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Computing multiplicative inverses in finite fields by long division

Otokar Grošek, Tomáš Fabšič
∗

We study a method of computing multiplicative inverses in finite fields using long division. In the case of fields of a
prime order p , we construct one fixed integer d(p) with the property that for any nonzero field element a , we can compute
its inverse by dividing d(p) by a and by reducing the result modulo p . We show how to construct the smallest d(p)
with this property. We demonstrate that a similar approach works in finite fields of a non-prime order, as well. However,
we demonstrate that the studied method (in both cases) has worse asymptotic complexity than the extended Euclidean
algorithm.
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1 Introduction

Computing a multiplicative inverse in a finite field is a
common operation used in cryptography. For instance, it
is a key operation in the cryptographic standard AES [1].

After M. Repka studied the McEliece cryptosystem
in [2], he set the question (in personal communication,
2017) if would be possible to find multiplicative inverses
in F2[x]/(f(x)) by dividing one fixed polynomial by field
elements. Here we present this problem in a more complex
form. The result is positive, but probably not valuable for
a real application since the extended Euclidean algorithm
(EEA) is asymptotically faster.

A number of methods for calculating a multiplicative
inverse for an element a of a finite field are known. Below,
we list the methods mentioned in [3]:

1. Multiplying a by elements in the field until the prod-
uct is one.

2. Calculating the inverse of a ∈ GF(pm) as a−1 =

ap
m−2 .

3. By using the extended Euclidean algorithm.

4. By making a logarithm table of the finite field, and
performing subtraction in the table.

Another method, which is not mentioned on the web-
page [3], is based on so called Wilson’s Theorem:

Theorem 1. For any n ,

(n− 1)! = −1 mod n ,

if and only if n is a prime number.

From Wilson’s Theorem it follows that if p is prime,
then for any a ∈ Z

∗
p , we can compute a−1 as

a−1 =
(p− 1)

(

(p− 1)!
)

a
mod p . (1)

Thus to find an inverse mod p requires one long division
and one reduction mod p .

This approach, although very laborious, has an in-
teresting history [4–6]. J. Waring in Meditationes alge-
braicae, Cambridge, 1770, p. 218, first published the the-
orem that p|1 + (p − 1)! ascribing it to Sir John Wilson
(1714–93). J. L. Lagrange was the first to publish a proof
also with the converse in Nouv. Mém. Acad. Roy, Berlin,
2, 1773, anne 1771, p. 125.

Also Ibn al-Haytham (c. 1000 AD) solved problems
involving congruences using Wilson’s theorem [5].

Finally, J. P. M. Binet in Comptes Rendus Paris, 13,
1841, pp. 210–13, employed Wilson’s theorem to find the
inverse element to a by −(p− 1)!/a .

This method for finding inverses mod p relies on two
facts:
Let d = (p− 1)

(

(p− 1)!
)

, then

1. for any a ∈ Z
∗
p , d is divisible by a , and

2. d = 1 mod p .

Now a question arises: For a prime p , find the smallest
possible number d = d(p) satisfying these two conditions.

Clearly, d(p) ≤ (p − 1)
(

(p − 1)!
)

, eg d(5) ≤ 96, d(7) ≤
4320. Then for any a ∈ Z

∗
p ,

d(p)/a mod p = a−1. (2)

2 Finding d(p)

It is not difficult to observe that d(p) can be found in
two steps. First, find ℓ(p) = LCM(1, . . . , p−1), and then
h(p) ∈ Z

∗
p such that h(p)ℓ(p) = 1 mod p . The searched

number will be d(p) = h(p)ℓ(p).
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The magnitude of d(p) can be estimated as follows [7]:
Let π(n) denotes the number of primes not exceeding n .
Then for any n ≥ 2, we have

π(n) ≥
ln ℓ(n)

lnn
, (3)

or

lim
n→+∞

ln ℓ(n)

n
= 1. (4)

Thus from a form of the Prime Number Theorem it fol-
lows that actually

LCM(1, . . . , n) ≈ eψ(n),

where ψ is the Chebyshev’s function, ψ(x) = x + o(x),
as x → +∞ . Thus for a large p , d(p) is a very large
number.

We will illustrate our approach by an example.

Example 1. Let p = 7, a = 5. Our goal is to find
5−1 mod 7. We compute ℓ(7) = 60, h(7) = 2, d(7) =

120, d(7)/5 = 24 and 5−1 = 24 mod 7 = 3.

Now, we will estimate the complexity of this method.
We ignore the complexity of computing d(p), since it has
to be done only once, and afterwards the same d(p) can
be used for computing all multiplicative inverse in Z

∗
p .

By [8] the following is valid:

1. Complexity of division d(p)/a is O
(

(log2
d(p)
a

)(log2a)
)

.
Thus the complexity of the method can be estimated

as O
(

(log2 d(p))(log2 p)
)

.

2. Complexity of the extended Euclidean algorithm is
O
(

(log2 p)
2
)

.

Thus EEA is asymptotically faster than our new algo-
rithm.

3 A generalization for a field GF(pm)

In this section, we will use a similar approach for a
finite field GF(pm) with m > 1. The role of primes in
the previous section will be played by irreducible polyno-
mials. Thus we start with three well known facts [9].

Definition 1. The Moebius function µ is the function
on N defined by

µ(n)

=











1, if n = 1 ,

(−1)k, if n is the product of k distinct primes,

0, if n is divisible by the square of a prime.

Theorem 2. Let q = pm , where p is prime and m ≥ 1 .
The number Nq(k) of monic irreducible polynomials in

Fq[x] of degree k is given by

Nq(k) =
1

k

∑

d|k

µ
(

k/d
)

qd =
1

k

∑

d|k

µ(d)q
k
d . (5)

Theorem 3. Let q = pm , where p is prime and m ≥ 1 .
The product I(q, k;x) of all monic irreducible polynomi-

als in Fq[x] of degree k is given by

I(q, k;x) =
∏

d|k

(xq
d

− x)µ(
k
d ) =

∏

d|k

(xq
k/d

− x)µ(d). (6)

Let f(x) be an irreducible polynomial in Zp[x] of the
degree m . Our goal is to find a polynomial d(x) in Zp[x]
such that

1. for any a(x) ∈ Zp[x]/(f(x)) \ {0} , d(x) is divisible by
a(x),

2. d(x) = 1 mod f(x), and

3. the polynomial d(x) is of the least degree.

To satisfy the first and the third condition, we are
searching for

ℓ(x) = LCM{u(x) ∈ Zp[x]/(f(x)), u(x) 6= 0}. (7)

From Theorem 3, it is not difficult to see that

ℓ(x) =
m−1
∏

k=1

I(p, k;x)⌊
m−1

k ⌋. (8)

The degree of this polynomial is

t = deg ℓ(x) =

m−1
∑

k=1

Np(k)k⌊
m− 1

k
⌋. (9)

To satisfy the second condition, let h(x) ∈ Zp[x]/(f(x))
be such that h(x)ℓ(x) = 1 mod f(x). The polynomial
d(x) = h(x)ℓ(x) then satisfies all required conditions.

Theorem 4. Let us consider a finite field Zp[x]/(f(x)) ,
where f(x) is an irreducible polynomial of the degree m
in Zp[x] . Let us consider the polynomial

d(x) = h(x)ℓ(x) ,

where ℓ(x) is defined by (8) and h(x) is a polynomial

in Zp[x]/(f(x)) such that h(x)ℓ(x) = 1 mod f(x) . Then
d(x) satisfies the following property:

For any a(x) ∈ Zp[x]/(f(x)) , a(x) 6= 0 , we can compute

a(x)−1 as

a(x)−1 = d(x)/a(x) mod f(x) .

Moreover, the polynomial d(x) is the monic polynomial

with the least degree in Zp[x] which satisfies this prop-

erty. The degree of d(x) is

deg d(x) = t+ deg h(x) < t+m,

where t is given by (9).
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Example 2. Let f(x) be the AES polynomial, ie f(x) =

x8 + x4 + x3 + x + 1. Then t = 254, deg h(x) < 8,
deg d(x) < 262. The calculation in Z2[x] is as follows:

1. I(2, 1;x) = x(x + 1)

2. I(2, 2;x) = x2 + x+ 1

3. I(2, 3;x) = x6 + x5 + x4 + x3 + x2 + x+ 1

4. I(2, 4;x) = x12 + x9 + x6 + x3 + 1

5. I(2, 5;x) = x32+x
x2+x

6. I(2, 6;x) = (x64+x)(x2+x)
(x4+x)(x8+x)

7. I(2, 7;x) = x128+x
x2+x

ℓ(x) = I(2, 1;x)7I(2, 2;x)3I(2, 3;x)2I(2, 4;x)I(2, 5;x)
I(2, 6;x)I(2, 7;x),

h(x) = x6+x4+x , d(x) = h(x)ℓ(x) = (x6+x4+x)ℓ(x).

The degree and the Hamming weight of d(x) is
deg d(x) = 260, wH(d(x)) = 88.

Now, we will compare the complexity of our method
with the complexity of the extended Euclidean algorithm.
We ignore the complexity of computing d(x), since it
has to be done only once, and afterwards the same d(x)
can be used for computing all multiplicative inverses in
GF(pm). We express the complexities in the number of
Zp operations.

The complexity of the extended Euclidean algorithm
for elements in GF(pm) is O(m2) [8].

Let f(x) be an irreducible polynomial in Zp[x] of the
degree m . Let a(x) ∈ Zp[x]/(f(x))\{0} . The complexity
of the division of d(x) by a(x) is

O
(

deg a(x)(deg d(x)−deg a(x))
)

. Thus the complexity of
our method is
O
(

m(deg d(x))
)

.

The value of deg d(x) is at least t , where t is given
by (9). By the estimate from page 93 in [9], we have that
Np(k) ≥ 1 for all k . Thus we obtain

t ≥

m−1
∑

k=1

k
⌊

m−1
k

⌋

≥

m−1
∑

k=1

k
(

m−1
k

− 1
)

= (m− 1)
(

m
2 − 1

)

.

Therefore EEA is asymptotically faster than our new
algorithm.

4 Conclusions

We studied the method of finding multiplicative in-
verses in Zp by constructing one fixed integer d(p) with

the property that for any a ∈ Z
∗
p , we can compute a−1 as

a−1 = d(p)/a mod p . We demonstrated that a similar ap-
proach works in finite fields GF(pm) with m > 1, as well.
However, we showed that the studied method (both in the
case of Zp and in the case of GF(pm)) has worse asymp-
totic complexity than the extended Euclidean algorithm.

For the field GF(28) (which is used in AES, for exam-
ple), we experimentally found (the experiment was per-
formed in the mathematics software system SageMath)
that the presented algorithm is on average approximately
4.4 times slower than the extended Euclidean algorithm.
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