainty and
the fault. it is represented by the sum of the slow and
fast sub-controllers. The second component is the addi-
tive part introduced in order to remove the fault effect in
the actuator and the parametric uncertainty. This addi-
tive approach is based on the Lyapunov theorem, which
guarantees asymptotic stability despite the presence of
actuator defect and uncertainty.

A robot manipulator with a single flexible joint has
been presented as an illustrative example, on which we
applied the fault tolerant control method, it is shown that

the reconfigurable control was able to eliminates the effect
of actuator fault and the uncertainty.
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